
Appendix B 
 
 
This appendix contains a worked example of a Least Squares traverse adjustment by the method of Variation 
of Coordinates with added constraint equations. 
 
Figure 1 below shows the observed bearings and distances of a traverse network connecting points A, B, C, 
D, E and F.  The line AB 110º 15' 20" is the datum for bearings which have been observed on both "faces" of 
a theodolite and mean observed bearings used as backbearings.  bearing miscloses are indicated by 
observations recorded on both sides of lines CD, CF and AF. 
 
These are the original observations and only these observations or measurements directly derived from them 
are used in the adjustment. 
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Figure 1.  Traverse diagram and field observations 
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Figure 2 below shows the measurements adopted for the purposes of assessing the accuracy of the survey.  
Mean bearings of the lines CD, CF and AF have been deduced from the observations and closures taken out 
on the three connected figures ABCF, BCD and CDEF. 
 
Linear miscloses and accuracies (linear misclose divided by traverse length) are shown on the diagram. 
 
 
 

Misclose:
48  24'
0.077

Accuracy:
1:8,170

Misclose:
293 24'
0.078

Accuracy:
1:7,220 Misclose:

262 25'
0.070

Accuracy:
1:6,620

110  15'  20"239.150

148.420
276  49' 35"

120.140    
359  46' 20"

2 
 5

7 
10

"
15

0.
76

0

22
4  

37
'  2

0"

12
3.7

60
22

2.
19

0 
   

   
   

   
   

20
2 

 1
6'

  1
0"

117.570
178  42' 10"

146.085290  18' 10"

 
 
 
 

Figure 2.  Traverse miscloses and accuracies 
 
Whilst none of the miscloses are excessive, they do present problems in detecting errors in calculations based 
on these measurements since combinations of the misclose will be transferred to derived figures. 
 
A Least Squares adjustment will provide a mathematicall consistent set of adjusted measurements for the 
traverse network. 
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The adjustment process is set out in a number of well-defined steps as follows: 
 
 
STEP 1: DETERMINATION OF CONSTRAINTS 
 
 
For the purpose of the exercise the following constraints are applied: 
 
 1: A is a fixed station 
 2: the bearing AB is to be fixed at 110º 15' 20" 
 3: the bearing DE is to be fixed at 276º 49' 35" 
 4: the distance CF is to be fixed at 146.050 m 
 5: the angle CFE is to be fixed at 72º 39' 00" 
 
The minimal constraints necessary for the adjustment by Variation of Coordinates are one fixed point and one 
fixed bearing, or two fixed points. 
 
Fixing the bearing DE, the distance CF and the angle CFE are additional constraints over and above these 
minimums and will induce distortions into the network.  The sum of the squares of the residuals, v W  will 

be a minimum for this configuration of constraints, but it will be larger than v W  for the network with 
minimal constraints. 

vT

vT

 
In many surveys, there may be no points with previously determined coordinate values that can be regarded 
as fixed points for the purposes of an adjustment.  Adopting two points as fixed as minimal constraints on the 
network will result in a larger value of v W  than if one point and one bearing are held fixed. vT

 
A traverse adjustment, using the technique outlined in this paper, with only one fixed point and one fixed 
bearing may be regarded as a free network adjustment whose sum of squares of residuals v W  is the smallest 
possible value. 

vT
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STEP 2: DETERMINATION OF APPROXIMATE COORDINATES AND COMPUTED BEARINGS 
AND DISTANCES 

 
 
Figure 3 below shows approximate coordinates derived from the field measurements based on fixed 
coordinate values for A.  Computed bearings and distances ′ ′φ and s  are calculated from these approximate 
coordinates. 
 
Station A is "fixed" and the other stations are regarded as "floating". 
 
The adjustment process will determine corrections to be applied to the approximate coordinates of the 
floating stations. 
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Figure 3.  Approximate coordinates and computed bearings and distances 
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STEP 3: SCHEME DIAGRAM AND OBSERVATIONS
 
 
Figure 4 below is a scheme diagram and the numbered arrows on the lines indicate the observed directions (1 
to 16) and measured distances (17 to 24). 
 
A direction can be regarded as a reading of the un-oriented theodolite circle wheras a bearing assumes the 
theodolite is oriented to North. 
 
Only "observed" directions and measured distances are used in the adjustment and if bearings have been 
observed on the traverse lines then directions must be deduced from these observations. 
 
Directions and distances are tabulated below, directions followed by distances.  Directions are derived from 
the mean observed bearings from Figure 1 with 0º 00' 00" as the direction of the backsight and successive 
directions for the foresights in clockwise order.  Standard deviations are apriori estimates of 10" for directions 
and 0.010 m for measured distances. 
 
 
 
 Station 
 No At To Observation St. Dev 
 1 A B 0º 00' 00" 10" 
 2 A F 69º 30' 50" 10" 
  

 3 B A 0º 00' 00" 10" 
 4 B D 272º 00' 50" 10" 
 5 B C 294º 22' 00" 10" 
  

 6 C B 0º 00' 00" 10" 
 7 C D 134º 04' 55" 10" 
 8 C F 245º 40' 45" 10" 
  

 9 D B 0º 00' 00" 10" 
 10 D E 254º 33' 25" 10" 
 11 D C 336º 25' 55" 10" 
  

 12 E D 0º 00' 00" 10" 
 13 E F 266º 07' 40" 10" 
  

 14 F E 0º 00' 00" 10" 
 15 F A 176º 49' 15" 10" 
 16 F C 287º 21' 10" 10" 
  

 17 A B 239.150 m 0.010 m 
 18 A F 120.140 m 0.010 m 
  

 19 C B 123.760 m 0.010 m 
 20 C D 117.570 m 0.010 m 
 21 C F 146.085 m 0.010 m 
  

 22 D B 222.190 m 0.010 m 
  

 23 E D 148.420 m 0.010 m 

 24 E F 150.760 m 0.010 m 
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STEP 5: DETERMINE ADJUSTMENT "CONSTANTS"
 
 
Number of Residual Equations n 
 
Inspection of Figure 4 and the Table of measurements shows 24 measurements in the adjustment.  Each 
measurement will yield a residual equation. 

 n = 24  

 
Number of Constraint Equations c 
 
Constraining the bearings AB and DE, the distance CF and the angle CFE to predetermined values mean 4 
constraint equations will be added to the normal equations. 

 c = 4  

 
Number of Unknowns u 
 
Inspection of the observation equation (1) shows that there is an orientation constant associated with every 
set of directions at a particular traverse station.  These are unknowns in the adjustment. 
 
Every floating station in the network has two unknown coordinates, which are also, unknowns in the 
network. 

 u = + × =6 5 2 1a f 6  

 
 Degree of Freedom r n u c= − + = − + =24 16 4 12  
 
 
STEP 6: FORM MATRIX B AND VECTOR f OF RESIDUAL EQUATIONS
 
 
Tabulation of the coefficients and numerical terms of the 24 residual equations will lead to the matrix B and 
the vector f 
 
Residual equations for directions and distances are given by equations (3) and (4). 
 
For the purpose of this example, the corrections to the approximate coordinates and orientation constants 
are in centimetres (cm) and seconds of arc (sec) respectively which means that; 
 

In equation (3), residuals and numerical terms for the direction residual equation 
are in seconds of arc and the direction coefficients a and b are in sec cm  and  

 a
s

b
s

=
− ′

′
×

′′
=

′
′

×
′′sin cosφ ρ φ ρ

100 100
 

where ′′ρ  is the number of seconds in 1 radian 
 

In equation (4), residuals and numerical terms for the distance residual equation 
are in centimetres and the distance coefficients c and d are given by 

 c d= ′ = ′cos sinφ φ  

 
Four variations of equations (3) and (4) are possible depending upon whether 
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The 24 residual equations are tabulated below showing the coefficient matrix B and the vector numerical 
terms f. 
 
Components B B  as per equation (6) are outlined. B f f11 12 22 1, , , and 2
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STEP 7: FORM OF NORMAL EQUATION COEFFICIENT MATRIX N AND VECTOR OF 
NUMERICAL TERMS t

 
 
The normal equations are formed according to equations (7) where; 
 

  N B WB t B W f= T and = T

 
Since all the observations can be assumed as independent, the estimate of the variance matrix Q and its 
inverse W  are diagonal and the matrix operations can be simplified in the following manner. 
 
Divide each row of the coefficient matrix B and the vector of numeric terms f by the standard deviation for 
that particular row (or equation).  This operation forms a matrix B  of order n by  where the elements 
of the additional column are the "new" numerical terms. 

u +1a f
 
The elements of the upper-triangular portion of a symmetric matrix N  of order u +1a f are formed according 
to the summation 
 

 n b b to toi j = = + =
=

=

∑ k i k j
k

k n

i u j ue j 1 1 1 1
1

, +  

 
N  can be partitioned as 
 

 N
N N
N N

=
L
NM

O
QP

11 12

21 22
 

 
where 
 
 N11 is the u by u coefficient matrix N 
 N12  is the u by 1 vector of numeric terms t 
 N N21 12=  
 N f W22 =

T f  is the number used in the calculation of the variance factor σ 0
2  

 
The upper-triangular portion of the symmetric coefficient matrix N and the vector of numeric terms t (both 
multiplied by -1) and the coefficient matrix C and the numerical terms g of the 4 constraint equations are 
shown on the following page. 
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STEP 8: SOLUTION OF EQUATIONS
 
 
Inversion of the previous matrix and multiplication by the numerical terms gives the solutions according to 
equation (13) as; 
 
 

 

∆ ∆
∆ ∆
∆ ∆
∆ ∆
∆ ∆
∆ ∆
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The corrections are added to the approximate coordinates (shown in Figure 3) and to the approximate 
orientation constants (shown at the bottom of table of measurements) to give; 
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STEP 9: CALCULATION OF ADJUSTED BEARINGS AND DISTANCES
 
 
A diagram showing the adjusted bearings and distances is shown below 
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Figure 5.  Diagram of adjusted traverse network 
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The constraints applied to the network; 
 
 1: A is a fixed station 
 2: the bearing AB is to be fixed at 110º 15' 20" 
 3: the bearing DE is to be fixed at 276º 49' 35" 
 4: the distance CF is to be fixed at 146.050 m 
 5: the angle CFE is to be fixed at 72º 39' 00" 
 
have been satisfied.  The difference of 1" in the bearing of the line DE is due to rounding errors. 
 
 
 
STEP 10: CALCULATION OF RESIDUALS
 
 
The residuals, computed from equation (5)  v Bx f= −   are; 
 

  

Directions

Distances
cm cm cm cm

v v v v
v v v v
v v v v
v v v v

v v v v

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

4 1 4 1 13 3 27 3
14 0 15 0 3 19
23 6 17 0 6 4 3 7
3 4 4 9 0 2 51

0 5 3 4 4 5 0 4

= − ′′ = + ′′ = − ′′ = + ′′
= − ′′ = − ′′ = − ′′ = + ′′
= + ′′ = − ′′ = − ′′ = + ′′
= − ′′ = + ′′ = + ′′ = − ′′

= − = + = − = −

. . .
. . .
. . .

. . .

. . .
v v v v21 22 23 243 5 0 2 3 3 14= − = − = + = +. . .cm cm cm cm

.
.
.
.

.
.

 
 
STEP 11: COMPREHENSIVE CHECKS
 
 
As a comprehensive check on the adjustment, the residuals are substituted into the original Observation 
Equations (1) and (2) and compared with the computed values. 
 
 
STEP 12: PRECISION ESTIMATION
 
 

 Variance Factor σ 0
2 78 56

12
6 55= = =

v W vT

r
. .  

 
The numerator v W  has been calculated by dividing each residual by the standard deviation for that 
observation, squaring and adding.  The denominator is the degrees of freedom in the network. 

vT

 
Mikhail (1976, pp. 285-88) shows that an unbiased estimate of the variance factor is given by equation (16) 
as; 

 σ 0
2 = =

−v W v f Wf x tT T T

r r
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and is based on the assumption that the expected mean of the residuals is zero, or no bias in the observations.  
The additional constraints placed on the adjustment make it unlikely that σ 0

2 6 55= .  (as computed above) is 
an unbiased estimate of the variance factor. 

 
Equation (15) gives the relationship between the "true" measurement variances and the apriori estimates, and 
using the value σ 0

2 6 55= .  indicates that better estimates of variances may have been 

 σα = ± ′′26  (standard deviation of observed direction) 

 σ l = ±0 026. m  (standard deviation of observed distance) 

rather than the estimates of σα = ± ′′10  and σ l = ±0 010. m  that were used. 
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In light of the aforementioned and some experience in adjustment of observations, a surveyor may choose to 
ignore the computed variance factor and assume that the apriori variance estimates are in fact "true" 
variances.  This implies that σ 0

2 1= . 
 
For the purpose of this example traverse network, which is entirely fictitious, the computed variance factor 
σ 0

2 6 55= .  will be used.  In other circumstances, this relatively large value may require further investigation. 
 
 
PRECISION OF TRAVERSE BEARINGS AND DISTANCES
 
 
Because of the added constraints in the network, the variance matrix of the adjusted quantities is given by 
equation (18).  That part of the matrix inverse −α  that relates to the coordinates is shown below.  [See 
equations (13) and (14)] 
 
 Station B Station C Station D Station E Station F 

 ∆N B  ∆EB  ∆NC  ∆EC  ∆N D  ∆ED  ∆N E  ∆EE  ∆N F  ∆EF  

 0.050 -0.134 0.050 -0.068 0.053 -0.068 0.055 -0.079 0.064 -0.063 
  0.363 -0.136 0.186 -0.144 0.184 -0.148 0.214 -0.174 0.172 
   0.352 0.002 0.252 -0.039 0.244 0.024 0.317 -0.011 
    0.340 -0.072 0.382 -0.080 0.448 -0.141 0.287 
     0.544 -0.142 0.539 -0.098 0.303 -0.054 
      0.648 -0.129 0.537 -0.243 0.307 
  SYMMETRIC    0.537 -0.114 0.306 -0.057 
        0.670 -0.269 0.339 
         0.479 -0.081 
          0.261 
 
 
Only precisions of unconstrained bearings and distances are determined in a traverse network adjustment. 
 
As an example, the precision of the adjusted bearing and distance of the line CD will be determined using 
equations (21a) and (21b).  The relevant portions of the variance matrix are highlighted above and the 
direction/distance coefficients are obtained from the coefficient matrix B .  Note that C = i and D = k 

  

a
b

c
d

i k N E

i k N E

N N E E

i k N E N E

i k N E N E

i i

k k

i k i k

i i i k

k k k i

= − = =
= − = =

= =
= − = = −
= = − =

0 397 0 352 0 340
17 539 0 544 0 648

0 252 0 382
1000 0 002 0 039

0 023 0 142 0 072

2 2

2 2

. .
. .

. .
. .

. .

sec / cm cm cm
sec / cm cm cm

cm cm
cm cm

cm cm

2 2

2 2

2 2

2 2

2 2

σ σ
σ σ

σ σ
σ σ
σ σ −

.

.

.

.

 
and since the variance factor is common to all elements 
 

  
σ σ

σ σ
φ φi k i k

i k i ks s

2

2

6 55 68 56 21

6 55 0 393 0 016

= × = ± ′′

= × = ±

. .

. . .

sec and

cm and m

2

2

which are the standard deviations of the adjusted bearing and distance of the line CD. 
ERROR ELLIPSES
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Error ellipses can be computed for stations C, D, E and F in the network.  No error ellipse can be computed 
for B since it is constrained to lie on a particular bearing from the fixed station A. 
 
Equations (22) and (23) give the necessary formulae for calculating the parameters of individual error 
ellipses, a = length of semi-major axis, b = length of semi-minor axis and θ  = bearing of major axis. 
 

 

Point cm cm cm

cm cm

2 2

o

o

C

a b

N E E Nσ σ σ

θ

θ
θ

2 20 352 0 340 0 002

0 594 0 583 2 0 004
0 012

2 18 26 06
9 13

= = =

= = =

= ′ ′
= ′

. . .

. . tan .
.

2

′
 

 

 

Point cm cm cm

cm cm

2 2

o

o

D

a b

N E E Nσ σ σ

θ

θ
θ

2 20 544 0 648 0 142

0 864 0 667 2 0 284
0 104

2 249 53 15
124 57

= = = −

= = =
−
−

= ′ ′
= ′

. . .

. . tan .
.

2

′
 

 

 

Point cm cm cm

cm cm

2 2

o

o

E

a b

N E E Nσ σ σ

θ

θ
θ

2 20 537 0 670 0 114

0 858 0 687 2 0 228
0 133

2 239 44 37
119 52

= = = −

= = =
−
−

= ′ ′
= ′

. . .

. . tan .
.

2

′
 

 

 

Point cm cm cm

cm cm

2 2

o

o

F

a b

N E E Nσ σ σ

θ

θ
θ

2 20 479 0 261 0 081

0 711 0 484 2 0 162
0 218

2 323 23 00
161 42

= = = −

= = =
−

= ′ ′
= ′

. . .

. . tan .
.

2

′
 

 
Error ellipses are shown on Figure 5. 
 
 
SUMMARY
 
 
Several points need to be made about the adjustment example. 
 
1. The variance factor is quite large which may be due to the following; 
 
 (a) there may be undetected blunders in the observations, 
 (b) the apriori estimates of the standard deviations are incorrect, 
 (c) the constraints are tending to distort the adjustment. 
 
2. The solution shown is a "first iteration" based on the approximate coordinates of Figure 3.  It is unlikely 

that a further iteration based on the new coordinates will produce corrections greater than 1 mm to 
these coordinates. 

 
3. If only one point in the network is held fixed, and no constraints are applied, the matrix N  is singular 

and solution of the system of normal equations is impossible.  Adding an appropriate constraint will 
ensure that the combined system of normal and constraint equations is not singular and enable the 
equations to be solved.  Since the matrix N  is formed from B , an appropriate constraint equation 
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cannot be a linear combination or repetition of any residual equations, such as an angle or distance 
constraint.  An appropriate constraint is a bearing. 

 
 This is illustrated by pinning the network diagram to the wall through one traverse point.  

Constraining a distance or angle will not stop the diagram from rotating about the fixed point and 
making the coordinates of the other traverse points indeterminate. 

 
4. In this example, the distance and angle constraints are linear combinations of some residual equations.  

It is possible to remove these equations from matrix B , form N  and solve the system with the 
constraints.  This may lead to different results.  Additional investigation is required in this area. 
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