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COORDINATE TRANSFORMATIONS 
IN SURVEYING AND MAPPING 
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Coordinate transformations are used in surveying and mapping to transform coordinates in one 

"system" to coordinates in another system, and take many forms.  For example 

 

• Map projections are transformations of geographical coordinates, latitude φ  and longitude λ  on 

a sphere or ellipsoid, to rectangular (or Cartesian) coordinates on a plane. 

 

• Polar–Rectangular conversions where coordinates of points in polar coordinates, say bearings 

and distances, are converted to rectangular coordinates. 

 

• Two-Dimensional (2D) transformations where the coordinates of points in one rectangular 

system (x,y) are transformed into coordinates in another rectangular system (X,Y). 

 

• Three-Dimensional (3D) transformations where coordinates of points in one right-handed 

rectangular system (x,y,z) are transformed into another rectangular system (X,Y,Z). 

 

3D transformations also include transformations from geographical coordinates ( ,φ λ ) on a 

reference surface (sphere or ellipsoid), to rectangular coordinates (X,Y,Z) whose origin is at the 

centre of the reference surface, or to a local rectangular system (E,N,U) whose origin is a point on 

the reference surface. 

 

The effect of a transformation on a group of points defining a 2D polygon or 3D object varies from 

simple changes of location and orientation (without any change in shape or size), to uniform scale 

change (no change in shape), and, finally, to changes in shape and size of different degrees of non-

linearity (Mikhail 1976). 
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In general we consider points in space as being connected to the origin O of a 3D right-handed 

rectangular coordinate system X,Y,Z.  Such a system can be visualised as the corner of a room 

where the intersection of two walls and the floor provide three reference lines OX, OY and OZ, 

known as the X-, Y- and Z-axes that are (usually) at right angles to one another.  The X-Z and Y-Z 

planes are the walls and the X-Y plane is the floor. 

 Z

Y

X

The three mutually perpendicular axes X, Y and Z are 

related by the right-hand rule as follows: 

 

If the thumb, the forefinger and the second finger of 

the right hand are placed mutually at right angles then 

the thumb points in the Z-direction, the forefinger 

points in the X-direction and the second finger points 

in the Y-direction. 

 

 

The axes X, Y and Z (in the cyclic order XYZ) are a 

right-handed system (or dextral system) since a 

rotation from X towards Y advances a right-handed 

screw in the direction of Z.  Similarly, a rotation 

from Y towards Z advances a right-handed screw in 

the direction of X and so on.  The diagram on the left 

shows the right-hand screw rule for the positive 

directions of rotations and axes of a right-handed 

rectangular coordinate system.  These rotations are 

considered positive anticlockwise when looking 

along the axis towards the origin; the positive sense 

of rotation being determined by the right-hand-grip 

rule where an imaginary right hand grips the axis with the thumb pointing in the positive direction 

of the axis and the natural curl of the fingers indicating the positive direction of rotation.  In the 

following pages, transformations in two-dimensional (2D) space are discussed: in such cases points 

are considered to have only X,Y coordinates, i.e., they lie in the X-Y plane with a Z-value = 0. 

Z

X

Y

θ

1. TRANSFORMATIONS IN TWO-DIMENSIONAL (2D) SPACE 
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In 2D transformations all points lie in a plane.  In these notes it is assumed that 2D transformations 

are transformations from one rectangular coordinate system (u,v) to another rectangular system 

(x,y).  In addition, unless stated otherwise, a rotation is an angle considered to be positive in an 

anticlockwise direction as determined by the right-hand-grip rule.  This is consistent with 

mathematics, where angles are measured positive anticlockwise from the x-axis and also in 

applications in Photogrammetry and Remote Sensing. 

 

1.1. Transformations involving Rotation only 

u,v coordinates are transformed to x,y coordinates by considering a rotation of the u,v coordinate 

axes through a positive anticlockwise angle θ .  The transformation equations can be expressed in 

the following way 

 
cos sin
sin cos

x u v
y u v

θ θ
θ θ

= +
= − +

 (1.1) 

or in matrix notation 

 
cos sin
sin cos

x u
y v

θ θ
θ θ

     
=     −     

 (1.2) 

 

As an example consider the polygon ABCD whose u,v coordinates are rotated by a positive 

anticlockwise angle .  Figure 1 shows the initial location of the polygon in the u,v system 

and Figure 2 shows its transformed (rotated) location in the x,y system. 

30θ =

 

u

v
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  Figure 1  Polygon ABCD with u,v coordinates in metres 
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  Figure 2  Rotated polygon ABCD with x,y coordinates in metres 

 

 

Comparing Figures 1 and 2 it appears that the size and shape of the polygon ABCD has not changed 

but its orientation with respect to the coordinate axes has.  This can be verified by considering the 

dimensions (bearings and distances) of the polygon ABCD derived from the two coordinate sets. 
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 Polygon dimensions in the u,v system Polygon dimensions in the x,y system 

 

This example demonstrates that a rotation of the coordinate axes causes an apparent rotation, in an 

opposite direction, of any polygon defined within the coordinate system.  The size and shape of the 

polygon does not change. 
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Equation (1.1) and its matrix equivalent (1.2) can be obtained by considering Figure 3. 

 

 

u

v

y

xv

u ·
P

v cos θ

u sin θ

u cos θv sin
 θ

θ

 
 

Figure 3  x,y coordinates of P as functions of u,v coordinates and rotation θ  

 

1.1.1. Rotation matrices 

Equation (1.2) can be expressed as 

 
cos sin
sin cos

x u u
y v

θ θ
θ θ

       
=       −       

R
v

=  (1.3) 

where 
cos sin
sin cos

θ θ
θ θ


= − 


R  is known as a rotation matrix.  Rotation matrices are orthogonal, i.e., 

the sum of squares of the elements of any row or column is equal to unity and an orthogonal matrix 

has the unique property that its inverse is equal to its transpose, i.e., 1 T− =R R .  This useful 

property allows us to write the transformation from x,y coordinates to u,v coordinates as follows. 

 
1 1

x u
y v

x u
y v

− −

   
=   

   
  

=


   
  

R

R R R


 

 T x u
y v

  
=


   
  

R I


 

and rearranging gives 
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  (1.4) 
cos sin
sin cos

Tu x
v y

θ θ
θ θ

−       
= =       

       
R

x
y

x
y

We could write (1.4) as 

  
cos sin
sin cos

u x
v y

θ θ
θ θ

∗−       
= =       

       
R

which in words means: the x,y coordinates are transformed (rotated) to u,v coordinates.  Equation 

(1.3) on the other hand means: the u,v coordinates are transformed (rotated) to x,y coordinates and it 

is interesting to note that R and  are in fact the same rotation matrix except in the former, ∗R θ  is 

positive anticlockwise and in the latter θ  is positive clockwise.  Note that sin( ) sinθ θ− = −  and 

cos( ) cosθ θ− = . 

 

1.1.2. Orthogonal Matrices 

Orthogonal matrices are extremely useful since their inverse is equal to their transpose.  Rotation 

matrices R are orthogonal, hence .  A proof of this can be found in Allan (1997) and is 

repeated here. 

1 T− =R R

Consider the effect of a rotation on the coordinates x of a point P, expressed as 

 =X Rx  

X is the transformed (or rotated) coordinates and R is the rotation matrix.  Multiplying both sides of 

the equation by the inverse of R gives 

 1 1− −=R X R Rx  

but from matrix algebra  and 1− =R R I =Ix x  so 

 1− =R X x  

or 1−=x R X  

The length (actually squared length) of the line from the origin to the original position of point P is 

given by  and the length from the origin to the new (rotated) position is given by .  This 

length does not change due to rotation, i.e., it is invariant under rotation.  Hence 

Tx x TX X

 T T=x x X X  

but =X Rx  
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so ( )TT

T T

=

=

x x Rx Rx

x R Rx
 

For this result to be possible 

 T =R R I  

but 1− =R R I  

Therefore 

 1T −=R R  

Thus the inverse of a rotation matrix is equal to its transpose. 

 

1.1.3. Rotation of Axes versus Rotation of Object 

In these notes it is assumed that a rotation angle is a positive anticlockwise angle as determined by 

the right-hand-grip rule and that "apparent" rotations of objects (polygons) are caused by a rotation 

of the coordinate axes.  This is not the only way that an object can be rotated.   

 

x

y

•

•

θ

φ P

P'

o

d

d

Consider Figure 4 where P with coordinates x,y moves to P' with 

coordinates x',y' by a positive anticlockwise rotation φ .  The 

coordinates of P' are 

 
( ) ( )
( ) (

cos cos cos sin sin

sin sin cos cos sin

x d d

y d d )
θ φ θ φ θ φ

θ φ θ φ θ

′ = + = −

′ = + = + φ
 (1.5) 

 Figure 4 

 

The coordinates of P are cosx d θ=  and siny d θ=  which can be substituted into (1.5) to give 

 
cos sin
cos sin

x x y
y y x

φ φ
φ φ

′ = −
′ = +

 or in matrix form 
cos sin
sin cos

x x x
y y

φ φ
φ φ y

′ −       
= =       ′       

R  (1.6) 

Where R  is a rotation matrix and the rotation angle φ  is a "right-handed" rotation.  Inspection of 

equations (1.3) and (1.6) shows that R  is not the same form as R, in fact it is identical in form to 

. TR
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The rotation matrix R causes an apparent rotation of the object by rotation of the coordinate axes 

whilst the rotation matrix R  rotates the object itself.  Both R and R  are "right-hand" rotation 

matrices (one is the transpose of the other) and there is often confusion amongst users of 

transformation software in defining the type of rotation and the positive direction of rotation.  You 

must be very careful in defining rotation, i.e., you must state what is being rotated, either axes or 

object and what is the positive direction of rotation.  In these notes it is always assumed that the 

coordinate axes are being rotated and the rotations are always positive anticlockwise as defined by 

the right-hand-grip rule. 

 

1.2. Transformations involving Rotation θ  and a Scale change s 

u,v coordinates are transformed to x,y coordinates by considering a rotation of the u,v coordinate 

axes through a positive anticlockwise angle θ  and a scaling of the u,v coordinates by a factor s.  

The transformation equations can be expressed in the following way 

 
( ) ( )
( ) (

cos sin

sin cos )
x s u s

y s u s

v

v

θ θ

θ θ

= +

= − +
 (1.7) 

or in matrix notation 

 
cos sin
sin cos

x u
s

y v
θ θ
θ θ

     
=     −     

 (1.8) 

Often, the coefficients of u and v in (1.7) are written as cosa s θ=  and sinb s θ=  giving 

 
x a b u
y b a v

     
=     −     

 (1.9) 

and the scale factor s and the rotation angle θ  are given by 

 

2 2

1tan

s a b
b
a

θ −

= +

 =  
 

 (1.10) 

As an example consider the polygon ABCD whose u,v coordinates are rotated by a positive 

anticlockwise angle  and scaled by a factor 30θ = 0.6s = .  Figure 1 shows the initial location of 

the polygon in the u,v system and Figure 5 shows its transformed (rotated and scaled) location in 

the x,y system. 
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  Figure 5  Rotated and scaled polygon ABCD with x,y coordinates in metres 

 

 

Comparing Figures 1 and 5 it appears that the shape of the polygon ABCD has not changed but its 

size and orientation with respect to the coordinate axes has.  This can be verified by considering the 

dimensions (bearings and distances) and area of the polygon ABCD derived from the two 

coordinate sets. 
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′

 

 Polygon dimensions in the u,v system Polygon dimensions in the x,y system 

 

Inspection of the two sets of dimensions reveals that bearings have been rotated by an angle 

 and distances scaled by a factor 30θ = 0.6s = .  Note that the shape of the polygon is unchanged 

but the area of the transformed figure has been reduced by a factor of . 2s

 

1.3. Transformations involving Rotation θ , Scale change s and Translations  ,x yt t

u,v coordinates are first transformed to ,x y′ ′  coordinates by considering a rotation of the u,v 

coordinate axes through a positive anticlockwise angle θ  and a scaling of the u,v coordinates by a 

factor s.  The ,x y′

x

′  coordinates are then transformed into x,y coordinates by the addition of 

translations t  and . yt

© 2004, R.E.Deakin Coordinate Transformations 2004 1–9 



Geospatial Science  RMIT 

 

The transformation equations can be expressed in the following way 

 
( ) ( )
( ) ( )

cos sin

sin cos
x

y

x s u s v

y s u s v

θ θ

θ θ

= +

= − + +

t

t

+
 (1.11) 

or in matrix notation 

 
cos sin
sin cos

x

y

tx u
s

ty v
θ θ
θ θ

      
= +       −       

 (1.12) 

or x

y

tx u
s

ty v
    

= +     
     

R  

Similarly to before writing a s cosθ=  and sinb s θ=  gives 

 x

y

tx a b u
ty b a v

      
= +       −       

 (1.13) 

 

This transformation is referred to by several names 

 (i) Four-parameter transformation, the four parameters being , , , ,x ya b t t

 (ii) 2D Linear Conformal transformation, 

 (iii) Similarity transformation and 

 (iv) Helmert's transformation, after the German geodesist F.R. Helmert (1843-1917). 
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The transformation equations may be derived by considering Figure 6.  The ,x y′ ′  coordinates are 

obtained by rotating and scaling the u,v coordinates and then the x,y coordinates obtained by adding 

the translations  and t .  Note that  and  may be negative. xt y xt yt

 

cos sin
sin cos

x

y

x u
s

y v

tx x
ty y

θ θ
θ θ

′     
=     ′ −     

′     
= +     ′     

 

 

u

vy

x

v

u
· P

y'

x'

v sin θ

u cos θ

v 
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s θ
u sin θ

θ
t

t

y

x  
 

Figure 6.  Schematic diagram of rotated and translated axes 
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As an example of a 2D Linear Conformal transformation, consider the polygon ABCD whose u,v 

coordinates are rotated by a positive anticlockwise angle , scaled by a factor  and 

translated by  and   Figure 1 shows the initial location of the polygon 

in the u,v system and Figure 7 shows its transformed (rotated, scaled and translated) location in the 

x,y system. 

30θ = 0.6s =

50.000mxt = 150.000myt =
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x y
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Figure 7  Rotated, scaled and translated polygon ABCD with x,y coordinates in metres 

 

Comparing Figures 1 and 7 it appears that the shape of the polygon ABCD has not changed but its 

area and orientation with respect to the coordinate axes has.  This can be verified by considering the 

dimensions (bearings and distances) and area of the polygon ABCD derived from the two 

coordinate sets. 
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 Polygon dimensions in the u,v system Polygon dimensions in the x,y system 

 

Inspection of the two sets of dimensions reveals that bearings and distances of the polygon in the 

u,v system have been has been rotated by an angle  and scaled by a factor .  Note 

that the shape of the polygon is unchanged but the area of the transformed figure has been reduced 

by a factor of .  Comparison with the previous transformation demonstrates that translation has 

no effect on the area and shape of a polygon. 

30θ = 0.6s =

2s
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1.4. Affine Transformations 

u,v coordinates are transformed to x,y coordinates by the following equations containing six 

parameters; four coefficients a, b, d and e and two translations c and f.  Affine transformations are 

often called 6-parameter transformations.  The transformation equations are 

 
x a u bv c
y d u e v f

= + +
= + +

 (1.14) 

or in matrix notation 

 
x a b u c
y d e v f

       
=       

       
+  (1.15) 

The parameters a, b, d and e are scalar quantities that can, if desired, be linked to scale factors in 

certain directions, rotation of axes and a "skew angle" (see the next section of these notes).  Note 

that the parameters a and b are different the a and b of the 4-parameter transformation of the 

previous section.  The parameters c and f are translations and are identical to  and  of the four-

parameter transformation. 

xt yt

Affine transformations deform the shape of polygons, thus altering areas, but parallel lines are 

preserved in the transformation.  As an example of an Affine transformation, consider the polygon 

ABCD shown in Figure 1.  The u,v coordinates are transformed to x,y coordinates using equation 

(1.15) with a = 1.20, b = -0.50, c = 0, d =  0.25, e = 0.90 and f = 0 

  
1.20 0.50 0
0.25 0.90 0

x u
y v

−       
= +       

       

 

x

y

A

B
C

D

 

 

 

Point
140.000 230.000
173.398 410.885
302.320 387.535
259.282 154.434

x y
A
B
C
D

 

 

 
Figure 8  Affine transformation of polygon ABCD with x,y coordinates in metres 

© 2004, R.E.Deakin Coordinate Transformations 2004 1–13 



Geospatial Science  RMIT 

 

Comparing Figures 1 and 8 it appears that the shape, area and orientation of the polygon ABCD has 

changed.  This can be verified by considering the dimensions (bearings and distances) and area of 

the polygon ABCD derived from the two coordinate sets. 
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 Polygon dimensions in the u,v system Polygon dimensions in the x,y system 

 

Some properties of Affine transformations can be deduced from comparisons of dimensions. 

 

1. Calculating scale factors in ,  plane
in ,  plane

dist x ys
dist u v

=

.919708 1.222DAs

 for the sides of ABCD gives , 

,  and 

0.919710ABs =

1.310200BCs = 0CDs = 854=  from which we may conclude that 

scale factor is not constant in an Affine transformation. 

 

2. Calculating angular differences (u,v-angle – x,y-angle) at each corner of ABCD gives 

A: ,  B: ,  C: 8 06 24′+ ′′ ′0 11 43′ ′− 0 11 43′ ′′+  and D: 8 06 24′ ′′−  from which we may 

conclude that the transformation does not preserve angular relationships.  This is to be 

expected, since the scale is not constant.  Also, it should be noted that parallel lines in the 

original polygon are still parallel in the transformed polygon.  This property can be deduced 

from (1.14) considering coordinate differences j kx x x∆ = − , j ky y y∆ = − ,  and 

 giving 

ju u u∆ = − k

j kv v v∆ = −

 
x a b u
y d e v

∆ ∆     
=     ∆ ∆     

 (1.16) 

Hence parallel lines, AB and CD in our example, which have u∆  and  coordinate 

differences in proportion to the lengths of the lines, will be transformed to another set of 

coordinate differences 

v∆

x∆  and  in exactly the same proportion. y∆

Thus, parallel lines are preserved in the transformation.  This property also holds for the 

previous transformations of sections 1.1, 1.2 and 1.3. 
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In this example, the translations c and f are zero.  As was demonstrated in the previous 

transformation (section 1.3), size and shape are not changed by translation.  Identical results to 

those above will be obtained for the same values of a, b, d, e and any values of the translations c 

and f. 

 

1.5. Geometric Interpretation of the Parameters of a 2D Affine Transformation 

The Affine transformation given by equations (1.14) or (1.15) is 

 
x a u bv c
y d u e v f

= + +
= + +

 or in matrix notation 
x a b u c
y d e v f

       
= +       

       
 

It is usual (as was stated at the beginning of these notes) to consider the x,y and the u,v coordinate 

systems as both being rectangular or orthogonal systems, i.e., the x and y axes perpendicular to each 

other and the u and v axes are perpendicular to each other.  But this is not always a convenient way 

to account for apparent distortions in the shape of the same polygon (or object) in two different 

coordinate systems.  The following derivation of equations for scale factors  and  in the 

directions of the u- and v-axes and rotation and "skew" angles 

us vs

θ  and α  is due to Methley (1986) 

and is similar to a derivation by Wolf & Dewitt (2000).  It allows a geometric interpretation of the 

parameters a, b, d and e of the Affine transformation. 

 

Consider the case where it is assumed that the u,v system is a non-orthogonal system, i.e., the u and 

v axes are not perpendicular, and the x,y system is orthogonal.  In addition, it is assumed that the 

scale factor s is not constant in every direction but has values  and  in the directions of the u- 

and v-axes, i.e., the scale factor  is constant along lines parallel to the u-axis and  is constant 

along lines parallel to the v-axis.  The transformation from u,v to x,y coordinates can be considered 

as three separate transformations. 

us vs

us vs
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1.5.1. 1st Transform:  (scaling and skew) ,u v u v′ ′→ ,

line of constant v

line of constant u

vv'

u (u')v cos α

v sin α

v
u

α

•
P

 
 

Figure 9 

 

In Figure 9 the non-orthogonal u,v coordinates are transformed into an orthogonal u',v' system 

scaled by  and .  us vs α  is the skew angle.  Note that the u,v coordinates are distances measured 

along lines of constant u or v, not distances perpendicular to the coordinate axes. 

 
( ) ( )
( )

sin

cos
u v

v

u s u s v

v s v

α

α

′ = +

′ =
 (1.17) 

or in matrix notation 
sin

0 cos
u v

v

s su u
sv v

α
α

′     
=    ′    



,

 (1.18) 

1.5.2. 2nd Transform:  (rotation) ,u v u v′ ′ ′′ ′′→

u'

v'

v"

u"v'

u' ·
P

u' sin θv' cos θ

u' cos θv' sin
 θ

θ

 
 

Figure 10 
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The u',v' system is rotated (positive anticlockwise) by an angle θ  to the u",v" system. 

 
cos sin
sin cos

u u
v v

θ θ
θ θ

′′ ′    
=    −′′ ′    



,

 (1.19) 

1.5.3. 3rd Transform  (translation) ,u v x y′′ ′′ →

 
v"

u"

·
P

x

y

Ty

Tx

 
 

Figure 11 

 

The u",v" system is parallel to the x,y system and offset by the translations T  and T  x y

 x

y

Tx u
Ty v

′′     
= +     ′′     

 (1.20) 

Combining equations (1.18), (1.19) and (1.20) and replacing T  and T  with c and f respectively 

gives 

x y

 

cos sin sin
sin cos 0 cos

cos cos sin sin cos
sin sin sin cos cos

u v

v

u v v

u v v

s sx u
sy v

s s s u c
s s s v f

θ θ α
θ θ α

θ θ α θ α
θ θ α θ α

        
= +        −        

+ 

c
f

   
= +     − − +     

 (1.21) 

Equating the elements of the coefficient matrices of equations (1.15) and (1.21) gives 

 cosua s θ=   (1.22) 

 
( )

( )
cos sin sin cos

sin
v

v

b s

s

θ α θ

θ α

= +

= +

α

 (1.23) 

© 2004, R.E.Deakin Coordinate Transformations 2004 1–17 



Geospatial Science  RMIT 

 

 sinud s θ= −   (1.24) 

 
( )

( )
cos cos sin sin

cos
v

v

e s

s

θ α θ

θ α

= −

= +

α

 (1.25) 

From equations (1.22) to (1.25) , ,  and u vs s θ α  can be obtained from 

Scales: 2
us a d 2= +  (1.26) 

 2
vs b e2= +  (1.27) 

Rotation angle θ : tan d
a

θ −
=  (1.28) 

Skew angle α : ( )tan b
e

θ α+ =  (1.29) 

Alternatively, after computing  and  from equations (1.26) and (1.27) us vs

Rotation angle θ : cos
u

a
s

θ =  (1.30) 

Skew angle α : ( )cos
v

e
s

θ α+ =  (1.31) 

1.5.4. Another Geometric interpretation of the Affine Transformation 

If we consider the original u,v system to be orthogonal, i.e., the skew angle 0α =  then equation 

(1.21) becomes, since sin 0α = , cos 1α =  

 
cos sin
sin cos

u v

u v

s sx u c
s sy v

θ θ
θ θ

      
=       −       f

+  (1.32) 

Equating the elements of the coefficient matrices of equations (1.15) and (1.32) gives 

 

cos
sin
sin
cos

u

v

u

v

a s
b s
d s
e s

θ
θ
θ
θ

=
=
= −
=

  (1.33) 
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From equations (1.33) , , and u vs s θ  can be obtained from 

Scales: 2
us a d 2= +  (1.34) 

 2
vs b e2= +  (1.35) 

Rotation angle θ : tan b
a

θ =  (1.36) 

 

1.6. 2D Polynomial Transformation 

A polynomial function of a single variable  is defined as ( )P x

  2
0 1 2

0

( )
n

n k
n k

k

P x c c x c x c x c x
=

= + + + + = ∑

and a polynomial function of two variables  is defined by an equation of the form ( , )P x y

  ,
0 0

( , )
p q

m n
m n

m n

P x y c x y
= =

= ∑∑

Thus a polynomial transformation of u,v coordinates to x,y coordinates can be expressed as 

  

( ) ,
0 0

0 0 0 1 0 2 0 3
00 01 02 03

1 0 1 1 1 2 1 3
10 11 12 13

2 0 2 1 2 2 2 3
20 21 22 23

,
p q

m n
m n

m n

x P u v c u v

c u v c u v c u v c u v

c u v c u v c u v c u v

c u v c u v c u v c u v

= =

= =

= + + + +

+ + + + +

+ + + + +
+

∑∑

  

( ) ,
0 0

0 0 0 1 0 2 0 3
00 01 02 03

1 0 1 1 1 2 1 3
10 11 12 13

2 0 2 1 2 2 2 3
20 21 22 23

,
p q

m n
m n

m n

y P u v d u v

d u v d u v d u v d u v

d u v d u v d u v d u v

d u v d u v d u v d u v

= =

= =

= + + +

+ + + + +

+ + + +
+

∑∑
+

+
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Noting that u v , simplifying the coefficients and arranging in ascending orders (i.e., 1st 

order terms contain u or v, 2nd order terms contain , etc.) a polynomial 

transformation can be expressed as 

0 0 1= =
2 2or  or u v uv

  (1.37) 
2 2 2 2 3 3

0 1 2 3 4 5 6 7 8 9
2 2 2 2 3 3

0 1 2 3 4 5 6 7 8 9

x c c u c v c uv c u c v c u v c uv c u c v

y d d u d v d uv d u d v d u v d uv d u d v

= + + + + + + + + + +

= + + + + + + + + + +

 

In general, polynomial transformations deform the size and shape of polygons. 

 

Ignoring second- and higher-order terms in (1.37) gives a "first-order" polynomial transformation, 

which is in fact, the previously described Affine transformation (or 6-parameter transformation) of 

section 1.4. 

 0 1 2

0 1 2

x c c u c v
y d d u d v

= + +
= + +

 (1.38) 

where c  and  are translations. 0 0d

 

If  and  then the first-order polynomial transformation becomes a 2D Linear 

Conformal transformation (or 4-parameter transformation) described in section 1.3. 

1c d= 2 1d2c = −

 0 1 2

0 2 1

x c c u c v
y d c u c v

= + −
= + +

 (1.39) 

 

As an example of a 2D Polynomial transformation, consider the polygon ABCD shown in Figure 1.  

The u,v coordinates are transformed to x,y coordinates using a 2nd order 2D Polynomial 

transformation 

 
2 2

0 1 2 3 4 5
2

0 1 2 3 4 5
2

x c c u c v c uv c u c v

y d d u d v d uv d u d v

= + + + + +

= + + + + +
 (1.40) 
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with the following coefficients 

0 64.250 50.500
1 1.2000 0.2500
2 0.2000 1.2000
3 0.0013 0.0002
4 0.0008 0.0011
5 0.0001 0.0002

k kk c d
−

+ −
+ +
− −
− +
+ −

 

 

 

 

 

 

  

Point
200.000 218.000
264.768 398.597
291.979 366.802
235.119 108.213

x y
A
B
C
D

 

 

 
x

y

A

B
C

D

Figure 12  Polynomial transformation of polygon ABCD with x,y coordinates in metres 

 

It is important to note that polynomial transformations change straight lines in the u,v system to 

curved lines in the x,y system.  For example in the polygon ABCD, consider the 200 metre straight 

line AB in the u,v system broken up into 1 metre segments, ie. AB is now defined by 201 u,v 

coordinate pairs and there is a linear relationship between them.  Under a polynomial 

transformation each u,v coordinate pair is transformed to an x,y pair with a non-linear relationship 

between each pair.  Thus the 200 line segments defining a straight line AB in the u,v system will be 

transformed into 200 chords of a curved line joining AB in the x,y system.  In the limit, the chords 

become infinitesimal line elements ds of a complex curve between AB. 
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1.7. 2D Linear Conformal Transformations 

(The following section is taken from Deakin, 1998 with some modifications to the notation.) 

C.F. Gauss showed that the necessary and sufficient condition for a conformal transformation from 

the ellipsoid to the map plane is given by the complex expression (Lauf 1983) 

 ( )x i y f iχ ω+ = +  (1.41) 

where the function ( )f iχ ω+  is analytic, containing isometric parameters χ  (isometric latitude) 

and ω  (longitude).  i is the imaginary number ( 2 1i = − ). 
[It should be noted here that isometric means: of equal measure, and on the surface of the ellipsoid 

(or sphere) latitude and longitude are not equal measures of length.  This is obvious if we consider 

a point near the pole where similar distances along a meridian and a parallel of latitude will 

correspond to vastly different angular values of latitude and longitude.  Hence in conformal map 

projections, isometric latitude is determined to ensure that angular changes correspond to linear 

changes.] 

A necessary condition for an analytic function is that it must satisfy the Cauchy-Riemann equations 

 andx y x y
χ ω ω

∂ ∂ ∂ ∂
=

∂ ∂ ∂ ∂χ
= −  (1.42) 

Using this theorem, a conformal transformation from one plane rectangular coordinate system u,v 

(isometric parameters) to another plane rectangular system x,y (also isometric parameters) is given 

by the complex expression 

 ( )x i y f u i v+ = +  (1.43) 

A function ( )f u i v+  which satisfies the Cauchy-Riemann equations, is a complex polynomial, 

hence (1.43) can be given as 

 ( ) (
0

n
k

k k
k

)x i y a i b u i v
=

+ = + +∑  (1.44) 

Equation (1.44) can be expanded to the first power (k = 1) giving 

 
0 1

0 0 1 1
2

0 0 1 1 1 1

( )( ) ( )( )x iy a ib u iv a ib u iv

a ib a u a iv ib u i b v

+ = + + + + +

= + + + + +
 

Equating real and imaginary parts (remembering that i2 1= − ) gives 
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 0 1 1

0 1 1

x a a u b
y b b u a

v
v

= + −
= + +

 (1.45) 

or in matrix notation with translations  and b  between the coordinate axes 0a 0

 01 1

01 1

aa bx u
bb ay v

−      
= +      

      
 (1.46) 

These equations are of similar form to (1.13) of section 1.3 "Transformations involving Rotation, 

Scale and Translations" and properly describe a 2D Linear Conformal transformation.  Note that 

the elements of the leading diagonal of the coefficient matrix (a rotation matrix multiplied by a 

scale factor) are identical and the off-diagonal elements the same magnitude but opposite sign. 
Equations (1.45) are essentially the same equations as in Jordan/Eggert/Kneissal (1963, pp. 70-73) 

in the section headed "Das Helmertsche Verfahren (Helmertsche Transformation)" (Helmert's 

Transformation) although there is no reference to the original source.  It is probable that F.R. 

Helmert developed this conformal transformation in his masterpiece on geodesy, Die 

mathematischen und physikalischen Theorem der höheren Geodäsie, (The mathematics and 

physical theorems of higher geodesy) on which he worked from 1877 and published in two parts:  

vol. 1, Die mathematischen Theorem (1880) and vol. 2, Die physikalischen Theorem (1884) [DSB 

1972].  This probably accounts for the common usage of the term Helmert transformation when 

describing a 2D Linear Conformal transformation. 

 

The partial derivatives of (1.45) are 

 1 1 1, , andx x y ya b b
u v u v

∂ ∂ ∂ ∂
= = − =

∂ ∂ ∂ ∂ 1a=  

which satisfy the Cauchy-Riemann equations 

 andx y x
u v v

∂ ∂ ∂ ∂
= =

∂ ∂ ∂ ∂
y
u

−  

so verifying that the transformation is conformal. 
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1.8. 2D Polynomial Conformal Transformation 

Using Gauss' theorem of conformal mapping and a suitable complex polynomial, expansions 

beyond the first power give rise to conformal polynomial transformations.  As in the previous 

section, let the conformal transformation be given by the complex expression 

 ( ) (
0

n
k

k k
k

)x i y A i B u i v
=

+ = + +∑  (1.47) 

And expanding to the third power (k = 3) gives 

 

( ) (
( ) (
( ) (
( ) (

0
0 0

1
1 1

2
2 2

3
3 3

)
)
)
)

x iy A iB u iv

A iB u iv

A iB u iv

A iB u iv

+ = + +

+ + +

+ + +

+ + +

 

With ,  and 2 1i = − ( )2 2 22u iv u iuv v+ = + − ( )3 3 2 23 3u iv u iu v uv iu3+ = + − −  

  

0 0

1 1 1 1
2 2 2 2

2 2 2 2 2 2
3 2 2 3 3 2 2

3 3 3 3 3 3 3

2 2

3 3 3 3

x iy A iB
Au iA v iB u B v

A u iA uv A v iB u B uv iB v

A u iA u v A uv iA v iB u B u v iB uv B v

+ = +
+ + + −

+ + − + − −

+ + − − + − − + 3
3

)

)

Equating real and imaginary parts gives the 3rd-order 2D Conformal Polynomial transformation 

 
2 2 3 2 2 3

0 1 1 2 2 3 3
2 2 3 2 2 3

0 1 1 2 2 3 3

( ) (2 ) ( 3 ) (3

( ) (2 ) ( 3 ) (3

x A Au B v A u v B uv A u uv B u v v

y B B u A v B u v A uv B u uv A u v v

= + − + − − + − − −

= + + + − + + − + −
 (1.48) 

The partial derivatives of (1.48) are 

 

2 2
1 2 2 3 3

2 2
1 2 2 3 3

2 2
1 2 2 3 3

2 2
1 2 2 3 3

(2 ) (2 ) (3 3 ) (6 )

(2 ) (2 ) (6 ) (3 3 )

(2 ) (2 ) (3 3 ) (6 )

(2 ) (2 ) (6 ) (3 3 )

x A A u B v A u v B uv
u
x B A v B u A uv B u v
v
y B B u A v B u v A uv
u
y A B v A u B uv A u v
v

∂
= + − + − −

∂
∂

= − − − − − −
∂
∂

= + + + − +
∂
∂

= − + − + −
∂
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which satisfy the Cauchy-Riemann equations 

 andx y x
u v v

∂ ∂ ∂ ∂
= =

∂ ∂ ∂ ∂
y
u

−

)

)

 

so verifying that the transformation is conformal. 

 

The 2nd-order 2D Polynomial Conformal transformation can be obtained from (1.48) as 

 
2 2

0 1 1 2 2
2 2

0 1 1 2 2

( ) (2

( ) (2

x A Au B v A u v B uv

y B B u A v B u v A uv

= + − + − −

= + + + − +
 (1.49) 

These equations also satisfy the Cauchy-Riemann equations.  2D Polynomial Conformal 

transformations preserve shapes of infinitesimally small regions but not finite regions.   

 

As an example of a 2D Polynomial Conformal transformation consider the polygon ABCD shown in 

Figure 1.  The u,v coordinates are transformed to x,y coordinates using a 2nd-order 2D Polynomial 

Conformal transformation (see equations (1.49)) with the following coefficients 

 
0 150.000 50.000
1 0.4500 0.0650
2 0.0010 0.0001

k kk A B

+ −
+ −

 

 

x

y

A

B C

D

 

 

 

 
163.750 211.250
145.334 410.634
267.480 418.950
237.843 154.330

x y
A
B
C
D

 

Point

 

 
Figure 13 Polynomial Conformal transformation of polygon ABCD with x,y coordinates in metres 
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Comparing Figures 1 and 13, it appears that the shape, area and orientation of the polygon ABCD 

has changed.  This can be verified by considering the dimensions (bearings and distances) and area 

of the polygon ABCD derived from the two coordinate sets. 

 

2

Line Bearing Distance
30 00 200.000

120 00 100.000
210 00 257.735
330 00 115.470

Area=22,886.75m

AB
BC
CD
DA

′
′
′
′

 

2

Line Bearing Distance
354 43 22 200.233
86 06 19 122.429

186 23 25 266.274
307 31 56 93.433

Area=22,900.31m

AB
BC
CD
DA

′ ′′
′ ′′
′ ′′
′ ′′

 

 Polygon dimensions in the u,v system Polygon dimensions in the x,y system 

 

Some properties of Polynomial Conformal transformations can be deduced from comparisons of 

dimensions. 

 

1. Calculating scale factors in ,  plane
in ,  plane

dist x ys
dist u v

=

033131 0.809DAs

 for the sides of ABCD gives , 

,  and 

1.001165ABs =

1.224290BCs = 1.CDs = 154=  from which we may conclude that scale 

factor is not constant for lines of finite length in a Polynomial Conformal transformation. 

 

2. Calculating angular differences (u,v-angle – x,y-angle) at each corner of ABCD gives 

A: ,  B: ,  C: 12 48 34′− ′′ ′′1 22 57′+ 10 17 06′ ′′+  and D: 1 08 31′ ′′+  from which we may 

conclude that the transformation does not preserve angular relationships between lines of 

finite length.  This is to be expected, since the scale is not constant. 

 

Conformal transformations have the useful property that the scale factor is constant in any direction 

around a point, thus angles are preserved and shape is retained.  However, in general this property 

only applies to infinitesimally small regions around a point.  As can be seen by inspection of the 

Conformal Polynomial transformation above, angles have been deformed and scale is not constant 

for lines of finite length.  However, as the lengths of lines become differentially small then scale 

will be preserved in any direction around a point. 
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1.9. 2D Equal Area Transformations 

For various reasons, it may be desirable to effect a transformation that preserves area relationships.  

That is, regions in the u,v plane having certain area ratios are transformed into regions in the x,y 

plane having the same area ratios.  Such transformations are known as equal-area transformations 

and they may be derived by considering some elementary theory of map projections (Deakin 1994). 

 

For a transformation from the sphere ,φ λ  to the projection plane X,Y where 1( , )X f φ λ=  and 

2( , )Y f φ λ= , Lauf (1983), gives the Gaussian Fundamental Quantities E, F and G for the projection 

plane as 

 

2 2

2 2

X YE

X X YF

X YG

φ φ
Y

φ λ φ

λ λ

   ∂ ∂
= +   ∂ ∂   

λ
∂ ∂ ∂ ∂

= +
∂ ∂ ∂ ∂

∂ ∂   = +   ∂ ∂   

 

The elemental area dA on the projection plane is given by dA J d dφ λ=  where  

 2 X Y Y XJ EG F
φ λ φ λ

∂ ∂ ∂ ∂
= − = −

∂ ∂ ∂ ∂
 

Using similar differential relationships; if a transformation is made in the plane between the u,v 

system and the x,y system such that 3( , )x f u v=  and 4( , )y f u v=  where an element of area in the 

u,v plane is da ; then the corresponding element of area in the x,y plane is  

where 

du dv= dA J du dv=

x y y
u v

∂ ∂ ∂ ∂
= −

∂ ∂ ∂
xJ

u v∂
.  Now for an equal-area transformation da must equal dA, which leads to 

the equal-area condition in the plane 

 1x y y x
u v u v

∂ ∂ ∂ ∂
− =

∂ ∂ ∂ ∂
 (1.50) 
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There are many equal-area transformations in the plane, which satisfy equation (1.50).  One such 

set of transformations may be derived as follows. 

Let ( )x f u= , i.e., x is a function of u only, then ( )x f u
u

∂ ′=
∂

 and 0x
v

∂
=

∂
. 

Equation (27) becomes ( ) 1yf u
v

∂′ =
∂

 and solving y by integration gives 

1
( ) ( )

vy dv
f u f

= =
′∫

( )y g v=

u′
.  Similar reasoning can be used to derive an expression for x when 

.  These equal-area transformations in the plane can be summarised as 

 ( ) ,
( )
vx f u y

f u
= =

′
 (1.51) 

 ,
( )
u ( )x y g v

g v
= =

′
 (1.52) 

Equal-area transformations can be effected by selecting an appropriate function ( )f u , 

differentiating the function to obtain ( )f u′  and then using equations (1.51).  Alternatively, 

an appropriate function  can be selected and equations (1.52) used. ( )g v

 

As an example, consider the following polynomial transformation where the function 

( )f u  is selected as a 4h-order polynomial and equations (1.51) used. 

 

2 3
0 1 2 3 4

2 3
1 2 3 4

( )

( ) 2 3 4

4x f u A Au A u A u A u
v vy

f u A A u A u A u

= = + + + +

= =
′ + + +

 

These equations satisfy the equal-area condition (1.50), which is a differential relationship 

developed by equating area elements da and dA, but do not transform finite polygons of 

area A in the u,v system to polygons of the same area in the x,y system. 

 

To achieve an equal-area transformation of a polygon we need to consider three elementary 

transformations, which preserve area (1) rotation, (2) translation and (3) compression-expansion 

(Dyer and Snyder 1989).  The first two have been shown to preserve area (see the preceding 

sections).  The third is intuitive since we may expand the coordinates in one direction and compress 

them in another by the same ratio without affecting areas of polygons. 
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The equations for an equal-area transformation can be developed by considering (i) u,v coordinates 

transformed to ,x y′ ′  coordinates by a rotation about the origin 

 
cos sin
sin cos

x u v
y u v

θ θ
θ θ

′ = −
′ = +

 (1.53) 

And then (ii) ,x y′ ′  coordinates transformed to x,y coordinates by compression-expansion and 

translation 

 
0 1

0
1

x A A x
yy B
A

′= +
′

= +
 (1.54) 

Equations (1.53) and (1.54), which both satisfy the equal-area condition (1.50), may be combined in 

the following way 

 
( )
( )

2
0 1

2
0

1

1

1 1

x A A a u v a

y B u a a v
A

= + − −

= + − +
 (1.55) 

As an example of an Equal-Area transformation, consider the polygon ABCD shown in Figure 1.  

The u,v coordinates are transformed to x,y coordinates using equations (1.55) with the following 

coefficients: a A  and 0 00.8, 221.000, 81.818B= = = − 1 1.10A =  

 

 

x

y

A

B C

D

 

 

 

 
144.000 154.545
117.685 335.058
226.894 345.932
260.807 113.310

x y
A
B
C
D

 

Point

 

 
Figure 14 Equal-Area transformation of polygon ABCD with x,y coordinates in metres 
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Comparing Figures 1 and 14, it appears that the shape, area and orientation of the polygon ABCD 

has changed but its area remains the same.  This can be verified by considering the dimensions 

(bearings and distances) and area of the polygon ABCD derived from the two coordinate sets. 

 

2

Line Bearing Distance
30 00 200.000

120 00 100.000
210 00 257.735
330 00 115.470

Area=22,886.75m

AB
BC
CD
DA

′
′
′
′

 

2

Line Bearing Distance
351 42 21 182.421
84 18 50 109.749

171 42 20 235.081
289 26 38 123.872

Area=22,886.62 m

AB
BC
CD
DA

′ ′′
′ ′′
′ ′′
′ ′′

 

 Polygon dimensions in the u,v system Polygon dimensions in the x,y system 

 

Some properties of this Equal-Area transformation can be deduced from comparisons of 

dimensions. 

 

1. The area remains unchanged by the transformation. 

 

2. Calculating scale factors in ,  plane
in ,  plane

dist x ys
dist u v

=

.912104 1.072DAs

 for the sides of ABCD gives , 

,  and 

0.912105ABs =

1.097490BCs = 0CDs = 763=  from which we may conclude that scale 

factor is not constant.  Note though, that parallel lines have the same scale factor. 

 

3. Calculating angular differences (u,v-angle – x,y-angle) at each corner of ABCD gives 

A: ,  B: ,  C: 2 15 43′+ ′′ ′2 36 29′ ′+ 2 36 30′ ′′−  and D: 2 15 42′ ′′−  from which we may 

conclude that the transformation does not preserve angular relationships.  This is to be 

expected, since the scale is not constant.  Note though, that parallel lines in the u,v system are 

still parallel in the x,y system, as in the Affine transformation. 

 

 

 

 

© 2004, R.E.Deakin Coordinate Transformations 2004 1–30 



Geospatial Science  RMIT 

 

REFERENCES 
 

Allan, Arthur L., 1997,  Maths for Map Makers, Whittles Publishing, UK. 

 

Deakin, R.E., 1994,  'Minimum error map projections suitable for GIS in Australia', Proc. FIG XX 

International Conference (Commission 5), Melbourne, Victoria, 5-12 March 1994, pp.SGS553.4/1-

4/13. 

 

——–––, 1998,  '3D coordinate transformations', Surveying and Land Information Systems, Vol. 58, No. 4, 

Dec. 1998, pp.223-34. 

 

DSB, 1972,  Dictionary of Scientific Biography, Vol. VI, C.C. Coulston, Editor in Chief, Charles Scribner's 

Sons, New York. 

 

Dyer, John A. and John P. Snyder, 1989,  'Minimum-error equal-area map projections', The American 

Cartographer, Vol. 16, No. 1, 1989, pp.39-43. 

 

Helmert, F.R., 1880, Die mathematischen und physikalischen Theorem der höheren Geodäsie, Vol. 1, Die 

mathematischen Theorem, Leipzig. 

 

Helmert, F.R., 1884, Die mathematischen und physikalischen Theorem der höheren Geodäsie, Vol. 2, Die 

physikalischen Theorem, Leipzig. 

 

Jordan/Eggert/Kneissl, 1963,  Handbuch der Vermessungskunde (Band II), Metzlersche 

Verlagsbuchhandlung, Stuttgart. 

 

Lauf, G.B., 1983,  Geodesy and Map Projections, TAFE Publications, Collingwood, Australia. 

 

Methley, B..H., 1986.  Computational Models in Surveying and Photogrammetry, Blackie, London 

 

Mikhail, E.M., 1976.  Observations And Least Squares.  IEPA Dun-Donnelley, New York. 

 

Wolf, P.R. and Dewitt, B.A., 2000.  Elements of Photogrammetry with applications in GIS, 3rd edn, McGaw 

Hill, New York. 

 

 

© 2004, R.E.Deakin Coordinate Transformations 2004 1–31 


	TRANSFORMATIONS IN TWO-DIMENSIONAL (2D) SPACE
	Transformations involving Rotation only
	Rotation matrices
	Orthogonal Matrices
	Rotation of Axes versus Rotation of Object

	Transformations involving Rotation � and a Scale change s
	Transformations involving Rotation �, Scale change s and Translations
	Affine Transformations
	Geometric Interpretation of the Parameters of a 2D Affine Transformation
	1st Transform:�(scaling and skew)
	2nd Transform:�(rotation)
	3rd Transform�(translation)
	Another Geometric interpretation of the Affine Transformation

	2D Polynomial Transformation
	2D Linear Conformal Transformations
	2D Polynomial Conformal Transformation
	2D Equal Area Transformations


