A FRESH LOOK AT THE UTM PROJECTION: Karney-Krueger equations

R. E. Deakin\(^1\), M. N. Hunter\(^2\) and C. F. F. Karney\(^3\)
\(^1\) School of Mathematical and Geospatial Sciences, RMIT University
\(^2\) Maribyrnong, VIC, Australia.
\(^3\) Princeton, N.J., USA.
email: rod.deakin@rmit.edu.au

Presented at the Surveying and Spatial Sciences Institute (SSSI) Land Surveying Commission National Conference, Melbourne, 18-21 April, 2012

ABSTRACT

The Universal Transverse Mercator (UTM) coordinate system has at its core, equations that enable the transformations from geographic to grid coordinates and vice versa. These equations have a long history stretching back to Gauss and his survey of Hannover in the early 1800's but their modern formulation is due to L. Krueger (1912) who synthesised Gauss' and other work on the transverse Mercator (TM) projection of the ellipsoid. Krueger developed two methods of transformation and the equations of his second method have become de facto standard for the UTM and other TM projection systems. Unfortunately these are complicated and have limited accuracy. But the equations for Krueger's first method which do not suffer from these accuracy limitations are undergoing a renaissance and a recent study by Charles Karney (2011) has given these equations a 'make-over'. This paper gives some insight into the development and use of the Karney-Krueger equations.

INTRODUCTION

The transverse Mercator (TM) projection is a conformal mapping of a reference ellipsoid of the earth onto a plane where the equator and central meridian remain as straight lines and the scale along the central meridian is constant; all other meridians and parallels being complex curves (Figure 5). The UTM is a mapping system that uses the TM projection with certain restrictions (such as standard 6\(^o\)-wide longitude zones, central meridian scale factor of 0.9996, defined false origin offsets, etc.) and the Gauss-Krueger system is similar. And both are members of a family of TM projections of which the spherical form was originally developed by Johann Heinrich Lambert (1728-1777). This (spherical) projection is also called the Gauss-Lambert projection acknowledging the contribution of Carl Friedrich Gauss (1777-1855) to the development of the TM projection. Snyder (1993) and Lee (1976) have excellent summaries of the history of development which we paraphrase below.

Gauss (c.1822) developed the ellipsoidal TM as one example of his investigations in conformal transformations using complex algebra and used it for the survey of Hannover in the same decade. This projection had constant scale along the central meridian and was known as the Gauss conformal or Gauss' Hannover projection. Also (c. 1843) Gauss developed a 'double projection' consisting of a conformal mapping of the ellipsoid onto the sphere followed by a mapping from the sphere to the plane using the spherical TM formula. This projection was adapted by Oskar Schreiber and used for the Prussian Land Survey of 1876-1923. It is also called the Gauss-Schreiber projection and scale along the central meridian is not constant. Gauss left few details of his original developments and Schreiber (1866, 1897) published an analysis of Gauss' methods, and Louis Krueger (1912) re-evaluated both Gauss' and Schreiber's work, hence the name Gauss-Krueger as a synonym for the TM projection.

The aim of this paper is to give a detailed derivation of a set of equations that we call the Karney-Krueger equations. These equations give micrometre accuracy anywhere within 30\(^o\) of a central meridian; and at their heart are two important series linking conformal latitude \(\phi'\) and rectifying latitude \(\mu\). We provide a development of these series noting our extensive use of the computer algebra system Maxima in showing these series to high orders of \(n\); unlike Krueger who only had patience. And without this computer tool it would be impossible to realize the potential of his series.

Krueger gave another set of equations that we would recognise as Thomas's or Redfearn's equations (Thomas 1952, Redfearn 1948). These other equations also known as the TM projection are in wide use in the geospatial community; but they are complicated, and only accurate within a narrow band (3\(^o\)- 6\(^o\)) about a central meridian. We outline the development of these equations but do not give them explicitly, as we do not wish to promote their use. We also show that the use of these equations can lead to large errors in some circumstances.

This paper supports the work of Engsager & Poder (2007) who also use Krueger's series in their elegant algorithms for a highly accurate transverse Mercator projection but provide no derivation of the formulae. Also, one of the authors (Karney 2011) has a detailed analysis of the accuracy of our projection equations (the Karney-Krueger equations) and this paper may be regarded as background reading. [An earlier version of this paper was presented at The Institution of Surveyors Victoria, 25th Regional Survey Conference, Warrnambool, 10-12 September 2010]
The preliminary sections set out below contain information that can be found in many geodesy and map projection texts and could probably be omitted but they are included here for completeness. As is the extensive Appendix that may be useful to the student following the development with pencil and paper at hand.

SOME PRELIMINARIES

The transverse Mercator (TM) projection is a mapping of a reference ellipsoid of the earth onto a plane and some definition of the ellipsoid and various associated constants are useful. We then give a limited introduction to differential geometry including definitions and formulae for the Gaussian fundamental quantities \(e, f \) and \(g \), the differential distance \(ds \) and scale factors \(m, h \) and \(k \).

Next, we define and give equations for the isometric latitude \(\psi \), meridian distance \(M \), quadrant length \(Q \), the rectifying radius \(A \) and the rectifying latitude \(\mu \). This then provides the basic 'tools' to derive the conformal latitude \(\phi' \) and show how the two important series linking \(\phi' \) and \(\mu \) are obtained.

The ellipsoid

In geodesy, the ellipsoid is a surface of revolution created by rotating an ellipse (whose semi-axes lengths are \(a \) and \(b \) and \(a > b \)) about its minor axis. The ellipsoid is the mathematical surface that idealizes the irregular shape of the earth and it has the following geometrical constants:

- Flattening: \(f = \frac{a - b}{a} \) (1)
- Eccentricity: \(e = \sqrt{\frac{a^2 - b^2}{a^2}} \) (2)
- 2nd eccentricity: \(e' = \sqrt{\frac{a^2 - b^2}{b^2}} \) (3)
- 3rd flattening: \(n = \frac{a - b}{a + b} \) (4)
- Polar radius: \(c = \frac{a^2}{b} \) (5)

These geometric constants are inter-related as follows

\[
\frac{b}{a} = 1 - f = \sqrt{1 - e^2} = \frac{1}{\sqrt{1 + e^2}} = \frac{1-n}{1+n} = \frac{a}{c}
\] (6)

\[
e^2 = \frac{e'^2}{1 + e'^2} = f \left(2 - f \right) = \frac{4n}{(1 + n)^2}
\] (7)

\[
e'^2 = \frac{e^2}{1 - e^2} = f \left(\frac{2 - f}{1-f} \right) = \frac{4n}{(1-n)^2}
\] (8)

\[
n = \frac{f}{2-f} = \frac{1 - \sqrt{1 - e^2}}{1 + \sqrt{1 - e^2}}
\] (9)

From equation (7) an absolutely convergent series for \(e^2 \) is

\[
e^2 = 4n - 8n^2 + 12n^3 - 16n^4 + 20n^5 - \ldots
\] (10) since \(0 < n < 1 \).

The ellipsoid radii of curvature \(\rho \) (meridian plane) and \(\nu \) (prime vertical plane) at a point whose latitude is \(\phi \) are

\[
\rho = \frac{a(1-e^2)}{(1-e^2 \sin^2\phi)^{\frac{3}{2}}} = \frac{a(1-e'^2)}{W} = \frac{c}{V^3}
\] (11)

\[
\nu = \frac{a}{(1-e^2 \sin^2\phi)^{\frac{3}{2}}} = \frac{a}{W} = \frac{c}{V}
\] (12)

where the latitude functions \(V \) and \(W \) are defined as

\[
W = 1 - e^2 \sin^2 \phi
\]

\[
V^2 = 1 + e^2 \cos^2 \phi = \frac{1 + n^2 + 2n \cos 2\phi}{(1-n)^2}
\] (13)

Some differential geometry: the differential rectangle and Gaussian fundamental quantities \(e, f, g; \ \vec{E}, \vec{F}, \vec{G} \text{ and } E, F, G \)

Curvilinear coordinates \(\phi \) (latitude), \(\lambda \) (longitude) are used to define the location of points on the ellipsoid (the datum surface) and these points can also have \(x, y, z \) Cartesian coordinates where the positive \(z \)-axis is the rotational axis of the ellipsoid passing through the north pole, the \(x-y \)-plane is the equatorial plane and the \(x-z \)-plane is the Greenwich meridian plane. The positive \(x \)-axis passes through the intersection of the Greenwich meridian and equator and the positive \(y \)-axis is advanced 90° eastwards along the equator.

The curvilinear and Cartesian coordinates are related by

\[
x = x(\phi, \lambda) = \nu \cos \phi \cos \lambda
\]

\[
y = y(\phi, \lambda) = \nu \cos \phi \sin \lambda
\]

\[
z = z(\phi, \lambda) = \nu (1 - e^2) \sin \phi
\] (14)

The differential arc-length \(ds \) of a curve on the ellipsoid is given by

\[
(ds)^2 = (dx)^2 + (dy)^2 + (dz)^2
\] (15)

And the total differentials are

\[
dx = \frac{\partial x}{\partial \phi} d\phi + \frac{\partial x}{\partial \lambda} d\lambda
\]

\[
dy = \frac{\partial y}{\partial \phi} d\phi + \frac{\partial y}{\partial \lambda} d\lambda
\]

\[
dz = \frac{\partial z}{\partial \phi} d\phi + \frac{\partial z}{\partial \lambda} d\lambda
\] (16)

Substituting equations (16) into (15) gathering terms and simplifying gives
\[
(ds)^2 = e(d\phi)^2 + 2f d\phi d\lambda + g(d\lambda)^2
\]
(17)
where the coefficients \(e, f\) and \(g\) are known as the Gaussian fundamental quantities and are given by

\[
e = \left(\frac{\partial x}{\partial \phi}\right)^2 + \left(\frac{\partial y}{\partial \phi}\right)^2 + \left(\frac{\partial z}{\partial \phi}\right)^2
\]
\[
f = \frac{\partial x}{\partial \phi} \frac{\partial x}{\partial \lambda} + \frac{\partial y}{\partial \phi} \frac{\partial y}{\partial \lambda} + \frac{\partial z}{\partial \phi} \frac{\partial z}{\partial \lambda}
\]
\[
g = \left(\frac{\partial x}{\partial \lambda}\right)^2 + \left(\frac{\partial y}{\partial \lambda}\right)^2 + \left(\frac{\partial z}{\partial \lambda}\right)^2
\]
(18)
For the ellipsoid

\[
e = \rho^2, \quad f = 0, \quad g = \nu^2 \cos^2 \phi
\]
(19)

![Figure 1. The differential rectangle](image)

In Figure 1 the parametric curves \(\phi\) and \(\lambda\) pass through \(P\) and the curves \(\phi + d\phi\) and \(\lambda + d\lambda\) pass through \(Q\), and the length of the curve \(PQ = ds\). The differential rectangle formed by the curves may be regarded as a plane figure whose opposite sides are parallel straight lines enclosing a differentially small area \(da\).

The differential distances along the parametric curves are

\[
ds_\phi = \sqrt{g} \, d\phi = \rho \, d\phi
\]
\[
ds_\lambda = \sqrt{g} \, d\lambda = \nu \cos \phi \, d\lambda
\]
(20)
and the angle \(\omega\) between the parametric curves can be found from

\[
\cos \omega = \frac{f}{\sqrt{eg}}
\]
(21)
Thus, if the parametric curves on the surface intersect at right angles (i.e., they form an orthogonal system of curves) then \(\omega = \frac{\pi}{2}\) and \(\cos \omega = 0\), and so from equation (21) \(f = 0\). Conversely, if \(f = 0\) the parametric curves form an orthogonal system.

Suppose there is another surface (projection surface) with \(\Phi, \Lambda\) curvilinear coordinates and \(X, Y, Z\) Cartesian coordinates related by

\[
X = X(\Phi, \Lambda), \quad Y = Y(\Phi, \Lambda), \quad Z = Z(\Phi, \Lambda)
\]
(22)
Then, using equations (15) and (16) replacing \(x, y, z\) with \(X, Y, Z\) and \(\phi, \lambda\) with \(\Phi, \Lambda\) we have the differential distance \(dS\) on this surface defined by

\[
(ds)^2 = E(d\Phi)^2 + 2F d\Phi d\Lambda + G(d\Lambda)^2
\]
(23)
with the Gaussian fundamental quantities

\[
E = \left(\frac{\partial X}{\partial \Phi}\right)^2 + \left(\frac{\partial Y}{\partial \Phi}\right)^2 + \left(\frac{\partial Z}{\partial \Phi}\right)^2
\]
\[
F = \frac{\partial X}{\partial \Phi} \frac{\partial X}{\partial \Lambda} + \frac{\partial Y}{\partial \Phi} \frac{\partial Y}{\partial \Lambda} + \frac{\partial Z}{\partial \Phi} \frac{\partial Z}{\partial \Lambda}
\]
\[
G = \left(\frac{\partial X}{\partial \Lambda}\right)^2 + \left(\frac{\partial Y}{\partial \Lambda}\right)^2 + \left(\frac{\partial Z}{\partial \Lambda}\right)^2
\]
(24)
Alternatively, the \(X, Y, Z\) Cartesian coordinates (projection surface) can be expressed as functions of the \(\phi, \lambda\) curvilinear coordinates (datum surface) as

\[
X = X(\phi, \lambda), \quad Y = Y(\phi, \lambda), \quad Z = Z(\phi, \lambda)
\]
(25)
and

\[
(ds)^2 = E(d\phi)^2 + 2F d\phi d\lambda + G(d\lambda)^2
\]
(26)
where

\[
E = \left(\frac{\partial X}{\partial \phi}\right)^2 + \left(\frac{\partial Y}{\partial \phi}\right)^2 + \left(\frac{\partial Z}{\partial \phi}\right)^2
\]
\[
F = \frac{\partial X}{\partial \phi} \frac{\partial X}{\partial \lambda} + \frac{\partial Y}{\partial \phi} \frac{\partial Y}{\partial \lambda} + \frac{\partial Z}{\partial \phi} \frac{\partial Z}{\partial \lambda}
\]
\[
G = \left(\frac{\partial X}{\partial \lambda}\right)^2 + \left(\frac{\partial Y}{\partial \lambda}\right)^2 + \left(\frac{\partial Z}{\partial \lambda}\right)^2
\]
(27)

Scale factors \(m, h\) and \(k\)

The scale factor \(m\) is defined as the ratio of differential distances \(dS\) (projection surface) and \(ds\) (datum surface) and is usually given as a squared value

\[
m^2 = \frac{(ds)^2}{(ds)^2} = \frac{E(d\phi)^2 + 2F d\phi d\lambda + G(d\lambda)^2}{e(d\phi)^2 + 2f d\phi d\lambda + g(d\lambda)^2}
\]
\[= \frac{E(d\phi)^2 + 2F d\phi d\lambda + G(d\lambda)^2}{e(d\phi)^2 + 2f d\phi d\lambda + g(d\lambda)^2}
\]
(28)
When \(\frac{E}{e} = \frac{G}{g}\) and \(F = 0\) or \(\frac{E}{e} = \frac{G}{g}\) and \(F = 0\) the scale factor \(m\) is the same in every direction and such projections are known as conformal. For the ellipsoid (datum surface) where the parametric curves \(\phi, \lambda\) are an orthogonal system and \(f = 0\), this scale condition for conformal projection of the ellipsoid is often expressed as

\[
h = k \quad \text{and} \quad F = F = 0
\]
(29)
\(h\) is the scale factor along the meridian and \(k\) is the scale factor along the parallel of latitude. Using equations (28)

\[
h = \frac{\sqrt{E}}{\sqrt{e}} = \frac{\sqrt{E}}{\sqrt{e}} \quad \text{and} \quad k = \frac{\sqrt{G}}{\sqrt{g}} = \frac{\sqrt{G}}{\sqrt{g}}
\]
(30)
Isometric latitude \(\psi \)

According to the SOED (1993) isometric means: “of equal measure or dimension” and we may think of isometric parameters \(\psi \) (isometric latitude) and \(\omega = \lambda - \lambda_0 \) (longitude difference) in the following way. Imagine you are standing on the earth at the equator and you measure a metre north and a metre east; both of these equal lengths would represent almost equal angular changes in latitude \(d\psi \) and longitude \(d\lambda \). Now imagine you are close to the north pole; a metre in the north direction will represent (almost) the same angular change \(d\phi \) as it did at the equator. But a metre in the east direction would represent a much greater change in longitude, i.e., equal north and east linear measures near the pole do not correspond to equal angular measures.

What is required is isometric latitude \(\psi \), a variable angular measure along a meridian that is defined by considering the differential rectangle of Figure 1 and equations (17) and (19) giving

\[
d\psi = \frac{\rho}{\nu \cos \phi} \, d\phi
\]

Integrating gives (Deakin & Hunter 2010b)

\[
\psi = \ln \left(\tan \left(\frac{1}{2} \pi + \frac{1}{2} \phi \right) \left(1 - \varepsilon \sin \phi \right)^{\frac{1}{2}} \right) - \ln \left(\tan \left(\frac{1}{2} \pi + \frac{1}{2} \phi \right) \left(1 + \varepsilon \sin \phi \right)^{\frac{1}{2}} \right) + \ln \left(\tan \frac{1}{2} \pi \right)
\]

Note that if the reference surface for the earth is a sphere of radius \(R \); then \(\rho = \nu = R \), \(\varepsilon = 0 \) and the isometric latitude is

\[
\psi = \ln \tan \left(\frac{1}{2} \pi + \frac{1}{2} \phi \right)
\]

Meridian distance \(M \)

Meridian distance \(M \) is defined as the arc of the meridian from the equator to the point of latitude \(\phi \)

\[
M = \int_0^\phi \rho \, d\phi = \int_0^{\frac{\pi}{2}} \frac{a(1-\varepsilon^2)}{W^3} \, d\phi = \frac{a}{2V} \, d\phi
\]

This is an elliptic integral that cannot be expressed in terms of elementary functions; instead, the integrand is expanded by use of the binomial series then the integral is evaluated by term-by-term integration. The usual form of the series formula for \(M \) is a function of \(\phi \) and powers of \(\varepsilon^2 \); but the German geodesist F.R. Helmert (1880) gave a formula for meridian distance as a function of latitude \(\phi \) and powers of the ellipsoid constant \(n \) that required fewer terms for the same accuracy than meridian distance formula involving powers of \(\varepsilon^2 \). Helmert’s method of development (Deakin & Hunter 2010a) and with some algebra we may write

\[
M = \frac{a}{1 + n^2} \left(1 - n^2 \right)^{\frac{1}{2}} \left(1 + a^2 n^2 + 2n cos 2\phi \right)^{-\frac{1}{2}} \, d\phi
\]

The computer algebra system Maxima can be used to evaluate the integral and \(M \) can be written as

\[
M = \frac{a}{1 + n} \left\{ c_0 \phi + c_2 \sin 2\phi + c_4 \sin 4\phi + c_6 \sin 6\phi + c_8 \sin 8\phi + c_{10} \sin 10\phi + c_{12} \sin 12\phi + c_{14} \sin 14\phi + c_{16} \sin 16\phi + \ldots \right\}
\]

where the coefficients \(\{c_n\} \) are to order \(n^8 \) as follows

\[
c_0 = 1 + \frac{1}{4} n^2 + \frac{1}{64} n^4 + \frac{1}{256} n^6 + \frac{25}{16384} n^8 \ldots
\]

\[
c_2 = -\frac{3}{2} n^2 - \frac{9}{16} n^4 - \frac{3}{128} n^6 - \frac{25}{2048} n^8 \ldots
\]

\[
c_4 = \frac{15}{16} n^2 - \frac{15}{64} n^4 - \frac{75}{2048} n^6 - \frac{105}{8192} n^8 \ldots
\]

\[
c_6 = -\frac{35}{48} n^2 + \frac{175}{768} n^4 + \frac{245}{6144} n^6 + \ldots
\]

\[
c_8 = \frac{315}{512} n^2 - \frac{441}{2048} n^4 - \frac{1323}{32768} n^6 \ldots
\]

\[
c_{10} = -\frac{693}{1280} n^2 - \frac{2079}{10240} n^4 - \frac{1573}{8192} n^6 \ldots
\]

\[
c_{12} = \frac{1001}{2048} n^2 + \frac{1573}{8192} n^4 + \frac{1573}{4096} n^6 \ldots
\]

\[
c_{14} = -\frac{315}{14336} n^2 \ldots
\]

\[
c_{16} = \frac{109395}{262144} n^2 \ldots
\]

[This is Krueger’s equation for \(X \) shown in §5, p.12, extended to order \(n^8 \)]

Quadrant length \(Q \)

The quadrant length of the ellipsoid \(Q \) is the length of the meridian arc from the equator to the pole and is obtained from equation (37) by setting \(\phi = \frac{1}{2} \pi \), and noting that \(\sin 2\phi, \sin 4\phi, \sin 6\phi, \ldots \) all equal zero, giving

\[
Q = \frac{a\pi}{2(1 + n)} c_0
\]

[This is Krueger’s equation for \(M \) shown in §5, p.12.]

Rectifying latitude \(\mu \) and rectifying radius \(A \)

The rectifying latitude \(\mu \) is defined in the following way (Adams 1921):

“If a sphere is determined such that the length of a great circle upon it is equal in length to a meridian upon the earth, we may calculate the latitudes upon
this sphere such that the arcs of the meridian upon it are equal to the corresponding arcs of the meridian upon the earth."

If \(\mu \) denotes this latitude on the (rectifying) sphere of radius \(A \) then meridian distance \(M \) is given by

\[
M = A \mu
\]

(40)

An expression for \(A \) is obtained by considering the case when \(\mu = \frac{1}{2} \pi \), \(M = Q \) and (40) may be re-arranged to give \(A = 2Q/\pi \) then using (39) and (38) to give \(A \) to order \(n^6 \) as

\[
A = \frac{a}{1 + n} \left(1 - \frac{1}{4} n^2 + \frac{1}{64} n^4 + \frac{1}{256} n^6 + \frac{25}{16384} n^8 + \ldots \right)
\]

(41)

Re-arranging (40) and using (37) and (41) gives the rectifying latitude \(\mu \) to order \(n^4 \) as

\[
\mu = \frac{A}{M} = \phi + d_1 \sin 2\phi + d_2 \sin 4\phi + d_3 \sin 6\phi + d_4 \sin 8\phi + \ldots
\]

(42)

where the coefficients \(\{d_n\} \) are

\[
d_n = -\frac{3}{2} n^2 + \frac{9}{16} n^4 - \ldots
\]

\[
d_4 = -\frac{15}{16} n^2 - \frac{15}{32} n^4 + \ldots
\]

\[
d_6 = -\frac{35}{48} n^2 + \ldots
\]

\[
d_8 = -\frac{315}{512} n^4 + \ldots
\]

[This is Krueger's equation (6), §5, p. 12, and Maxima has been used for the algebra by using a series representation of \(c_n \).]

An expression for \(\phi \) as a function of \(\mu \) and powers of \(n \) is obtained by reversion of a series using Lagrange’s theorem (see Appendix) and to order \(n^6 \)

\[
\phi = \mu + D_1 \sin 2\mu + D_2 \sin 4\mu + D_3 \sin 6\mu + D_4 \sin 8\mu + \ldots
\]

(44)

where the coefficients \(\{D_n\} \) are

\[
D_2 = \frac{3}{2} n^2 - \frac{27}{32} n^4 + \ldots
\]

\[
D_4 = \frac{21}{16} n^2 - \frac{55}{32} n^4 + \ldots
\]

\[
D_6 = \frac{151}{48} n^2 + \ldots
\]

\[
D_8 = \frac{1097}{512} n^4 + \ldots
\]

[This is Krueger's equation (7), §5, p. 13.]

Conformal latitude \(\phi' \)

Suppose we have a sphere of radius \(a \) with curvilinear coordinates \(\phi’, \lambda’ \) (meridians and parallels) and \(X, Y, Z \) Cartesian coordinates related by

\[
X = X(\phi', \lambda') = a \cos \phi' \cos \lambda'
\]

\[
Y = Y(\phi', \lambda') = a \cos \phi' \sin \lambda'
\]

\[
Z = Z(\phi', \lambda') = a \sin \phi'
\]

(46)

Substituting equations (46) into equations (24), replacing \(\Phi, \lambda \) with \(\phi', \lambda' \) gives the Gaussian Fundamental Quantities for the sphere as

\[
\bar{E} = a^2, \quad \bar{F} = 0, \quad \bar{G} = a^2 \cos^2 \phi'
\]

(47)

The conformal projection of the ellipsoid (datum surface) onto the sphere (projection surface) is obtained by enforcing the condition \(h = k \); and with equations (19), (30) and (47), replacing \(\Phi, \lambda \) with \(\phi', \lambda' \) where appropriate, we have,

\[
\frac{a d\phi'}{\rho d\phi} = \frac{a \cos \phi' d\lambda'}{\cos \phi' d\lambda}
\]

(48)

This differential equation can be simplified by enforcing the condition that the scale factor along the equator be unity, so that

\[
\frac{a \cos \phi' d\lambda'}{\cos \phi' d\lambda} = 1
\]

and since \(\phi_0 = \phi' = 0 \) then \(\cos \phi_0 = \cos \phi'_0 = 1 \). \(\nu_t = a \) and \(d\lambda = d\lambda' \). Substituting this result into equation (48) gives

\[
\frac{d\phi'}{\cos \phi'} = \frac{\rho d\phi}{\cos \phi'}
\]

(49)

An expression linking \(\phi' \) and \(\phi \) can be obtained by integrating both sides of (49) using the standard integral result

\[
\int x dx = \ln \tan \left(\frac{1}{2} \pi + \frac{1}{2} x \right)
\]

and the previous result for equation (33) to give

\[
\ln \tan \left(\frac{1}{2} \pi + \frac{1}{2} \phi' \right) = \ln \left(\tan \left(\frac{1}{2} \pi + \frac{1}{2} \phi \right) \left(1 - \sin \phi \right)^{1/2} \right)
\]

(50)

The right-hand-side of (50) is the isometric latitude \(\psi' \) [see equation (33)] and we may write

\[
\psi' = \tan \left(\frac{1}{2} \pi + \frac{1}{2} \phi' \right)
\]

(51)

Solving equation (51) gives the conformal latitude

\[
\phi' = 2 \tan^{-1} e' - \frac{1}{2} \pi
\]

(52)

The conformal longitude \(\lambda' \) is obtained from the differential relationship \(d\lambda = d\lambda' \) which is a consequence of the scale factor along the equator being unity, and longitude on the ellipsoid is identical to longitude on the conformal sphere, which makes

\[
\lambda' = \lambda
\]

(53)

Another expression linking \(\phi' \) and \(\phi \) can be obtained by using (11), (12) and (13) in the right-hand-side of (49) giving

\[
\frac{d\phi'}{\cos \phi'} = \frac{d\phi}{V^2 \cos \phi} = \frac{(1-n)^2 d\phi}{(1+n^2+2n \cos 2\phi \cos \phi)}
\]

(54)

and separating the right-hand-side of (54) into partial fractions gives

...
\[\frac{d\phi'}{\cos\phi'} = \frac{d\phi}{\cos\phi} - \frac{4n\cos\phi d\phi}{1+n^2+2n\cos2\phi} \]

(55)

Using the standard integral result
\[\int \sec x \, dx = \ln \tan \left(\frac{1}{2} x + \frac{1}{2} \right) \] and the useful identity linking circular and hyperbolic functions
\[\ln \tan \left(\frac{1}{2} x + \frac{1}{2} \right) = \sinh^{-1} x \tan x \] [see (148) in Appendix]
we may write
\[\sinh^{-1} \tan \phi' = \sinh^{-1} \tan \phi - \frac{4n\cos\phi d\phi}{1+n^2+2n\cos2\phi} = \theta \]

(56)

We now have a function linking conformal latitude \(\phi' \) with latitude \(\phi \) and the integral on the right-hand-side of (56) can be evaluated using Maxima and then combined with \(\sinh^{-1} \tan \phi \) to give \(\theta \). The conformal latitude \(\phi' \) is then
\[\phi' = \tan^{-1}(\sinh \theta) \]

(57)

And the series for \(\phi' \) to order \(n^4 \) is
\[\phi' = \phi + g_2 \sin 2\phi + g_4 \sin 4\phi + g_6 \sin 6\phi + \ldots \]

(58)

where the coefficients \(\{g_n\} \) are
\[g_2 = -2n + \frac{2}{3} n^2 + \frac{4}{5} n^3 - \frac{82}{45} n^4 + \ldots \]
\[g_4 = \frac{5}{3} n^2 - \frac{16}{15} n^3 + \frac{13}{9} n^4 + \ldots \]
\[g_6 = -\frac{26}{15} n + \frac{34}{21} n^3 + \ldots \]
\[g_8 = \frac{1237}{630} n^4 - \ldots \]

(59)

[This is Krueger’s equation (8), §5, p. 14, although we have not used his method of development.]

The series connecting rectifying latitude \(\mu \) with conformal latitude \(\phi' \)

A method of obtaining \(\mu \) as a function of \(\phi' \) and \(\phi' \) as a function of \(\mu \) is set out in Deakin et al. (2010) that follows the methods in Krueger (1912). A better alternative, suggested by Charles Karney (2010), utilizes the power of Maxima and is set out below:

[a] The series (58) gives conformal latitude \(\phi' \) as a function of latitude \(\phi \)

[b] Using Lagrange’s theorem (see Appendix) the series (58) may be ‘reversed’ giving \(\phi \) as a function of \(\phi' \)
\[\phi = \phi' + G_2 \sin 2\phi' + G_4 \sin 4\phi' + G_6 \sin 6\phi' + \ldots \]

(60)

where the coefficients \(\{G_n\} \) are function of \(n \)

[c] Substituting (60) into (42) gives \(\mu \) as a function \(\phi' \)

\[\mu = \phi' + \alpha_1 \sin 2\phi' + \alpha_2 \sin 4\phi' + \alpha_3 \sin 6\phi' + \alpha_4 \sin 8\phi' + \alpha_5 \sin 10\phi' + \alpha_6 \sin 12\phi' + \alpha_7 \sin 14\phi' + \alpha_8 \sin 16\phi' + \ldots \]

(61)

where the coefficients \(\{\alpha_n\} \) are
\[\alpha_2 = \frac{1}{2} \left(\frac{2}{3} n^2 + \frac{5}{16} n^4 - \frac{37800}{18975107} n^5 \right) \]
\[+ \frac{37800}{18975107} n^5 + \ldots \]

\[\alpha_4 = \frac{13}{48} n^2 - \frac{5}{5} n^3 + \frac{557}{1440} n^4 + \frac{281}{630} n^5 \]
\[+ \frac{1983433}{1935360} n^6 + \frac{13769}{28800} n^7 \]
\[+ \frac{148003883}{174182400} n^8 + \ldots \]

\[\alpha_6 = \frac{61}{240} n^2 - \frac{103}{140} n^3 + \frac{15061}{26880} n^4 \]
\[+ \frac{167603}{181440} n^5 + \frac{67102379}{29030400} n^6 \]
\[+ \frac{79682431}{79833600} n^7 + \ldots \]
\[\alpha_8 = \frac{49561}{161280} n^2 - \frac{179}{168} n^3 + \frac{6601661}{7257600} n^4 \]
\[+ \frac{97445}{7664025600} n^5 + \ldots \]
\[\alpha_{10} = \frac{34729}{80640} n^2 - \frac{3418889}{1995840} n^3 \]
\[+ \frac{14644087}{19123840} n^4 + \ldots \]
\[\alpha_{12} = \frac{212378941}{319334400} n^2 - \frac{30705481}{10378368} n^3 \]
\[+ \frac{1522256789}{58118860800} n^4 + \ldots \]
\[\alpha_{14} = \frac{1424729850961}{1383782400} n^2 - \frac{16759934899}{313510400} n^3 + \ldots \]
\[\alpha_{16} = \frac{74392148240}{14644087} n^2 - \ldots \]

[This is Krueger equation (11), §5, p. 14 extended to order \(n^6 \)]

[d] Reversing series (61) gives conformal latitude \(\phi' \) as a function of rectifying latitude \(\mu \) to order \(n^6 \)
\[\phi' = \mu + \beta_1 \sin 2\mu + \beta_2 \sin 4\mu + \beta_3 \sin 6\mu + \beta_4 \sin 8\mu + \beta_5 \sin 10\mu + \beta_6 \sin 12\mu + \beta_7 \sin 14\mu + \beta_8 \sin 16\mu + \ldots \]

(63)

where the coefficients \(\{\beta_n\} \) are
The Karney-Krueger equations for the transverse Mercator projection

The Karney-Krueger equations for the transverse Mercator (TM) projection are the result of a triple-mapping in two parts (Bugayevsky & Snyder 1995). The first part is a conformal mapping of the ellipsoid to a sphere (the conformal sphere of radius \(a \)) followed by a conformal mapping of this sphere to the plane using the spherical TM projection equations with spherical latitude \(\phi \) replaced by conformal latitude \(\phi' \). The second part is the conformal mapping of the Gauss-Schreiber to the TM projection.

The series (61) and (63) are the key series in the Karney-Krueger equations for the TM projection.

\[
\beta_i = \frac{1}{2} n + \frac{2}{3} n^2 - \frac{37}{96} n^3 + \frac{1}{360} n^4 + \frac{81}{512} n^5
\]

\[
= \frac{96199}{n} - \frac{5406467}{n^2} + \frac{604800}{n^3} - \frac{38707200}{n^4} + \frac{7944359}{n^5} + \ldots
\]

\[
= 67737600
\]

\[
\beta_i = \frac{1}{48} n^2 - \frac{1}{15} n^3 + \frac{437}{1440} n^4 - \frac{46}{105} n^5
\]

\[
= 1118711 \text{ for } n^6
\]

\[
= 38707200 \text{ for } n^7
\]

\[
= 24749483 \text{ for } n^8
\]

\[
= 191773887257 \text{ for } n^9
\]

\[
= 3719607091200 \text{ for } n^{10}
\]

[This is Krueger equation (10), §5, p. 14 extended to order \(n^9 \)]

where the scale factor along the central meridian is made constant.

To understand this process we first discuss the spherical Mercator and transverse Mercator projections. We then give the equations for the Gauss-Schreiber projection and show that the scale factor along the central meridian of this projection is not constant. Finally, using complex functions and principles of conformal mapping developed by Gauss, we show the conformal mapping from the Gauss-Schreiber projection to the TM projection.

Having established the 'forward' mapping \(\phi, \lambda \rightarrow X,Y \) from the ellipsoid to the plane – via the conformal sphere and the Gauss-Schreiber projection – we show how the 'inverse' mapping \(X,Y \rightarrow \phi, \lambda \) from the plane to the ellipsoid is achieved.

In addition to the equations for the forward and inverse mappings we derive equations for scale factor \(m \) and grid convergence \(\gamma \).

Mercator projection of the sphere

![Figure 2 Mercator projection](image)

The Mercator projection of the sphere is a conformal projection with the datum surface a sphere of radius \(R \) with curvilinear coordinates \(\phi, \lambda \) and Gaussian fundamental quantities

\[
e = R^2, \quad f = 0, \quad g = R^2 \cos^2 \phi
\]

The projection surface is a plane with \(X,Y \) Cartesian coordinates and \(X = X(\lambda) \) and \(Y = Y(\phi) \) and Gaussian fundamental quantities

\[
E = \left(\frac{\partial Y}{\partial \phi} \right)^2, \quad F = 0, \quad G = \left(\frac{\partial X}{\partial \lambda} \right)^2
\]

Enforcing the scale condition \(h = k \) and using equations (30), (65) and (66) gives the differential equation

\[
\frac{dY}{d\phi} = \frac{1}{\cos \phi} \frac{dX}{d\lambda}
\]

This equation can be simplified by enforcing the condition that the scale factor along the equator be unity.

\[
\frac{dY}{d\phi} = \frac{1}{\cos \phi} \frac{dX}{d\lambda}
\]
\[dX = R \, d\lambda \quad \text{and} \quad dY = \frac{1}{\cos \phi} \, d\phi \]

Integrating and evaluating constants of integration gives the well-known equations for Mercator’s projection of the sphere:

\[
\begin{align*}
X &= R(\lambda - \lambda_0) = R \omega \\
Y &= R \ln \tan \left(\frac{\lambda}{2} + \frac{\phi}{2} \right) \tag{68}
\end{align*}
\]

where \(\lambda_0 \) is the longitude of the central meridian and \(\omega = \lambda - \lambda_0 \).

An alternative set of equations for Mercator’s projection may be derived as follows by using the half-angle formula:

\[
\tan \left(\frac{\lambda}{2} + \frac{\phi}{2} \right) = \sqrt{\frac{1 - \cos \lambda}{1 + \cos \lambda}} = \frac{1 + \sin \phi}{1 - \sin \phi}.
\]

Using this result in equation (68) gives:

\[
\begin{align*}
X &= R(\lambda - \lambda_0) = R \omega \\
Y &= R \ln \frac{1 + \sin \phi}{1 - \sin \phi} = \frac{R}{2} \ln \left(1 + \sin \phi \right) \tag{69}
\end{align*}
\]

TM projection of the sphere (Gauss-Lambert projection)

The equations for the TM projection of the sphere (also known as the Gauss-Lambert projection) can be derived by considering the schematic view of the sphere in Figure 3 that shows \(P \) having curvilinear coordinates \(\phi, \lambda \) that are angular quantities measured along great circles (meridian and equator).

Now consider the great circle NBS (the oblique equator) with a pole \(A \) that lies on the equator and great circles through \(A \), one of which passes through \(P \) making an angle \(\theta \) with the equator and intersecting the oblique equator at \(C \).

Figure 3 Oblique pole \(A \) on equator

\(\beta \) and \(\theta \) are oblique latitude and oblique longitude respectively and equations linking \(\beta, \theta \) and \(\phi, \lambda \) can be obtained from spherical trigonometry and the right-angled spherical triangle \(CNP \) having sides \(\beta, \frac{1}{2}\pi - \theta, \frac{1}{2}\pi - \phi \) and an angle at \(N \) of \(\omega = \lambda - \lambda_0 \):

\[
\sin \beta = \cos \phi \sin \omega \tag{70}
\]

\[
\tan \theta = \frac{\tan \phi}{\cos \omega} \tag{71}
\]

Squaring both sides of equation (70) and using the trigonometric identity \(\sin^2 x + \cos^2 x = 1 \) gives, after some algebra:

\[
\cos \beta = \cos \phi \sqrt{\tan^2 \phi + \cos^2 \omega} \tag{72}
\]

From equations (72) and (70):

\[
\begin{align*}
\tan \beta &= \frac{\sin \omega}{\sqrt{\tan^2 \phi + \cos^2 \omega}} \tag{73}
\end{align*}
\]

Replacing \(\phi \) with \(\beta \) and \(\omega \) with \(\theta \) in equations (69); then using equations (70), (71) and (145) give the equations for the TM projection of the sphere (Lauf 1983, Snyder 1987):

\[
\begin{align*}
u &= R \theta \\
&= R \tan^{-1} \left(\frac{\tan \phi}{\cos \omega} \right) \\
v &= R \frac{\ln \left(1 + \sin \beta \right)}{\ln \left(1 - \sin \beta \right)} = R \frac{\ln \left(1 + \cos \phi \sin \omega \right)}{\ln \left(1 - \cos \phi \sin \omega \right)} \tag{74}
\end{align*}
\]

\(u = R \theta \)

\(v = R \frac{\ln \left(1 + \sin \beta \right)}{\ln \left(1 - \sin \beta \right)} = R \frac{\ln \left(1 + \cos \phi \sin \omega \right)}{\ln \left(1 - \cos \phi \sin \omega \right)} \)

Figure 4 Transverse Mercator (TM) projection graticule interval 15°, central meridian \(\lambda_0 = 120 \) E
The TM projection of the sphere is conformal, which can be verified by analysis of the Gaussian fundamental quantities e, f, g of the ϕ, λ spherical datum surface [see equations (65)] and E, F, G of the u, v projection surface.

For the projection surface $u = u(\phi, \omega), v = v(\phi, \omega)$

\[
E = \left(\frac{\partial u}{\partial \phi}\right)^2 + \left(\frac{\partial v}{\partial \phi}\right)^2
\]

\[
F = \frac{\partial u}{\partial \phi} \frac{\partial u}{\partial \omega} + \frac{\partial v}{\partial \phi} \frac{\partial v}{\partial \omega}
\]

\[
G = \left(\frac{\partial u}{\partial \omega}\right)^2 + \left(\frac{\partial v}{\partial \omega}\right)^2
\]

Differentiating equations (74) noting that

\[
\frac{d}{dx} \tan^{-1} y = \frac{1}{1 + y^2} \frac{dy}{dx}
\]

and

\[
\frac{d}{dx} \tanh^{-1} y = \frac{1}{1 - y^2} \frac{dy}{dx}
\]

gives

\[
\frac{\partial u}{\partial \phi} = \frac{R \cos \omega}{1 - \cos^2 \phi \sin^2 \omega}, \quad \frac{\partial u}{\partial \omega} = \frac{R \sin \phi \cos \phi \cos \omega}{1 - \cos^2 \phi \sin^2 \omega}
\]

and

\[
\frac{\partial v}{\partial \phi} = -\frac{R \sin \phi \sin \omega}{1 - \cos^2 \phi \sin^2 \omega}, \quad \frac{\partial v}{\partial \omega} = \frac{R \cos \phi \cos \omega}{1 - \cos^2 \phi \sin^2 \omega}
\]

and substituting these into equations (75) gives

\[
E = \frac{R^2}{1 - \cos^2 \phi \sin^2 \omega}, \quad F = 0, \quad G = \frac{R^2 \cos^2 \phi}{1 - \cos^2 \phi \sin^2 \omega}
\]

Now using equations (30), (65) and (77) the scale factors h and k are equal and $f = F = 0$, then the projection is conformal.

Gauss-Lambert scale factor

Since the projection is conformal, the scale factor $m = h = k = \sqrt{E/E}$ and

\[
m = \frac{1}{\sqrt{1 - \cos^2 \phi \sin^2 \omega}} = 1 + \frac{1}{2} \cos^2 \phi \sin^2 \omega + \frac{3}{8} \cos^4 \phi \sin^4 \omega + \cdots
\]

Along the central meridian $\omega = 0$ and the central meridian scale factor $m_0 = 1$

Gauss-Lambert grid convergence

The grid convergence γ is the angle between the meridian and the grid-line parallel to the u-axis and is defined as

\[
\tan \gamma = \left|\frac{dv}{du}\right|
\]

and the total differentials du and dv are

\[
du = \frac{\partial u}{\partial \phi} d\phi + \frac{\partial u}{\partial \omega} d\omega \quad \text{and} \quad dv = \frac{\partial v}{\partial \phi} d\phi + \frac{\partial v}{\partial \omega} d\omega
\]

Along a meridian ω is constant and $d\omega = 0$, and the grid convergence is obtained from

\[
\tan \gamma = \left|\frac{\partial v}{\partial \phi} / \frac{\partial u}{\partial \phi}\right|
\]

and substituting partial derivatives from equations (76) gives

\[
\gamma = \tan^{-1}\left(\sin \phi \tan \omega\right)
\]

TM projection of the conformal sphere (Gauss-Schreiber projection)

The equations for the TM projection of the conformal sphere are simply obtained by replacing spherical latitude ϕ with conformal latitude ϕ' in equations (74) and noting that the radius of the conformal sphere is a to give

\[
u = a \tan^{-1}\left(\tan \phi'/\cos \omega\right)
\]

\[
u = a \tanh^{-1}\left(\cos \phi' \sin \omega/\sqrt{\tan^2 \phi' + \cos^2 \omega}\right)
\]

These are Krueger’s equations (36), §8, p. 20]

Alternatively, replacing ϕ with β and ω with θ in equations (68) then using equations (71), (73) and the identity (148); and finally replacing spherical latitude ϕ with conformal latitude ϕ' gives (Karney 2011)

\[
\tan \phi' = \tan \phi \sqrt{1 + \sigma^2 - \sigma \sqrt{1 + \tan^2 \phi}}
\]

Using equation (148) of the Appendix we may write

\[
\tan \left(\frac{1}{2} \pi + \frac{1}{2} \phi'\right) = \sinh^{-1} \tan \phi'
\]

And the right-hand-side of equation (50) can be written as

\[
\tan \left(\frac{1}{2} \pi + \frac{1}{2} \phi\right) = \frac{1}{\frac{1}{2} \pi + \frac{1}{2} \phi} \ln \frac{1 + e \sin \phi}{1 - e \sin \phi}
\]

Equating (85) and (86) gives

\[
\sinh^{-1} \tan \phi' = \sinh^{-1} \tan \phi - \varepsilon \tanh^{-1} (e \sin \phi)
\]

With the substitution

\[
\sigma = \sinh \left\{\varepsilon \tanh^{-1} \left(\frac{e \tan \phi}{\sqrt{1 + \tan^2 \phi}}\right)\right\}
\]

and some algebra, equation (87) can be rearranged as (Karney 2011)

\[
\tan \phi' = \tan \phi \sqrt{1 + \sigma^2 - \sigma \sqrt{1 + \tan^2 \phi}}
\]
The Gauss-Schreiber projection is also conformal since ϕ can be replaced by ϕ' in the previous analysis and $E/e = G/g$, and $f = F = 0$.

Gauss-Schreiber scale factor

The scale factor is given by equation (28) as

$$m^2 = \left(\frac{dS}{ds}\right)^2$$

(90)

For the datum surface (ellipsoid) equations (17) and (19) give (noting that $d\omega = d\lambda$)

$$(ds)^2 = \rho^2 (d\phi)^2 + \nu^2 \cos^2 \phi (d\omega)^2$$

(91)

For the projection plane

$$(dS)^2 = (du)^2 + (dv)^2$$

(92)

$u = u(\phi, \omega)$ and $v = v(\phi, \omega)$ are given by equations (83); and the total differentials are

$$du = \frac{\partial u}{\partial \phi} d\phi + \frac{\partial u}{\partial \omega} d\omega 	ext{ and } dv = \frac{\partial v}{\partial \phi} d\phi + \frac{\partial v}{\partial \omega} d\omega$$

(93)

Since the projection is conformal, scale is the same in all directions around any point. It is sufficient then to choose any one direction, say along a meridian where ω is constant and $d\omega = 0$. Hence

$$m^2 = \frac{1}{\rho^2} \left(\frac{\partial u}{\partial \phi}\right)^2 + \left(\frac{\partial v}{\partial \phi}\right)^2$$

(94)

The partial derivatives are evaluated using the chain rule for differentiation and equations (33), (52) and (84)

$$\frac{\partial u}{\partial \phi} = \frac{\partial u}{\partial \phi'} \frac{\partial \phi'}{\partial \phi} \text{ and } \frac{\partial v}{\partial \phi} = \frac{\partial v}{\partial \phi'} \frac{\partial \phi'}{\partial \phi}$$

(95)

with

$$\frac{\partial \phi'}{\partial \phi} = \frac{\rho^2 - 1}{(1 - \rho^2 \sin^2 \phi) \cos \phi}$$

$$\frac{\partial \phi'}{\partial \psi} = \frac{2 \exp(\psi)}{1 + \exp(2\psi)} = \cos \phi'$$

$$\frac{\partial \phi'}{\partial \psi} = \frac{a \cos \omega}{1 - \cos^2 \phi' \sin^2 \omega}$$

$$\frac{\partial \phi'}{\partial \psi} = \frac{-a \sin \phi' \sin \omega}{1 - \cos^2 \phi' \sin^2 \omega}$$

Substituting equations (96) into equations (95) and then into equation (94) and simplifying gives the scale factor m for the Gauss-Schreiber projection as

$$m = \sqrt{1 + \tan^2 \phi' \sqrt{1 - \rho^2 \sin^2 \phi}}$$

(97)

Along the central meridian of the projection $\omega = 0$ and the central meridian scale factor m_0 is

$$m_0 = \cos \phi' \sqrt{1 - \rho^2 \sin^2 \phi}$$

$$= \cos \phi' \left\{ 1 - \frac{1}{2} \rho^2 \sin^2 \phi - \frac{1}{8} \rho^4 \sin^4 \phi - \ldots \right\}$$

(98)

m_0 is not constant and varies slightly from unity, but a final conformal mapping from the Gauss-Schreiber u,v plane to an X,Y plane may be made and this final projection (the TM projection) will have a constant scale factor along the central meridian.

Gauss-Schreiber grid convergence

The grid convergence for the Gauss-Schreiber projection is defined by equation (81) but the partial derivatives must be evaluated using the chain rule for differentiation [equations (95)] and

$$\tan \gamma = \left| \frac{\partial v}{\partial \phi'} \right| = \left| \frac{\partial v}{\partial \phi} \right|$$

(99)

Using equations (96) the grid convergence for the Gauss-Schreiber projection is

$$\gamma = \tan^{-1} \left(\sin \phi' \tan \omega\right) = \tan^{-1} \left(\frac{\tan \phi' \tan \omega}{1 + \tan^2 \phi'}\right)$$

(100)

Conformal mapping from the Gauss-Schreiber to the TM projection

Using conformal mapping and complex functions (see Appendix), suppose that the mapping from the u,v plane of the Gauss-Schreiber projection (Figure 4) to the X,Y plane of the TM projection (Figure 5) is given by

$$\frac{1}{A}(Y + iX) = f(u + iv)$$

(101)

where the Y-axis is the central meridian, the X-axis is the equator and A is the rectifying radius.

Let the complex function $f(u + iv)$ be

$$f(u + iv) = \frac{u}{a} + i \frac{v}{a} + \sum_{r=1} \kappa_{2r} \sin \left(2r \left(\frac{u}{a} + i2r \left(\frac{v}{a}\right)\right)\right)$$

(102)

where a is the radius of the conformal sphere and κ_{2r} are as yet, unknown coefficients.

Expanding the complex trigonometric function in equation (102) gives

$$f(u + iv) = \frac{u}{a} + i \frac{v}{a} + \sum_{r=1} \kappa_{2r} \left\{ \sin 2r \left(\frac{u}{a}\right) \cosh 2r \left(\frac{v}{a}\right) + i \cos 2r \left(\frac{u}{a}\right) \sinh 2r \left(\frac{v}{a}\right) \right\}$$

(103)

and equating real and imaginary parts gives
\[
Y = \frac{u}{a} + \sum_{r=1}^{\infty} \kappa_r \sin 2r\left(\frac{u}{a}\right) \cosh 2r\left(\frac{\nu}{a}\right)
\]
\[
X = \frac{v}{a} + \sum_{r=1}^{\infty} \kappa_r \cos 2r\left(\frac{u}{a}\right) \sinh 2r\left(\frac{\nu}{a}\right)
\]

(104)

Now, along the central meridian \(\nu = 0 \) and \(\cosh 2\nu = \cosh 4\nu = \cdots = 1 \) and \(\frac{Y}{A} \) in equation (104) becomes
\[
\frac{Y}{A} = \frac{u}{a} + \kappa_2 \sin 2\left(\frac{u}{a}\right) + \kappa_4 \sin 4\left(\frac{u}{a}\right) + \kappa_6 \sin 6\left(\frac{u}{a}\right) \cdots \tag{105}
\]

Furthermore, along the central meridian \(\frac{u}{a} \) is an angular quantity that is identical to the conformal latitude \(\phi' \) and equation (105) becomes
\[
\frac{Y}{A} = \phi' + \kappa_2 \sin 2\phi' + \kappa_4 \sin 4\phi' + \kappa_6 \sin 6\phi' \cdots \tag{106}
\]

Now, if the central meridian scale factor is unity then the \(Y \) coordinate is the meridian distance \(M \), and \(\frac{Y}{A} = M = \mu \) is the rectifying latitude and equation (106) becomes
\[
\mu = \phi' + \kappa_2 \sin 2\phi' + \kappa_4 \sin 4\phi' + \kappa_6 \sin 6\phi' \cdots \tag{107}
\]

This equation is identical in form to equation (61) and we may conclude that the coefficients \(\{\kappa_r\} \) are equal to the coefficients \(\{\alpha_r\} \) in equations (62); and the TM projection is given by
\[
X = \frac{v}{a} + \sum_{r=1}^{\infty} \alpha_r \cos 2r\left(\frac{u}{a}\right) \sinh 2r\left(\frac{\nu}{a}\right)
\]
\[
Y = \frac{u}{a} + \sum_{r=1}^{\infty} \alpha_r \sin 2r\left(\frac{u}{a}\right) \cosh 2r\left(\frac{\nu}{a}\right)
\]

(108)

[These are Krueger equations (42), §8, p. 21.]

\(A \) is given by equation (41), \(\frac{u}{a} \) and \(\frac{v}{a} \) are given by equations (84) and we have elected to use coefficients \(\alpha_r \) up to \(r = 8 \) given by equations (62).

[Note that the graticules of Figures 4 and 5 are for different projections but are indistinguishable at the printed scales and for the longitude extent shown. If a larger eccentricity was chosen, say \(e = \frac{1}{20} \) (\(f \approx 0.0995 \)) and the mappings scaled so that the distances from the equator to the pole were identical, there would be some noticeable differences between the graticules at large distances from the central meridian. One of the authors (Karney 2011, Fig. 1) has examples of these graticule differences.]

Finally, \(X \) and \(Y \) are scaled and shifted to give \(E \) (east) and \(N \) (north) coordinates related to a false origin
\[
E = m_e X + E_0 \tag{109}
\]
\[
N = m_N Y + N_0
\]

where \(m_e \) is the central meridian scale factor and the quantities \(E_0, N_0 \) are offsets that make the \(E,N \) coordinates positive in the area of interest. The origin of the \(X,Y \) coordinates is at the intersection of the equator and the central meridian and is known as the true origin. The origin of the \(E,N \) coordinates is known as the false origin and it is located at \(X = -E_0, Y = -N_0 \).

TM scale factor

The scale factor for the TM projection can be derived in a similar way to the derivation of the scale factor for the Gauss-Schreiber projection and we have
\[
(ds)^2 = (dx)^2 + (dy)^2
\]

\[
(ds)^2 = \rho^2 (d\phi)^2 + \nu^2 \cos^2 \phi (d\omega)^2
\]

where \(X = X(u,v), Y = Y(u,v) \) and the total differentials \(dx \) and \(dy \) are
\[
dx = \frac{\partial X}{\partial u} du + \frac{\partial X}{\partial v} dv
\]
\[
dy = \frac{\partial Y}{\partial u} du + \frac{\partial Y}{\partial v} dv
\]

(110)

\(du \) and \(dv \) are given by equations (93) and substituting these into equations (110) gives
\[
dx = \frac{\partial X}{\partial \phi} \left(\frac{\partial u}{\partial \phi} + \frac{\partial u}{\partial \phi} \right) + \frac{\partial X}{\partial \omega} \left(\frac{\partial u}{\partial \phi} + \frac{\partial u}{\partial \phi} \right)
\]
\[
dy = \frac{\partial Y}{\partial \phi} \left(\frac{\partial u}{\partial \phi} + \frac{\partial u}{\partial \phi} \right) + \frac{\partial Y}{\partial \omega} \left(\frac{\partial u}{\partial \phi} + \frac{\partial u}{\partial \phi} \right)
\]

Choosing to evaluate the scale along a meridian where \(\omega \) is constant and \(d\omega = 0 \) gives
\[
dX = \left(\frac{\partial X}{\partial u} \frac{\partial u}{\partial \phi} + \frac{\partial X}{\partial v} \frac{\partial v}{\partial \phi} \right) d\phi \\
dY = \left(\frac{\partial Y}{\partial u} \frac{\partial u}{\partial \phi} + \frac{\partial Y}{\partial v} \frac{\partial v}{\partial \phi} \right) d\phi
\]
\[
(111)
\]
and
\[
m^2 = \frac{(dS)^2}{(ds)^2} = \frac{(dX)^2 + (dY)^2}{\rho^2 (d\phi)^2}
\]
\[
(112)
\]
Differentiating equations (108) gives
\[
\frac{\partial X}{\partial u} = \frac{A}{a} q, \quad \frac{\partial Y}{\partial u} = \frac{A}{a} p, \quad \frac{\partial X}{\partial v} = \frac{\partial Y}{\partial v} = \frac{\partial X}{\partial u}, \quad \frac{\partial Y}{\partial v}
\]
where
\[
q = \sum_{r=1}^{2} 2r \alpha, \quad \sin \left(\frac{u}{a} \right) \sinh \left(\frac{v}{a} \right)
\]
\[
p = 1 + \sum_{r=1}^{2} 2r \alpha, \quad \cos \left(\frac{u}{a} \right) \cosh \left(\frac{v}{a} \right)
\]
Substituting equations (113) into (111) and then into the equation (112) and simplifying gives
\[
m^2 = \left(\frac{A}{a} \right)^2 \left(q^2 + p^2 \right) \left\{ \frac{q}{\rho^2} \left(\frac{\partial u}{\partial \phi} \right)^2 + \left(\frac{\partial v}{\partial \phi} \right)^2 \right\}
\]
\[
(115)
\]
The term in braces \{ \} is the square of the scale factor for the Gauss-Schreiber projection [see equation (94)] and so, using equation (97), we may write the scale factor for the TM projection as
\[
m = m_0 \left(\frac{A}{a} \right) \sqrt{\frac{q^2 + p^2}{1 + \tan^2 \phi \sin^2 \phi}} \frac{\sqrt{1 + \tan^2 \phi}}{\sqrt{\tan^2 \phi \cosh^2 \omega}}
\]
\[
(116)
\]
where \(m_0 \) is the central meridian scale factor, \(q \) and \(p \) are found from equations (114), \(\tan \phi' \) from equation (89) and \(A \) from equation (41).

TM grid convergence

The grid convergence for the TM projection is defined by
\[
\tan \gamma = \frac{dX}{dY}
\]
\[
(117)
\]
Using equations (111) and (113) we may write equation (117) as
\[
\tan \gamma = \left| \frac{q \frac{\partial u}{\partial \phi} + p \frac{\partial v}{\partial \phi}}{p \frac{\partial u}{\partial \phi} - q \frac{\partial v}{\partial \phi}} \right| = \frac{q}{p} \left| \frac{\frac{\partial v}{\partial \phi} / \frac{\partial u}{\partial \phi}}{1 - \frac{q}{p} \frac{\partial v}{\partial \phi} / \frac{\partial u}{\partial \phi}} \right|
\]
\[
(118)
\]
Let \(\gamma = \gamma_1 + \gamma_2 \), then using a trigonometric addition formula write
\[
\tan \gamma = \tan (\gamma_1 + \gamma_2) = \frac{\tan \gamma_1 + \tan \gamma_2}{1 - \tan \gamma_1 \tan \gamma_2}
\]
\[
(119)
\]
Noting the similarity between equations (118) and (119) we may define
\[
\tan \gamma_1 = \left| \frac{q}{p} \right| \quad \text{and} \quad \tan \gamma_2 = \left| \frac{\frac{\partial v}{\partial \phi} / \frac{\partial u}{\partial \phi}}{1 - \frac{q}{p} \frac{\partial v}{\partial \phi} / \frac{\partial u}{\partial \phi}} \right|
\]
\[
(120)
\]
and \(\gamma_2 \) is the grid convergence on the Gauss-Schreiber projection [see equations (99) and (100)]. So the grid convergence on the TM projection is
\[
\gamma = \tan^{-1} \left(\left| \frac{q}{p} \right| \right) + \tan^{-1} \left(\left| \frac{\frac{\partial v}{\partial \phi} / \frac{\partial u}{\partial \phi}}{1 - \frac{q}{p} \frac{\partial v}{\partial \phi} / \frac{\partial u}{\partial \phi}} \right| \right)
\]
\[
(121)
\]
Conformal mapping from the TM projection to the ellipsoid

The conformal mapping from the TM projection to the ellipsoid is achieved in three steps:

(i) A conformal mapping from the TM to the Gauss-Schreiber projection giving \(u, v \) coordinates, then

(ii) Solving for \(\tan \phi' \) and \(\tan \omega \) given the \(u, v \) Gauss-Schreiber coordinates from which \(\lambda = \lambda_0 \pm \omega \), and finally

(iii) Solving for \(\tan \phi \) by Newton-Raphson iteration and then obtaining \(\phi \).

The development of the equations for these three steps is set out below.

Gauss-Schreiber coordinates from TM coordinates

In a similar manner as outlined above, suppose that the mapping from the \(X, Y \) plane of the TM projection to the \(u, v \) plane of the Gauss-Schreiber projection is given by the complex function
\[
F \left(X + iY \right) = \frac{1}{a} \left(u + iv \right) = F \left(Y + iX \right)
\]
\[
(122)
\]
If \(E, N \) coordinates are given and \(E_0, N_0 \) and \(m_0 \) are known, then from equations (109)
\[
X = \frac{E - E_0}{m_0} \quad \text{and} \quad Y = \frac{N - N_0}{m_0}
\]
\[
(123)
\]
Let the complex function \(F \left(Y + iX \right) \) be
\[
F \left(Y + iX \right) = \frac{Y}{A} + \frac{X}{A} + \sum_{r=1}^{\infty} K_{2r} \sin \left(2r \left(\frac{Y}{A} \right) + i 2r \left(\frac{X}{A} \right) \right)
\]
\[
(124)
\]
where \(A \) is the rectifying radius and \(K_{2r} \) are as yet unknown coefficients.

Expanding the complex trigonometric function in equation (124) and then equating real and imaginary parts gives
\[u = \frac{Y}{A} + \sum_{r=1}^{4} K_r \sin 2r \left(\frac{Y}{A} \right) \cosh 2r \left(\frac{X}{A} \right) \]
\[v = \frac{X}{A} + \sum_{r=1}^{4} K_r \cos 2r \left(\frac{Y}{A} \right) \sinh 2r \left(\frac{X}{A} \right) \]
(125)

\[\tan \phi' = \frac{\sin \left(\frac{u}{a} \right)}{\sqrt{\sin^2 \left(\frac{v}{a} \right) + \cos^2 \left(\frac{u}{a} \right)}} \]
(128)

\[\tan \omega = \sinh \left(\frac{v}{a} \right) \cos \left(\frac{u}{a} \right) \]

Solution for latitude by Newton-Raphson iteration

To evaluate \(\tan \phi \) after obtaining \(\tan \phi' \) from equation (128) consider equations (88) and (89) with the substitutions \(t = \tan \phi \) and \(t' = \tan \phi' \)

\[t' = t\sqrt{1+\sigma^2} - \sigma \sqrt{1+t'^2} \]
(129)

\[\sigma = \sinh \left(\frac{\varepsilon t}{\sqrt{1+t'^2}} \right) \]
(130)

\[t = \tan \phi \]

The derivative \(f'(t) \) is given by

\[f'(t) = \frac{d}{dt} \left(f(t) \right) \]
(131)

where \(t_n \) denotes the \(n^{th} \) iterate and \(f(t) \) is given by

\[f(t) = t\sqrt{1+\sigma^2} - \sigma \sqrt{1+t'^2} - t' \]
(132)

The derivative \(f'(t) \) is given by

\[f'(t) = \left(\sqrt{1+\sigma^2} \sqrt{1+t'^2} - \sigma t \right) \left(1 - \varepsilon^2 \right) \sqrt{1+t'^2} \]
(133)

where \(t' = \tan \phi' \) is fixed.

An initial value for \(t_0 \) can be taken as \(t_0 = t' = \tan \phi' \) and the functions \(f(t_0) \) and \(f'(t_0) \) evaluated from equations (130), (132) and (133). \(t_2 \) is now computed from equation (131) and this process repeated to obtain \(t_3, t_4, \ldots \). This iterative process can be concluded when the difference between \(t_n \) and \(t_{n+1} \) reaches an acceptably small value, and then the latitude is given by

\[\phi = \tan^{-1} t_n \]

This concludes the development of the TM projection.

TRANSFORMATIONS BETWEEN THE ELLIPSOID AND THE TRANSVERSE MERCATOR (TM) PLANE

Forward transformation: \(\phi, \lambda \rightarrow X,Y \) given \(a, f, \lambda_n, m_0 \)

1. Compute ellipsoid constants \(\varepsilon^2, n \) and powers \(n^2, n^3, \ldots, n^k \)
2. Compute the rectifying radius \(A \) from equation (41)
3. Compute conformal latitude \(\phi' \) from equations (88) and (89)
4. Compute longitude difference \(\omega = \lambda - \lambda_n \)
5. Compute the \(u,v \) Gauss-Schreiber coordinates from equations (84)
6. Compute the coefficients \(\{ \alpha_{2r} \} \) from equations (62)
7. Compute \(X,Y \) coordinates from equations (108)
8. Compute \(q \) and \(p \) from equations (114)
9. Compute scale factor \(m \) from equation (116)
10. Compute grid convergence \(\gamma \) from equation (121)

Inverse transformation: \(X,Y \rightarrow \phi, \lambda \) given \(a, f, \lambda_n, m_0 \)

1. Compute ellipsoid constants \(\varepsilon^2, n \) and powers \(n^2, n^3, \ldots, n^k \)
2. Compute the rectifying radius \(A \) from equation (41)
3. Compute the coefficients \(\{ \beta_{2r} \} \) from equations (64)
4. Compute the ratios \(\frac{u}{a}, \frac{v}{a} \) from equations (127)
5. Compute conformal latitude \(\phi' \) and longitude difference \(\omega \) from equations (128)
6. Compute \(t = \tan \phi \) by Newton-Raphson iteration using equations (131), (132) and (133)
7. Compute latitude \(\phi = \tan^{-1} t \) and longitude
\[\lambda = \lambda_0 \pm \omega \]
8. Compute the coefficients \(\{ \alpha_n \} \) from equations (62)
9. Compute \(q \) and \(p \) from equations (114)
10. Compute scale factor \(m \) from equation (116)
11. Compute grid convergence \(\gamma \) from equation (121)

ACCURACY OF THE TRANSFORMATIONS

One of the authors (Karney, 2011) has compared Krueger’s series to order \(n^4 \) (set out above) with an exact TM projection defined by Lee (1976) and shows that errors in positions computed from this series are less than 5 nanometres anywhere within a distance of 4200 km of the central meridian (equivalent to \(\omega \approx 37.7^\circ \) at the equator). So we can conclude that Krueger’s series (to order \(n^4 \)) is easily capable of micrometre precision within 30° of a central meridian.

THE ‘OTHER’ TM PROJECTION

In Krueger’s original work (Krueger 1912) of 172 pages (plus vii pages), Krueger develops the mapping equations shown above in 22 pages, with a further 14 pages of examples of the forward and inverse transformations. In the next 38 pages Krueger develops and explains an alternative approach: direct transformations from the ellipsoid to the plane and from the plane to the ellipsoid. The remaining 100 pages are concerned with the intricacies of the geodesic projected on the TM plane, arc-to-chord, line scale factor, etc.

This alternative approach is outlined in the Appendix and for the forward transformation [see equations (161)] the equations involve functions containing powers of the longitude difference \(\omega^2, \omega^3, \ldots \) and derivatives \(\frac{dM}{d\psi}, \frac{d^2M}{d\psi^2}, \frac{d^3M}{d\psi^3}, \ldots \). For the inverse transformation [see equations (166) and (168)] the equations involve powers of the \(X \) coordinate \(X^2, X^3, X^4, \ldots \) and derivatives \(\frac{d\phi}{d\psi}, \frac{d^2\phi}{d\psi^2}, \frac{d^3\phi}{d\psi^3}, \ldots \), \(\frac{d\psi_1}{dY}, \frac{d^2\psi_1}{dY^2}, \frac{d^3\psi_1}{dY^3}, \ldots \). For both transformations, the higher order derivatives become excessively complicated and are not generally known (or approximated) beyond the eighth derivative.

Redfearn (1948) and Thomas (1952) both derive identical formulae, extending (slightly) Krueger’s equations, and updating the notation and formulation. These formulae are regarded as the standard for transformations between the ellipsoid and the TM projection. For example, GeoTrans (2010) uses Thomas’ equations and Geoscience Australia defines Redfearn’s equations as the method of transformation between the Geocentric Datum of Australia (ellipsoid) and Map Grid Australia (transverse Mercator) [GDAV2.3].

The apparent attractions of these formulae are:

(i) their wide-spread use and adoption by government mapping authorities, and
(ii) there are no hyperbolic functions.

The weakness of these formulae are:

(a) they are only accurate within relatively small bands of longitude difference about the central meridian (mm accuracy for \(\omega < 6^\circ \)) and
(b) at large longitude differences (\(\omega > 30^\circ \)) they can give wildly inaccurate results (1-2 km errors).

The inaccuracies in Redfearn’s (and Thomas’s) equations are most evident in the inverse transformation \(X,Y \rightarrow \phi, \omega \). Table 1 shows a series of points each having latitude \(\phi = 75^\circ \) but with increasing longitude differences \(\omega \) from a central meridian. The \(X,Y \) coordinates are computed using Krueger’s series and can be regarded as exact (at mm accuracy) and the column headed Redfearn \(\phi, \omega \) are the values obtained from Redfearn’s equations for the inverse transformation. The error is the distance on the ellipsoid between the given \(\phi, \omega \) in the first column and the Redfearn \(\phi, \omega \) in the third column.

The values in the table have been computed for the GRS80 ellipsoid (\(a = 6378137 \) m, \(f = 1/298.257222101 \)) with \(\mu_0 = 1 \)

<table>
<thead>
<tr>
<th>point</th>
<th>Gauss-Krueger</th>
<th>Redfearn</th>
<th>error</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\phi 75^\circ \omega 0^\circ)</td>
<td>(X) 173137.521</td>
<td>(\phi 75^\circ 00') 00.0000"</td>
<td>0.001</td>
</tr>
<tr>
<td>(\phi 75^\circ \omega 6^\circ)</td>
<td>(Y) 8335703.234</td>
<td>(\phi 75^\circ 00') 00.0000"</td>
<td>0.027</td>
</tr>
<tr>
<td>(\phi 75^\circ \omega 10^\circ)</td>
<td>(X) 287748.837</td>
<td>(\phi 75^\circ 00') 00.0000"</td>
<td>1.120</td>
</tr>
<tr>
<td>(\phi 75^\circ \omega 15^\circ)</td>
<td>(Y) 8351262.809</td>
<td>(\phi 75^\circ 00') 00.0023"</td>
<td>16.888</td>
</tr>
<tr>
<td>(\phi 75^\circ \omega 20^\circ)</td>
<td>(X) 429237.683</td>
<td>(\phi 75^\circ 00') 00.0472"</td>
<td>942.737</td>
</tr>
<tr>
<td>(\phi 75^\circ \omega 30^\circ)</td>
<td>(Y) 8342560.961</td>
<td>(\phi 75^\circ 00') 03.8591"</td>
<td>4.9 km</td>
</tr>
<tr>
<td>(\phi 75^\circ \omega 35^\circ)</td>
<td>(X) 956892.903</td>
<td>(\phi 75^\circ 00') 23.0237"</td>
<td>2.0 km</td>
</tr>
<tr>
<td>(\phi 75^\circ \omega 40^\circ)</td>
<td>(Y) 8619555.491</td>
<td>(\phi 75^\circ 00') 34.49'</td>
<td>9.4 km</td>
</tr>
</tbody>
</table>

Table 1

This problem is highlighted when considering a map of Greenland (Figure 6), which is almost the ideal ‘shape’ for a transverse Mercator projection, having a small east-west extent (approx. 1650 km) and large north-south extent (approx. 2600 km).

Points \(A \) and \(B \) represent two extremes if a central meridian is chosen as \(\lambda = 45^\circ \) W. \(A (\phi = 70^\circ \) N, \(\lambda = 22^\circ 30' \) W) is a point furthest from the central meridian (approx. 850 km); and \(B (\phi = 78^\circ \) N, \(\lambda = 75^\circ \) W) would have the greatest west longitude.

Table 2 shows the errors at these points for the GRS80 ellipsoid with \(\mu_0 = 1 \) for the inverse transformation using Redfearn’s equations.
Table 2

<table>
<thead>
<tr>
<th>Point</th>
<th>Gauss-Krueger</th>
<th>Redfearn</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>A φ 70°, ω 22.5°</td>
<td>X 842115.901</td>
<td>Y 7926858.314</td>
<td>64.282</td>
</tr>
<tr>
<td>B φ 78°, ω -30°</td>
<td>X -667590.239</td>
<td>Y 8837145.459</td>
<td>784.799</td>
</tr>
</tbody>
</table>

Figure 6 Transverse Mercator projection of Greenland graticule interval 15°, central meridian λ₀ = 45° W

CONCLUSION

We have provided here a reasonably complete derivation of the Karney-Krueger equations for the TM projection that allow micrometre accuracy in the forward and inverse mappings between the ellipsoid and plane. And we have provided some commentary on the ‘other’ TM equations in wide use in the geospatial community. These other equations offer only limited accuracy and should be abandoned in favour of the equations (and methods) we have outlined.

Our work is not original; indeed these equations were developed by Krueger almost a century ago. But with the aid of computer algebra systems we have extended Krueger series – as others have done, e.g. Engsager & Poder (2007) – so that the method is capable of very high accuracy at large distances from a central meridian. This makes the transverse Mercator (TM) projection a much more useful projection for the geospatial community.

We also hope that this paper may be useful to mapping organisations wishing to 'upgrade' transformation software that use formulae given by Redfearn (1948) or Thomas (1952) – they are unnecessarily inaccurate.

NOMENCLATURE

<table>
<thead>
<tr>
<th>This paper</th>
<th>Krueger</th>
</tr>
</thead>
<tbody>
<tr>
<td>αk</td>
<td>coefficients in series for μ</td>
</tr>
<tr>
<td>βk</td>
<td>coefficients in series for φ</td>
</tr>
<tr>
<td>β</td>
<td>oblique latitude</td>
</tr>
<tr>
<td>γ</td>
<td>grid convergence</td>
</tr>
<tr>
<td>ε</td>
<td>eccentricity of ellipsoid</td>
</tr>
<tr>
<td>ε^2</td>
<td>eccentricity of ellipsoid squared</td>
</tr>
<tr>
<td>θ</td>
<td>oblique longitude</td>
</tr>
<tr>
<td>λ</td>
<td>longitude</td>
</tr>
<tr>
<td>λ₀</td>
<td>longitude of central meridian</td>
</tr>
<tr>
<td>μ</td>
<td>rectifying latitude</td>
</tr>
<tr>
<td>φ</td>
<td>conformal latitude</td>
</tr>
<tr>
<td>ϕ'</td>
<td>conformal latitude</td>
</tr>
<tr>
<td>ϕ</td>
<td>isometric latitude</td>
</tr>
<tr>
<td>ω</td>
<td>longitude difference: ω = λ - λ₀</td>
</tr>
<tr>
<td>A</td>
<td>angle between parametric curves</td>
</tr>
<tr>
<td>a</td>
<td>semi-major axis of ellipsoid</td>
</tr>
<tr>
<td>b</td>
<td>semi-minor axis of ellipsoid</td>
</tr>
<tr>
<td>c</td>
<td>polar radius of curvature</td>
</tr>
<tr>
<td>ds</td>
<td>differential distance on datum surface</td>
</tr>
<tr>
<td>dS</td>
<td>differential distance on projection surface</td>
</tr>
<tr>
<td>e</td>
<td>Gaussian fundamental quantity</td>
</tr>
<tr>
<td>f</td>
<td>flattening of ellipsoid</td>
</tr>
<tr>
<td>g</td>
<td>Gaussian fundamental quantity</td>
</tr>
<tr>
<td>h</td>
<td>scale factor along meridian</td>
</tr>
<tr>
<td>k</td>
<td>scale factor along parallel</td>
</tr>
<tr>
<td>M</td>
<td>meridian distance</td>
</tr>
<tr>
<td>m</td>
<td>scale factor</td>
</tr>
<tr>
<td>m₀</td>
<td>central meridian scale factor</td>
</tr>
<tr>
<td>n</td>
<td>3rd flattening of ellipsoid</td>
</tr>
<tr>
<td>Q</td>
<td>quadrant length of ellipsoid</td>
</tr>
<tr>
<td>s</td>
<td>distance on ellipsoid</td>
</tr>
<tr>
<td>t</td>
<td>t = tan φ</td>
</tr>
<tr>
<td>t'</td>
<td>t' = tan φ'</td>
</tr>
<tr>
<td>u</td>
<td>transverse Mercator coordinate</td>
</tr>
<tr>
<td>V</td>
<td>ellipsoid latitude function</td>
</tr>
<tr>
<td>v</td>
<td>transverse Mercator coordinate</td>
</tr>
<tr>
<td>W</td>
<td>ellipsoid latitude function</td>
</tr>
</tbody>
</table>
APPENDIX

Reversion of a series

If we have an expression for a variable \(z \) as a series of powers or functions of another variable \(y \) then we may, by a reversion of the series, find an expression for \(y \) as series of functions of \(z \). Reversion of a series can be done using Lagrange’s theorem, a proof of which can be found in Bromwich (1991).

Suppose that
\[
y = z + xF(y) \quad \text{or} \quad z = y - xF(y)
\]
then Lagrange’s theorem states that for any \(f \)
\[
f(y) = f(z) + \sum_{i=1}^{n} \frac{x^n}{i!} F(z) \left(F(z) + f'(z) \right)
\]
and Lagrange’s theorem gives
\[
F(\phi) = d_2 \sin 2\phi + d_4 \sin 4\phi + d_6 \sin 6\phi + \cdots
\]
and so
\[
F(\mu) = d_2 \sin 2\mu + d_4 \sin 4\mu + d_6 \sin 6\mu + \cdots
\]

Taylor’s theorem

This theorem, due to the English mathematician Brook Taylor (1685–1731) enables a function \(f(x) \) near a point \(x = a \) to be expressed from the values \(f(a) \) and the successive derivatives of \(f(x) \) evaluated at \(x = a \).

Taylor’s polynomial may be expressed in the following form
\[
f(x) = f(a) + (x - a)f'(a) + \frac{(x - a)^2}{2!} f''(a) + \cdots + \frac{(x - a)^n}{n!} f^n(a) + R_n
\]
where \(R_n \) is the remainder after \(n \) terms and \(f'(a), f''(a), \ldots \) etc. are derivatives of the function \(f(x) \) evaluated at \(x = a \).

Taylor’s theorem can also be expressed as power series
\[
f(x) = \sum_{k=0}^{\infty} f^{(k)}(a) \frac{(x-a)^k}{k!}
\]
where \(f^{(k)}(a) = \left[\frac{d^k}{dx^k} f(x) \right]_{x=a} \)

As an example of the use of Taylor’s theorem, suppose we have an expression for the difference between latitude \(\phi \) and the rectifying latitude \(\mu \) [see equation (44)]
\[
\phi - \mu = D_2 \sin 2\phi + D_4 \sin 4\phi + D_6 \sin 6\phi + \cdots
\]
and we wish to find expressions for \(\sin 2\phi, \sin 4\phi, \sin 6\phi \), etc. as functions of \(\mu \).

We can use Taylor’s theorem to find an expression for \(f(\phi) = \sin \phi \) about \(\phi = \mu \) as
\[
\sin \phi = \sin \mu + (\phi - \mu) \frac{d}{d\phi} \sin \phi \big|_{\phi = \mu} + \frac{1}{2!} (\phi - \mu)^2 \frac{d^2}{d\phi^2} \sin \phi \big|_{\phi = \mu} + \cdots
\]
giving
\[
\sin \phi = \sin \mu + (\phi - \mu) \cos \mu - (\phi - \mu)^2 \frac{\sin \mu}{2} + \frac{1}{3!} (\phi - \mu)^3 \cos \phi \big|_{\phi = \mu} + \cdots
\]
Replacing \(\phi \) with \(2\phi \) and \(\mu \) with \(2\mu \) in equation (142) and substituting \(\phi - \mu \) from equation (141) gives an
expression for $\sin 2\phi$. Using similar replacements and substitutions, expressions for $\sin 4\phi$, $\sin 6\phi$, etc. can be developed.

Hyperbolic functions

The basic functions are the hyperbolic sine of x, denoted by $\sinh x$, and the hyperbolic cosine of x denoted by $\cosh x$; they are defined as

\[
\sinh x = \frac{e^x - e^{-x}}{2} \\
\cosh x = \frac{e^x + e^{-x}}{2}
\]

(143)

Other hyperbolic functions are in terms of these

\[
\tanh x = \frac{\sinh x}{\cosh x}, \quad \coth x = \frac{1}{\tanh x} \\
\text{sech } x = \frac{1}{\cosh x}, \quad \text{csch } x = \frac{1}{\sinh x}
\]

(144)

The inverse hyperbolic function of $\sinh x$ is $\sinh^{-1} x$ and is defined by $\sinh^{-1} (\sinh x) = x$. Similarly $\cosh^{-1} x$ and $\tanh^{-1} \left(\frac{1}{x} \right)$ are defined by $\cosh^{-1} (\cosh x) = x$ and $\tanh^{-1} (\tanh x) = x$; both requiring $x > 0$ and as a consequence of the definitions

\[
\sinh^{-1} x = \ln (x + \sqrt{x^2 + 1}) - \infty < x < \infty \\
\cosh^{-1} x = \ln (x + \sqrt{x^2 - 1}) \quad x \geq 1
\]

(145)

\[
\tanh^{-1} x = \frac{1}{2} \ln \left(\frac{1 + x}{1 - x} \right) \quad -1 < x < 1
\]

A useful identity linking circular and hyperbolic functions used in conformal mapping is obtained by considering the following.

Using the trigonometric addition and double angle formula we have

\[
\ln \tan \left(\frac{1}{4} \pi + \frac{1}{2} x \right) = \ln \left(\frac{\cos \frac{1}{4} x + \sin \frac{1}{2} x}{\cos \frac{1}{4} x - \sin \frac{1}{2} x} \right)
\]

\[
= \ln \left(\frac{\cos \frac{1}{4} x + \sin \frac{1}{2} x}{\cos \frac{1}{4} x - \sin \frac{1}{2} x} \right)^2 = \ln \left(\frac{1 + \sin x}{\cos x} \right)
\]

(146)

Also, replacing x with $\tan x$ in the definition of the inverse hyperbolic functions in equations (145) we have

\[
\sinh^{-1} \left(\tan x \right) = \ln \left(\tan x + \sqrt{1 + \tan^2 x} \right)
\]

\[
= \ln \left(\tan x + \sec x \right) = \ln \left(\frac{1 + \sin x}{\cos x} \right)
\]

(147)

And equating $\frac{1 + \sin x}{\cos x}$ from equations (146) and (147) gives

\[
\ln \tan \left(\frac{1}{4} \pi + \frac{1}{2} x \right) = \sinh^{-1} x
\]

(148)

Conformal mapping and complex functions

A theory due to Gauss states that a conformal mapping from the ψ, ω datum surface to the X,Y projection surface can be represented by the complex expression

\[
Y + iX = f (\psi + i\omega)
\]

(149)

Providing that ψ and ω are isometric parameters and the complex function $f (\psi + i\omega)$ is analytic. $i = \sqrt{-1}$ (the imaginary number), and the left-hand side of equation (149) is a complex number consisting of a real and imaginary part. The right-hand-side of equation (149) is a complex function, i.e., a function of real and imaginary parameters ψ and ω respectively. The complex function $f (\psi + i\omega)$ is analytic if it is everywhere differentiable and we may think of an analytic function as one that describes a smooth surface having no holes, edges or discontinuities.

Part of a necessary and sufficient condition for $f (\psi + i\omega)$ to be analytic is that the Cauchy-Riemann equations are satisfied, i.e., (Sokolnikoff & Redheffer 1966)

\[
\frac{\partial Y}{\partial \psi} = \frac{\partial X}{\partial \omega} \quad \text{and} \quad \frac{\partial Y}{\partial \omega} = -\frac{\partial X}{\partial \psi}
\]

(150)

As an example, consider the Mercator projection of the sphere shown in Figure 2 where the conformal mapping from the sphere (datum surface) to the plane is given by equations (68) and using the isometric latitude given by equation (34) the mapping equations are

\[
X = R (\lambda - \lambda_0) = R \omega \\
Y = R \ln \tan \left(\frac{1}{4} \pi + \frac{1}{2} \phi \right) = R \psi
\]

(151)

These equations can be expressed as the complex equation

\[
Z = Y + iX = R (\psi + i\omega)
\]

(152)

where Z is a complex function defining the Mercator projection.

The transverse Mercator projection of the sphere shown in Figure 4 can also be expressed as a complex equation. Using the identity (148) and equation (151) we may define the transverse Mercator projection by

\[
Z = Y + iX = R \left(\sinh^{-1} \tan \phi + i\omega \right)
\]

(153)

Now suppose we have another complex function

\[
w = u + iv = \tan^{-1} \sinh Z
\]

(154)

representing a conformal transformation from the X,Y plane to the u,v plane.
What are the functions u and v?

It turns out, after some algebra, u and v are of the same form as equations (84)

$$
u = R \tan^{-1} \left(\frac{\tan \phi}{\cos \omega} \right)$$

$$v = R \sinh^{-1} \left(\frac{\sin \omega}{\sqrt{\tan^{-2} \phi + \cos^{-2} \omega}} \right)$$

and the transverse Mercator projection of the sphere is defined by the complex function

$$w = u + iv = R \left\{ \tan^{-1} \left(\frac{\tan \phi}{\cos \omega} \right) + i \sinh^{-1} \left(\frac{\sin \omega}{\sqrt{\tan^{-2} \phi + \cos^{-2} \omega}} \right) \right\}$$

(155)

Other complex functions achieve the same result. For example Lauf (1983) shows that

$$w = u + iv = 2R \left\{ \tan^{-1} \exp \left(\psi + i \omega \right) - \frac{i}{2} \pi \right\}$$

(157)

is also the transverse Mercator projection.

An alternative approach to developing a transverse Mercator projection is to expand equation (149) as a power series.

Following Lauf (1983), consider a point P having isometric coordinates ψ, ω linked to an approximate location ψ_0, ω_0, by very small corrections $\delta \psi, \delta \omega$ such that $\psi = \psi_0 + \delta \psi$ and $\omega = \omega_0 + \delta \omega$; equation (149) becomes

$$Y + iX = f (\psi + i \omega) = f \left[(\psi_0 + \delta \psi) + i (\omega_0 + \delta \omega) \right]$$

$$= f (\psi_0) + f^1 (\psi_0) \delta \psi + f^2 (\psi_0) \delta \psi^2 + f^3 (\psi_0) \delta \psi^3 + \cdots$$

(158)

The complex function $f (z)$ can be expanded by a Taylor series [see equation (140)]

$$f \left(z \right) = f \left(z_0 \right) + \frac{\partial f}{\partial z} (z_0) \delta z + \frac{1}{2!} \frac{\partial^2 f}{\partial z^2} (z_0) \delta z^2 + \frac{1}{3!} f^3 (z_0) \delta z^3 + \cdots$$

(159)

where $f^0 (z_0), f^1 (z_0), f^2 (z_0), \ldots$ are first, second, and higher order derivatives of the function $f (z)$ can be evaluated at $z = z_0$. Choosing, as an approximate location, a point on the central meridian having the same isometric latitude as P, then $\delta \psi = 0$ (since $\psi = \psi_0 + \delta \psi$ and $\psi_0 = \psi$) and $\delta \omega = \omega$ (since $\omega = \omega_0 + \delta \omega$ and $\omega_0 = 0$), hence $z_0 = \psi_0 + i \omega_0 = \psi$ and $\delta z = \delta \psi + i \delta \omega = i \omega$.

The complex function $f (\psi)$ can then be written as

$$f (\psi) = f (\psi - i \omega)$$

$$= f (\psi) + i \omega f^1 (\psi) + \frac{(i \omega)^2}{2!} f^2 (\psi) + \frac{(i \omega)^3}{3!} f^3 (\psi) + \cdots$$

(160)

$f^0 (\psi), f^1 (\psi), f^2 (\psi), \ldots$ are first, second and higher order derivatives of the function $f (\psi)$.

Substituting equation (160) into equation (158) and equating real and imaginary parts (noting that $i^2 = -1, i^3 = -i, i^4 = 1$, etc.) and $f (\psi) = M$ gives

$$X = \omega \frac{dM}{d\psi} - \omega^3 \frac{d^3 M}{d\psi^3} + \omega^5 \frac{d^5 M}{d\psi^5} - \omega^7 \frac{d^7 M}{d\psi^7} + \cdots$$

$$Y = M - \omega^2 \frac{d^2 M}{d\psi^2} + \omega^4 \frac{d^4 M}{d\psi^4} - \omega^6 \frac{d^6 M}{d\psi^6} + \cdots$$

(161)

In this alternative approach, the transformation from the plane to the ellipsoid is represented by the complex expression

$$\psi + i \omega = F (Y + iX)$$

(162)

And similarly to before, the complex function $F (Y + iX)$ can be expanded as a power series giving

$$\psi + i \omega = F (Y) + iX \frac{dF}{dY} (Y) + \frac{(iX)^2}{2!} \frac{d^2 F}{dY^2} (Y)$$

$$+ \frac{(iX)^3}{3!} \frac{d^3 F}{dY^3} (Y) + \cdots$$

(163)

When $X = 0$, $\omega = 0$; but when $X = 0$ the point $P(\phi, \omega)$ becomes $P_1 (\phi, 0)$, a point on the central meridian having latitude ϕ, known as the foot-point latitude. Now ψ_1 is the isometric latitude for the foot-point latitude and we have $F (Y) = \psi_1$.

Substituting equation (163) into equation (162) and equating real and imaginary parts gives

$$\psi = \psi_1 - \frac{X^2}{2!} \frac{d^2 \psi_1}{dY^2} + \frac{X^4}{4!} \frac{d^4 \psi_1}{dY^4} - \frac{X^6}{6!} \frac{d^6 \psi_1}{dY^6} + \cdots$$

$$\omega = X \frac{d\psi_1}{dY} - \frac{X^3}{3!} \frac{d^3 \psi_1}{dY^3} + \frac{X^5}{5!} \frac{d^5 \psi_1}{dY^5} - \frac{X^7}{7!} \frac{d^7 \psi_1}{dY^7} + \cdots$$

(164)

The first of equations (164) gives ψ in terms of ψ_1, but we require ϕ in terms of ϕ. Write the first of equations (164) as

$$\psi = \psi_1 + \delta \psi$$

(165)

where

$$\delta \psi = \frac{X^2}{2!} \frac{d^2 \psi_1}{dY^2} + \frac{X^4}{4!} \frac{d^4 \psi_1}{dY^4} - \frac{X^6}{6!} \frac{d^6 \psi_1}{dY^6} + \cdots$$

(166)
And latitude \(\phi = g(\psi) = g(\psi_i + \delta \psi) \) can be expanded as another power series

\[
\begin{align*}
\phi &= g(\psi_i) + \delta \psi g^{(1)}(\psi_i) + \frac{(\delta \psi)^2}{2!} g^{(2)}(\psi_i) \\
&
+ \frac{(\delta \psi)^3}{3!} g^{(3)}(\psi_i) + \cdots
\end{align*}
\]

(167)

Noting that \(g(\psi_i) = \phi_i \) we may write the transformation as

\[
\begin{align*}
\phi &= \phi_i + \delta \psi \frac{d \phi_i}{d \psi_i} + \frac{(\delta \psi)^2}{2!} \frac{d^2 \phi_i}{d \psi_i^2} + \frac{(\delta \psi)^3}{4!} \frac{d^3 \phi_i}{d \psi_i^3} + \cdots \\
\omega &= \chi \frac{d \psi_i}{d Y} - \chi^3 \frac{d^3 \psi_i}{d Y^3} + \chi^5 \frac{d^5 \psi_i}{d Y^5} - \chi^7 \frac{d^7 \psi_i}{d Y^7} + \cdots
\end{align*}
\]

(168)

REFERENCES

Deakin, R.E. and Hunter, M.N., (2010a), Geometric Geodesy Part A, School of Mathematical and Geospatial Sciences, RMIT University, Melbourne, Australia, January 2010.

Deakin, R.E. and Hunter, M.N., (2010b), Geometric Geodesy Part B, School of Mathematical and Geospatial Sciences, RMIT University, Melbourne, Australia, January 2010.

Krüger, L., (1912), Konforme Abbildung des Erdellipsoids in der Ebene, New Series 52, Royal Prussian Geodetic Institute, Potsdam. DOI 10.2312/GFZ.b103-krueger28

Schreiber, O., (1897), Die konforme Doppelprojektion der trigonometrischen Abteilung der Königl, Preussischen Landesaufnahme, Berlin.

