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2. THE GENERAL LEAST SQUARES ADJUSTMENT TECHNIQUE 

A common treatment of the least squares technique of estimation starts with simple linear 

mathematical models having observations (or measurements) as explicit functions of parameters 

with non-linear models developed as extensions.  This adjustment technique is generally described 

as adjustment of indirect observations (also called parametric least squares).  Cases where the 

mathematical models contain only measurements are usually treated separately and this technique is 

often described as adjustment of observations only.  Both techniques are of course particular cases 

of a general adjustment model, the solution of which is set out below.  The general adjustment 

technique also assumes that the parameters, if any, can be treated as "observables" ie, they have an 

a priori covariance matrix.  This concept allows the general technique to be adapted to sequential 

processing of data where parameters are updated by the addition of new observations.   

 

In general, least squares solutions require iteration, since a non-linear model is assumed.  The 

iterative process is explained below.  In addition, a proper treatment of covariance propagation is 

presented and cofactor matrices given for all the computed and derived quantities in the adjustment 

process.  Finally, the particular cases of the general least squares technique are described. 

 

2.1. The General Least Squares Adjustment Model 

Consider the following set of non-linear equations representing the mathematical model in an 

adjustment 

  (2.1) F ,l x 0d i =

where l is a vector of n observations and x is a vector of u parameters; l  and x  referring to 

estimates derived from the least squares process such that 

 l l v= +  (2.2) 

 x x x= + δ  (2.3) 

where v is a vector of residuals or small corrections and δx  is a vector of small corrections. 
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As is usual, the independent observations l have an a priori diagonal cofactor matrix Q  containing 

estimates of the variances of the observations, and in this general adjustment, the parameters x are 

treated as "observables" with a full a priori cofactor matrix Q .  The diagonal elements of Q  

contain estimates of variances of the parameters and the off-diagonal elements contain estimates of 

the covariances between parameters.  Cofactor matrices Q  and Q  are related to the covariance 

matrices Σ  and Σ  by the variance factor 

ll

xx xx

ll xx

ll xx σ 0
2  

 Σ ll ll= σ 0
2 Q  (2.4) 

 Σ xx xx= σ 0
2 Q  (2.5) 

Also, weight matrices W are useful and are defined, in general, as the inverse of the cofactor 

matrices 

 W Q= −1 (2.6) 

and covariance, cofactor and weight matrices are all symmetric, hence Q Q WT T W= =and  

where the superscript T denotes the transpose of the matrix. 

 

Note also, that in this development where Q and W are written without subscripts they refer to the 

observations, i.e.,  Q Q  Wll ll= =and W

Linearizing (2.1) using Taylor's theorem and ignoring 2nd and higher order terms, gives 

 F F F F
l x l x

, ,
, ,

l x l x
l

l l
x

x xd i a f d i b g= + 0∂
∂

− +
∂
∂

− =  (2.7) 

and with v l  and l= − δx x= − x from (2.2) and (2.3), we may write the linearized model in 

symbolic form as 

 Av B x f+ =δ  (2.8) 

Equation (2.8) represents a system of m equations that will be used to estimate the u parameters 

from n observations.  It is assumed that this is a redundant system where 

  (2.9) n m≥ ≥ u
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The redundancy or degrees of freedom is 

 r m u= −  (2.10) 

In equation (2.8) the coefficient matrices A and B are design matrices containing partial derivatives 

of the function evaluated using the observations l and the "observed" parameters x. 

 A
lm n

l x

F
,

,

=
∂
∂

 (2.11) 

 B
xm u

l x

F
,

,

=
∂
∂

 (2.12) 

The vector f contains m numeric terms calculated from the functional model using l and x. 

 fm F, ,1 l x= − a fm r  (2.13) 

 

2.2. The Least Squares Solution of the General Adjustment Model 

The least squares solution of (2.8), ie, the solution which makes the sums of the squares of the 

weighted residuals a minimum, is obtained by minimising the scalar function ϕ  

 ϕ δ δ δ= + − + −v W v x W x k Av B x fT T
xx

T2 a f (2.14) 

where k is a vector of m Lagrange multipliers.  ϕ  is a minimum when its derivatives with respect to 

v and δx  are equated to zero, ie. 

 

∂
∂

= −

∂
∂

= −

=

=

ϕ

ϕ
δ

δ

v
v W k A 0

x
x W k B 0

2 2

2 2

T T

T
xx

T T

T

 

These equations can be simplified by dividing both sides by two, transposing and changing signs to 

give 

 − + =Wv A k 0T  (2.15) 

 − + =W x B k 0xx
Tδ  (2.16) 
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Equations (2.15) and (2.16) can be combined with (2.8) and arranged in matrix form as 

 
−

−

L

N
MMM

O

Q
PPP

L

N
MMM

O

Q
PPP
=
L

N
MMM

O

Q
PPP

W A 0
A 0 B
0 B W

v
k
x

0
f
0

T

T
xx δ

 (2.17) 

 

Equation (2.17) can be solved by the following reduction process given by Cross (1992, pp. 22-23).  

Consider the partitioned matrix equation P y u=  given as 

 
P P
P P

y
y

u
u

11 12

21 22

1

2

1

2

L
NM

O
QP
L
NM
O
QP =
L
NM
O
QP  (2.18) 

which can be expanded to give 

 P y P y u11 1 12 2 1+ =  

or 

 y P u P y1 11
1

1 12 2= −− b g (2.19) 

Eliminating y1 by substituting (2.19) into (2.18) gives 

 
P P
P P

P u P y
y

u
u

11 12

21 22

11
1

1 12 2

2

1

2

L
NM

O
QP

−L
NM

O
QP
=
L
NM
O
QP

− b g  

Expanding the matrix equation gives 

 
P P u P y P y u

P P u P P P y P y u
21 11

1
1 12 2 22 2

21 11
1

1 21 11
1

12 2 22 2 2

2
−

− −

− + =

− +

b g
=

 

and an expression for y2  is given by 

  (2.20) P P P P y u P P22 21 11
1

12 2 2 21 11
1

1− = −−c h u−

Now partitioning (2.17) in the same way as (2.18) 

 
−

−

L

N
MMM

O

Q
PPP

L

N
MMM

O

Q
PPP
=
L

N
MMM

O

Q
PPP

W A 0
A 0 B
0 B W

v
k
x

0
f
0

T

T
xx δ

 (2.21) 

v can be eliminated by applying (2.20) 

 
0 B

B W
A
0

W A 0 k
x

f
0

A
0

W 0
T

xx

T

−
L
NM

O
QP −
L
NM
O
QP

L
NM

O
QP
L
NM
O
QP =
L
NM
O
QP −
L
NM
O
QP
−− −1 1

δ
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Remembering that Q  the equation can be simplified as W= −1

 
AQA B

B W
k
x

f
0

T

T
xx−

L
NM

O
QP
L
NM
O
QP =
L
NM
O
QPδ
 (2.22) 

Again, applying (2.20) to the partitioned equation (2.22) gives 

 − − = −
− −

W B AQA B x 0 B AQAxx
T T T Tc he j c h1 1

δ f  

and re-arranging gives the normal equations 

 B AQA B W x B AQA fT T
xx

T Tc he j c h− −
+ =

1
δ

1

l

 (2.23) 

Mikhail (1976, p. 114) simplifies (2.23) by introducing equivalent observations l  where e

 l Ae =  (2.24) 

Applying the matrix rule for cofactor propagation (Mikhail 1976, pp. 76-79) gives the cofactor 

matrix of the equivalent observations as 

 Q AQAe
T=  (2.25) 

With the usual relationship between weight matrices and cofactor matrices, see (2.6), we may write 

 W Q AQAe e
T= =− −1 1c h  (2.26) 

Using (2.26) in (2.23) gives the normal equations as 

  (2.27) B W B W x B W fT
e xx

T
e+ =c hδ

With the auxiliaries N and t 

 N B W B= T
e  (2.28) 

 t B W f= T
e  (2.29) 

the vector of corrections δx  is given by 

 δx N W= + t−
xxb g 1  (2.30) 
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The vector of Lagrange multipliers k are obtained from (2.22) by applying (2.19) to give 

 k AQA f B x W f B x= − = −
−T

ec h a f a f1
δ δ  (2.31) 

and the vector of residuals v is obtained from (2.21) as 

 − + =Wv A k 0T  

giving 

 v W A k QA k= =−1 T T  (2.32) 

 

2.3. The Iterative Process of Solution 

Remembering that x x= x+ δ , see (2.3), where x is the vector of a priori estimates of the 

parameters, δx  is a vector of corrections and x  is the least squares estimate of the parameters. 

 

At the beginning of the iterative solution, it can be assumed that x  equals the a priori estimates x  

and a set of corrections 
1

δx1 computed.  These are added to x  to give an updated set x .  A and B 

are recalculated and a new weight matrix W  computed by cofactor propagation.  The corrections 

are computed again, and the whole process cycles through until the corrections reach some 

predetermined value, which terminates the process. 

1 2

xx

 x xn n+ xn= +1 δ  (2.33) 

 

2.4. Derivation of Cofactor Matrices 

In this section, the cofactor matrices of the vectors x x  will be derived.  The law of 

cofactor propagation will be used and is defined as follows (Mikhail 1976, pp. 76-89). 

, , v lδ and

 

Given a functional relationship 

 z x= Fa f (2.34) 

between two random vectors z and x and the variance-covariance matrix Σ xx , the variance-

covariance matrix of z is given by 

 Σ Σzz zx xx zx
T= J J  (2.35) 
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where J  is a matrix of partial derivatives zx

 J
xzx

n

n

m m m

n

F

z
x

z
x

z
x

z
x

z
x

z
x

z
x

z
x

z
x

=
∂
∂

=

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

L

N

MMMMMMMM

O

Q

PPPPPPPP

1

1

1

2

1

2

1

2

2

2

1 2

 

Using the relationship between variance-covariance matrices and cofactor matrices, see (2.5), the 

law of cofactor propagation may be obtained from (2.35), as 

 Q J Q Jzz zx xx zx
T=  (2.36) 

For a function z containing two independent random variables x and y with cofactor matrices Q  

and Q  

xx

yy

 z x y= F ,a f  (2.37) 

the law of cofactor propagation gives the cofactor matrix Q  as zz

 Q J Q J J Q Jzz zx xx zx
T

zy yy zy
T= +  (2.38) 

 

2.4.1. Cofactor Matrix for x  

According to equations (2.33) and (2.30) with (2.29) the least squares estimate x  is 

 x x N W B W= + + f−
xx

T
eb g 1  (2.39) 

and x  is a function of the a priori parameters x (the "observables") and the observations l since the 

vector of numeric terms f contains functions of both.  Applying the law of propagation of cofactors 

gives 

 Q x
x

Q x
x

x
l

Q x
lxx xx

T T

=
∂
∂
F
HG
I
KJ

∂
∂
F
HG
I
KJ +

∂
∂
F
HG
I
KJ

∂
∂
F
HG
I
KJ  (2.40) 

The partial derivatives of (2.39) are 

 ∂
∂

= + +
∂
∂

−x
x

I N W B W f
xxx

T
eb g 1  (2.41) 
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 ∂
∂

= +
∂
∂

−x
l

N W B W f
lxx

T
eb g 1  (2.42) 

From (2.13), f  the partial derivatives x= −F ,a lf ∂
∂

f
x

 and ∂
∂
f
l

, are the design matrices A and B given 

by (2.11) and (2.12) 

 ∂
∂

= −
f
x

B (2.43) 

 ∂
∂

= −
f
l

A (2.44) 

Substituting (2.43) and (2.44) into (2.41) and (2.42) with the auxiliary N B W B= T
e  gives 

 
∂
∂

= − +

= − +

−

−

x
x

I N W B W

I N W N

xx
T

e

xx

b g
b g

1

1

B
 (2.45) 

 ∂
∂

= − + −x
l

N W B W Axx
T

eb g 1  (2.46) 

Substituting (2.45) and (2.46) into (2.40) gives 

  (2.47) 
Q I N W N Q I N W N

N W B W A Q N W B W A

xx xx xx xx

T

xx
T

e xx
T

e

T

= − + − +

+ − + − +

− −

− −

b go t b go t
b go t b go t

1 1

1 1

With the auxiliary  (2.48) N N W•
= + xxb g

and noting that the matrices I N N  are all symmetric, (2.47) may be simplified as W, ,
•

and xx

 Q I N N Q I N N N B W A Q A W B Nxx xx
T

e
T

e= −FHG
I
KJ −FHG

I
KJ +
F
HG

I
KJ
F
HG

I
KJ

• − • − • − • −1 1 1 1  

Remembering that Q AQA W Qe
T

e e= = −and 1 

  (2.49) Q Q Q N N N NQ N NQ N N N N Nxx xx xx xx xx= − − + +
• − • − • − • − • − • −1 1 1 1 1 1

The last two terms of (2.49) can be simplified as follows 
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N NQ N N N N N N NQ N N W N

N NQ N W N

N NQ N N

N NQ

• − • − • − • − • − • − • −

• − • −

• − • • −

• −

+ = +F
HG

I
KJ

= +

=

=

1 1 1 1 1 1

1 1

1 1

1

xx xx xx

xx xx

xx

xx

b g

1

 

and substituting this result into (2.49) gives 

  (2.50) 
Q Q Q N N N NQ N NQ

Q Q N N

xx xx xx xx xx

xx xx

= − − +

= −

• − • − • −

• −

1 1 1

1

Further simplification gives 

 

Q Q I N N

Q N N N

Q N W N N

Q W N

xx xx

xx

xx xx

xx xx

= −FHG
I
KJ

= −FH IK
= + −

=

• −

• • −

• −

• −

1

1

1

1

b g
 (2.51) 

and since Q W  the cofactor matrix of the least squares estimates x  is Ixx xx =

  (2.52) Q N N Wxx xx= = +
• − −1 1b g

 

2.4.2. Cofactor Matrix for l  

Beginning with the final adjusted observations given by (2.2) 

 l l v= +  (2.53) 

and using (2.32) and (2.31) we have 

  

l l QA k
l QA W f B x

l QA W f QA W B

= +

= + −

= + −

T

T
e

T
e

T
e

δ

δ

a f
x
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Substituting the expression for δx  given by (2.30) with the auxiliaries t and N  given by (2.29) and 

(2.48) respectively gives 

•

 

l l QA W f QA W B N W t

l QA W f QA W B N W B W

l QA W f QA W B N B W f

= + − +

= + − +

= + −

f

−

−

• −

T
e

T
e xx

T
e

T
e xx

T
e

T
e

T
e

T
e

b g
b g

1

1

1

 (2.54) 

and  is function of the observables x and the observations l since fl x l= −F ,a f .  Applying the law 

of propagation of cofactors to (2.54) gives 

 Q l
x

Q l
x

l
l

Q l
ll l xx

T T

=
∂
∂
F
HG
I
KJ

∂
∂
F
HG
I
KJ +

∂
∂
F
HG
I
KJ

∂
∂
F
HG
I
KJ  (2.55) 

and the partial derivatives are obtained from (2.54) as 

 ∂
∂

=
∂
∂

−
∂
∂

• −l
x

Q A W f
x

Q A W B N B W f
x

T
e

T
e

T
e

1  

 ∂
∂

= +
∂
∂

−
∂
∂

• −l
l

I Q A W f
l

Q A W B N B W f
l

T
e

T
e

T
e

1  

 

With ∂
∂

= −
f
x

B and ∂
∂

= −
f
l

A, and with the auxiliary N B W B= T
e  the partial derivatives become 

 

 
∂
∂

= −

= −

• −

• −

l
x

Q A W B N B W Q A W B

Q A W B N N Q A W B

T
e

T
e

T
e

T
e

T
e

1

1

 (2.56) 

 ∂
∂

= + −
• −l

l
I Q A W B N B W A Q A W AT

e
T

e
T

e
1  (2.57) 

Substituting (2.56) and (2.57) into (2.55) gives 

  (2.58) Q
l l
= +1  term 2 termst ndm r m r

where 
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1 termstm r = −

− +

• − • − • −

• −

QA W B N NQ N N B W AQ QA W B N NQ B W AQ

QA W BQ N N B W AQ QA W BQ B W AQ

T
e xx

T
e

T
e xx

T
e

T
e xx

T
e

T
e xx

T
e

1 1 1

1

  

2 termndm r = + −

+

+

− −

− +

• −

• −

• − • −

• −

• −

Q QA W B N B W AQ QA W AQ

QA W B N B W AQ

QA W B N B W AQA W B N B W AQ

QA W B N B W AQA W AQ QA W AQ

QA W AQA W B N B W AQ QA W AQA W AQ

T
e

T
e

T
e

T
e

T
e

T
e

T
e

T
e

T
e

T
e

T
e

T
e

T
e

T
e

T
e

T
e

T
e

T
e

1

1

1 1

1

1

The 1st term can be simplified as 

 
1 termstm r = − − +F

HG
I
KJ

= −F
HG

I
KJ − +F

HG
I
KJ

• − • − • − • −

• − • − • −

QA W B N NQ N N N NQ Q N N Q B W AQ

QA W B N N Q N N Q Q N N Q B W AQ

T
e xx xx xx xx

T
e

T
e xx xx xx xx

T
e

1 1 1 1

1 1 1

 

but we know from (2.50) that Q Q , and from (2.52) that Q  so Q N Nxx xx xx= −
• −1 Nxx =

• −1

 

1 termstm r = −F
HG

I
KJ

= −FHG
I
KJ

= −FHG
I
KJ

• −

• − • − • −

• − • −

QA W B Q N NQ B W AQ

QA W B N N N N B W AQ

QA W B N I N N B W AQ

T
e xx xx

T
e

T
e

T
e

T
e

T
e

1

1 1 1

1 1

 

The term in brackets has been simplified in (2.51) as W N  which gives the 1xx
• −1 st term as 

  (2.59) 1 termstm r = • − • −QA W B N W N B W AQT
e xx

T
e

1 1

The 2nd term of (2.58) can be simplified by remembering that AQA Q WT
e e= = −1 so that after 

some cancellation of terms we have 

  (2.60) 2 termndm r = + −
• − • −Q QA W B N N N B W AQ QA W AQT

e
T

e
T

e
1 1

Substituting (2.59) and (2.60) into (2.58) gives the cofactor matrix of the adjusted observations as 

 Q Q QA W B N W B W AQ QA W A
l l

T
e xx

T
e

T
e= + + − Q−b g 1  (2.61) 
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2.4.3. Cofactor Matrix for δx  

From (2.30) and (2.29) 

 
δx N W B W

N B W f

= +

=

f−

• −

xx
T

e

T
e

b g 1

1
 (2.62) 

and applying the law of propagation of cofactors gives 

 Q N B W Q N B Wx xδ δ = FHG
I
KJ
F
HG

I
KJ

• − • −1 1T
e f f

T
e

T

 (2.63) 

The cofactor matrix Q  is obtained from f xf f l= −F ,a f  as 

 

Q f
x

Q f
x

f
l

Q f
l

B Q B A Q A

BQ B AQA

BQ B Q

f f xx

T T

xx
T

xx
T T

xx
T

e

=
∂
∂

T

F
HG
I
KJ

∂
∂
F
HG
I
KJ +

∂
∂
F
HG
I
KJ

∂
∂
F
HG
I
KJ

= − − + − −

= +

= +

a f a f a f a f  (2.64) 

Substituting (2.64) into (2.63) and simplifying gives 

 Q N W NQ N N W N W N N Wx xδ δ = + + + + +− − − −
xx xx xx xx xxb g b g b g b g1 1 1 1

1

1

 (2.65) 

Equation (2.65) can be simplified further as 

  

Q N NQ N N N N N

N NQ N N W N

N NQ N W N

N NQ N N

x xδ δ = +

= +F
HG

I
KJ

= +

=

• − • − • − • −

• − • − • −

• − • −

• − • • −

1 1 1

1 1

1 1

1 1

xx

xx xx

xx xx

xx

b g

or 

  (2.66) Q N NQ N W NQx xδ δ = = +
• − −1 1

xx xx xxb g
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2.4.4. Cofactor Matrix for v 

From (2.32), (2.31) and (2.30) we may write the following 

  

v QA k
QA W f B x

QA W f QA W B x

QA W f QA W B N W t

=

= −

= −

= − + −

T

T
e

T
e

T
e

T
e

T
e x

δ

δ

a f

b g 1
x

f

l

and with (2.29) and the auxiliary N N  W• − −= +1 1
xxb g

  (2.67) v QA W f QA W B N B W= −
• −T

e
T

e
T

e
1

v is a function of the observables x and the observations l since f x= −F ,a f  and applying the law 

of propagation of cofactors gives 

 Q v
x

Q v
x

v
l

Q v
lvv xx

T T

=
∂
∂
F
HG
I
KJ

∂
∂
F
HG
I
KJ +

∂
∂
F
HG
I
KJ

∂
∂
F
HG
I
KJ  (2.68) 

The partial derivatives of (2.67) are 

 ∂
∂

=
∂
∂

−
∂
∂

• −v
x

Q A W f
x

Q A W B N B W f
x

T
e

T
e

T
e

1  

 ∂
∂

=
∂
∂

−
∂
∂

• −v
l

Q A W f
l

Q A W B N B W f
l

T
e

T
e

T
e

1  

With ∂
∂

= −
f
x

B and ∂
∂

= −
f
l

A, and with the auxiliary N B W B= T
e  the partial derivatives become 

 ∂
∂

= −
• −v

x
Q A W B N N Q A W BT

e
T

e
1  (2.69) 

 ∂
∂

=
• −v

l
Q A W B N B W A Q A W AT

e
T

e
T

e
1 −

r

 (2.70) 

Substituting (2.69) and (2.70) into (2.68) gives 

  (2.71) Qvv = +1 2st ndterm termm r m
where 
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1 termstm r = −

− +

• − • − • −

• −

QA W B N NQ N N B W AQ QA W B N NQ B W AQ

QA W BQ N N B W AQ QA W BQ B W AQ

T
e xx

T
e

T
e xx

T
e

T
e xx

T
e

T
e xx

T
e

1 1 1

1

  

2 termndm r =
−

−

+

• − • −

• −

• −

QA W B N B W AQA W B N B W AQ

QA W B N B W AQA W AQ

QA W AQA W B N B W AQ

QA W AQA W AQ

T
e

T
e

T
e

T
e

T
e

T
e

T
e

T
e

T
e

T
e

T
e

T
e

1 1

1

1

The 1st term above is identical to the 1st term of (2.58) which simplifies to (2.59) as 

  (2.72) 1 termstm r = • − • −QA W B N W N B W AQT
e xx

T
e

1 1

The 2nd term above can be simplified by remembering that AQA Q WT
e e= = −1 so that after some 

manipulation we have 

 
2 termndm r = −F

HG
I
KJ

− +

• − • − • −

• −

QA W B N N N N B W AQ

QA W B N B W AQ QA W AQ

T
e

T
e

T
e

T
e

T
e

1 1 1

1

 

The term in brackets can be expressed as 

 

N N N N N N N N

N N N W N

N W N

• − • − • − • − • • −

• − • −

• − • −

− = −FH IK
= − +

= −

1 1 1 1 1

1 1

1 1

xx

xx

b gc h  

and the 2nd term becomes 

  (2.73) 
2 termndm r = −

− +

• − • −

• −

QA W B N W N B W AQ

QA W B N B W AQ QA W AQ

T
e xx

T
e

T
e

T
e

T
e

1 1

1

Substituting (2.72) and (2.73) into (2.71) gives the cofactor matrix of the residuals v as 

 Q QA W B N W B W AQ QA W AQvv
T

e xx
T

e
T

e= − + +−b g 1  (2.74) 

and by inspection of (2.64) and (2.74) 
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 Q Q Qvv ll
= −  (2.75) 

 

2.4.5. Covariance Matrix Σ xx  

 Σ xx xx= σ 0
2 Q  (2.76) 

The estimated variance factor is 

 σ δ δ
0
2 =

+v Wv x W xT T
xx

r
 (2.77) 

and the degrees of freedom r are 

 r m u ux= − +  (2.78) 

where m is the number of equations used to estimate the u parameters from n observations.  u  is the 

number of weighted parameters.  [Equation (2.78) is given by Krakiwsky (1975, p.17, eqn 2-62) 

who notes that it is an approximation only and directs the reader to Bossler (1972) for a complete 

and rigorous treatment.] 

x

 

2.5. Generation of the Standard Least Squares Cases 

Depending on the form of the design matrices A and B, and also on whether the parameters are 

treated as observables, ie, is W , there are several different possibilities for the formulation 

and solution of least squares problems.  The standard cases are listed below. 

xx = 0

 

2.5.1. Combined Case with Weighted Parameters A B W W 0, , , xx ≠b    Avg B x f+ =δ  

The general case of a non-linear implicit model with weighted parameters treated as observables is 

known as the Combined Case with Weighted Parameters.  It has a solution given by the following 

equations (2.30), (2.28), (2.29), (2.26), (2.3), (2.31), (2.32), (2.2), (2.65), (2.52), (2.74), (2.61), 

(2.64), (2.77) and (2.78). 

   (2.79) δx N W= + −
xxb g 1t

B with N B W= T
e   (2.80) 

 t B W f= T
e   (2.81) 

© 2003, R.E. Deakin Coordinate Transformations (2003) 2–15 



Department of Geospatial Science  RMIT 

 

 W Q AQAe e
T= =− −1 1c h

x

  (2.82) 

 x x= + δ   (2.83) 

 k W f B x= −e δa f

k

  (2.84) 

 v W A k QA= =−1 T T

v

  (2.85) 

   (2.86) l l= +

 
Q N W NQ N N W N W N N W

N W NQ

x xδ δ = + + + + +

= +

− − − −

−

xx xx xx xx xx

xx xx

b g b g b g b g
b g

1 1 1

1

1

Q

 (2.87) 

   (2.88) Q N Wxx xx= + −b g 1

 Q QA W AQ QA W B N W B W Avv
T

e
T

e xx
T

e= − + −b g 1  (2.89) 

 Q Q QA W B N W B W AQ QA W A
l l

T
e xx

T
e

T
e= + + − Q−b g 1  (2.90) 

   (2.91) Q BQ Bf f xx
T

e= Q+

 σ δ δ
0
2 =

+v Wv x W xT T
xx

r
  (2.92) 

 r m u ux= − +   (2.93) 

 Σδ δ δ δσx x x xQ= 0
2   (2.94) 

 Σ xx xx= σ 0
2 Q   (2.95) 

 Σ vv vv= σ 0
2 Q   (2.96) 

 Σ
ll ll
= σ 0

2 Q   (2.97) 

 Σ f f f f= σ 0
2 Q   (2.98) 
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2.5.2. Combined Case b      AvA B W W 0, , , xx = g B x f+ =δ 0  

The Combined Case is a non-linear implicit mathematical model with no weights on the parameters.  

The set of equations for the solution is deduced from the Combined Case with Weighted Parameters 

by considering that if there are no weights then W 0 Qxx xx 0= =and .  This implies that x is a 

constant vector (denoted by x ) of approximate values of the parameters, and partial derivatives 

with respect to x  are undefined.  Substituting these two null matrices and the constant vector 

 into equations (2.1) to (2.78) gives the following results. 

0

0

x x= 0

 δx N= −1t

B

l0 h

  (2.99) 

 with N B   (2.100) W= T
e

   (2.101) t B W f= T
e

0

   (2.102) f x0 = −F ,c

 W Q AQAe e
T= =− −1 1c h

x

 (2.103) 

 x x= +0 δ   (2.104) 

   (2.105) k W f B x= −e
0 δc h

k v W A k QA= =−1 T T

v

N

  (2.106) 

   (2.107) l l= +

 Q Qx xδ δ = = −
xx

1  (2.108) 

 Q QA W AQ QA W BN B W Avv
T

e
T

e
T

e= − Q−1  (2.109) 

 Q Q QA W B N B W AQ QA W A
l l

T
e

T
e

T
e= + Q−−1  (2.110) 

   (2.111) Q
f f e0 0 = Q

 σ 0
2 =

v WvT

r
  (2.112) 
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 r m= − u   (2.113) 

 Σ Σxx xx= =δ δ σx x Q0
2   (2.114) 

 Σ vv vv= σ 0
2 Q   (2.115) 

 Σ
ll ll
= σ 0

2 Q   (2.116) 

 Σ
f f f f0 0 0 00

2= σ Q   (2.117) 

2.5.3. Parametric Case A I B W W 0= =, , , xx gb      v B x f+ =δ 0  

The Parametric Case is a mathematical model with the observations l explicitly expressed by some 

non-linear function of the parameters x only.  This implies that the design matrix A is equal to the 

identity matrix I.  Setting A  in the Combined Case (with no weights) leads to the following 

equations. 

I=

 δx N= −1t

B

l0 h

x

  (2.118) 

 with N B   (2.119) W= T

   (2.120) t B Wf= T 0

   (2.121) f x0 = −F ,c

 x x= +0 δ   (2.122) 

 v f B= −0 xδ   (2.123) 

   (2.124) l l= + v

N Q Qx xδ δ = = −
xx

1  (2.125) 

   (2.126) Q Q BN Bvv
T= − −1

   (2.127) Q B N
l l

T= −1B

Q   (2.128) Q
f f0 0 =
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 σ 0
2 =

v WvT

r
  (2.129) 

 r n= − u   (2.130) 

 Σ Σxx xx= =δ δ σx x Q0
2   (2.131) 

 Σ vv vv= σ 0
2 Q   (2.132) 

 Σ
ll ll
= σ 0

2 Q   (2.133) 

 Σ
f f f f0 0 0 00

2= σ Q   (2.134) 

 

2.5.4. Condition Case A B 0 W W 0, , ,= =xx gb      Av f=  

The Condition Case is characterised by a non-linear model consisting of observations only. Setting 

 in the Combined Case (with no weights) leads to the following equations. B = 0

 

 k W f= e   (2.135) 

 with W Q AQAe e
T= =− −1 1c h

l

k

 (2.136) 

   (2.137) f = −Fa f

 v W A k QA= =−1 T T

v

Q

Q

  (2.138) 

   (2.139) l l= +

   (2.140) Q QA W Avv
T

e=

   (2.141) Q Q QA W A
l l

T
e= −

 σ 0
2 =

v WvT

r
  (2.142) 

 r m=   (2.143) 
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 Σ vv vv= σ 0
2 Q   (2.144) 

 Σ
ll ll
= σ 0

2 Q   (2.145) 
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