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2. LEAST SQUARES ADJUSTMENT OF INDIRECT OBSERVATIONS 

2.1. Introduction 

The modern professional surveyor must be competent in all aspects of surveying 

measurements such as height differences, linear distances, horizontal and vertical angle 

measurements and combinations thereof which form the fundamental observations used to 

determine position in space.  To obtain these measurements with any degree of confidence the 

surveyor must be aware of the principles and operation of various pieces of surveying 

equipment as well as the nature of measurements and the possible effects of errors on these 

measurements and any derived quantities.  The nature of errors in measurements, studied by 

Gauss and leading to his theory of errors (the normal law of error) is the basis of statistical 

rules and tests that the surveyor employs to assess the quality of measurements; these rules 

and tests are covered in basic statistics courses during the undergraduate degree program.  In 

the simple least squares processes and applications which follow it is sufficient to assume that 

the measurements are affected by small accidental or random errors and the least squares 

"solutions" provide a means of determining the best estimate of a measured quantity.  Least 

squares solutions also imply that the quantity of interest has been determined from a 

redundant system of measurements, i.e., there are more measurements than the minimum 

number required to calculate the quantity. 

2.1.1. Definition and classification of measurements 

Crandall and Seabloom (1970, pp. 4-5) give a definition of a measurement as: 

 

A measurement is a comparison between an unknown quantity and a 

predefined standard, determined by some measuring device and hence, 

any measured value is an approximation of the exact or true value, not 

the true value itself.  Since the true value of a quantity cannot be 

measured, any measurement contains by definition, an error. 

 

Direct measurements (or observations) are those that are made directly upon the quantity to be 

determined.  Measurements of a line by direct chaining, or Electronic Distance Measurement 

(EDM), or measurement of an angle by theodolite or Total Station are examples of direct 

measurements. 
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Indirect measurements (or observations) are not made upon the quantity itself but are made on 

some other quantity or quantities related to it.  For example, the coordinates of a point P are 

indirectly determined by measuring bearings and distances to P from other points; the latitude 

of P may be determined from altitudes to certain stars; and the height of P may be determined 

by measured height differences from a known point. 

2.1.2. Classification of errors of measurement 

Since, by definition, every measurement contains an error it is necessary to consider the 

various kinds of errors that occur in practice.  Rainsford (1968, p. 1) provides a derivation of 

the word error as: 

 

coming from the Latin errare which means to wander and not to sin. 

 

Rainsford divides errors into four classes 

 

(a) blunders or mistakes 

(b) constant errors 

(c) systematic errors 

(d) accidental or random errors 

 

Blunders or mistakes are definite mis-readings, booking errors or other like occurrences.  

They are usually caused by poor measurement technique and/or a lack of attention to detail by 

the person making the measurement.  They may be eliminated or minimized by correct and 

careful measurement techniques, and a thorough understanding of the operation of the 

equipment used for the measurement. 

 

Constant errors are those that do not vary throughout the particular measurement period.  

They are always of the same sign.  Neglecting to standardize a measuring tape introduces a 

constant error; failure to use the correct prism-offset value introduces constant errors in EDM 

measurements.  A faulty joint between sections of a levelling staff will introduce a constant 

error into height differences from spirit levelling.  Constant errors can be eliminated from 

measurements by a thorough understanding of the measurement process and the equipment 

used. 

© 2005, R.E. Deakin Notes on Least Squares (2005) 2–2 



RMIT University Geospatial Science 

 

Systematic errors are those errors that follow some fixed law (possibly unknown) dependent 

on local conditions and/or the equipment being used.  For example, if the temperature and 

pressure (which are indicators of atmospheric conditions) are not measured when using EDM 

equipment then a systematic error may be introduced, since the modulated electromagnetic 

beam of the EDM passes through the atmosphere and its time of travel (indirectly measured 

by phase comparison of emitted and reflected beams) is affected by atmospheric conditions.  

All EDM measurements must be corrected for atmospheric conditions that depart from 

"standard conditions". 

 

Accidental or Random errors are the small errors remaining in a measurement after mistakes, 

constant errors and systematic errors have been eliminated.  They are due to the imperfection 

of the instruments used, the fallibility of the observer and the changing environmental 

conditions in which the measurements are made, all of which affect the measurement to a 

lesser or greater degree. 

 

Bearing in mind the aforementioned, it could be said that all careful measurements (where 

mistakes, constant errors and systematic errors have been eliminated) contain small random 

errors and from experience, three axioms relating to random errors can be stated. 

 

1. Small errors occur more frequently, or are more probable then 

large errors. 

2. Positive and negative errors of the same magnitude are equally 

probable 

3. Very large errors do not occur. 

 

These axioms are the basic premises on which the theory of errors (the normal law of error) is 

founded. 

2.1.3. Errors, corrections and residuals 

A measured quantity has a true value and a most probable value.  The most probable value is 

often called the best estimate and the two terms can be taken as synonymous. 
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No matter how many times a quantity is measured, its true value will remain unknown and 

only a best estimate can be obtained from the measurements.  In the case of a single measured 

quantity, the best estimate is the arithmetic mean (or average) of the measurements. 

 

If a quantity has been measured a number of times, the difference between the true (but 

unknown) value and any measurement is the true error and the difference between the best 

estimate and any measurement is the apparent error. 

 

These relationships can be established by defining a correction to have the same magnitude as 

an error but the opposite sign.  In surveying, the terms correction and residual are regarded as 

synonymous, and are universally denoted by the letter v. 

 

Suppose an unknown quantity x is measured n times giving values 1 2 3, , , , nx x x x… .  The 

true value (unknown) of the measured quantity is μ  (mu) and is estimated by the arithmetic 

mean x  where 

 1 2 1

n

k
n k

x
x x xx

n n
=+ + +

= =
∑"  (2.1) 

The arithmetic mean is regarded as the best estimate or most probable value.  A correction v 

having the same magnitude as an error but the opposite sign is defined as 

 k kv x x= −  

Since these corrections relate to the measurements and arithmetic mean, they could be called 

apparent corrections and hence according to our definition of corrections and errors, apparent 

errors −  are defined as v

 k kv x x− = −  

In a similar manner, we may define true errors ε  (epsilon) as 

 k kxε μ= −  

These relationships may be expressed as 

  
measurement  + residual = best estimate
measurement  best estimate = apparent error
measurement  true value = true error

−
−
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True errors are unknown and are approximated by apparent errors.  The closer the best 

estimate (or most probable value) approaches the true value, the closer the apparent error 

approaches the true error.  The laws defining the nature and behaviour of true errors were 

derived from practical axioms deduced from the nature of apparent errors and hence any 

theory of errors may also be regarded as a theory of corrections (or residuals) and the 

distinction between true errors and apparent errors is ignored for all practical purposes. 

 

The following sections contain simple examples of least squares processes, the mean, the 

weighted mean, line of best fit (linear regression) and polynomial curve fitting.  In each case, 

Gauss' least squares principle: "... the most probable system of values of the quantities ... will 

be that in which the sum of the squares of the differences between the actually observed and 

computed values multiplied by numbers that measure the degree of precision, is a minimum." 

will be employed to determine equations or systems of equations that may be regarded as least 

squares solutions to the problems.  Furthermore, it is assumed that all measurements are free 

of mistakes, constant errors and systematic errors and "contain" only random errors and that 

the precision of the measurements is known a priori (Latin a priori from what is before).  

Solutions to some of the examples are provided as MATLAB script files (.m files). 

 

2.2. The Mean 

It is well known practice that when a single quantity is measured a number of times the 

arithmetic mean is taken as the best estimate of the measured quantity.  Few people realise 

that when they adopt this practice they are employing Gauss' least squares principle. 

 

Consider a series of measurements 1 2 3, , , , nx x x x…  of a quantity and denote the best 

estimate of this quantity as p.  According to our general definition of measurements and 

corrections we may write:  measurement + correction (or residual) = best estimate or 

 1 1 2 2 3 3, , , , n nx v p x v p x v p x v+ = + = + = + =" p  

These equations can be rearranged as 

  1 1 2 2 3 3, , , , n nv p x v p x v p x v p x= − = − = − = −"

Now if all the measurements can be regarded as having equal precision we may state the least 

squares principle as 
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The best estimate p is that value which makes the sum of the squares 

of the residuals a minimum. 

 

We may define a least squares function ϕ  (phi) as 

 2

1

 the sum of the squares of the residuals
n

k
k

vϕ
=

= = ∑  (2.2) 

or  ( ) ( ) (2 22
1 2

1

n

k n
k

v p x p x p xϕ
=

= = − + − + + −∑ " )2

We say that ϕ  is a function of p, the single parameter or variable in this equation.  The 

minimum value of the function (i.e. making the sum of squares of residuals a minimum) can 

be found by equating the derivative d
dp
ϕ  to zero, i.e., 

  is a minimum when 0d
dp
ϕϕ =  

and ( ) ( ) ( )1 22 2 2 n
d p x p x p x
dp

0ϕ
= − + − + + − ="  

Cancelling the 2's and rearranging gives the best estimate p as the arithmetic mean. 

 1 2 3 1

n

k
n k

x
x x x xp

n n
=+ + + +

= =
∑"  (2.3) 

Hence, the arithmetic mean of a series of measurements is the best estimate according to 

Gauss' least squares principle. 

 

2.3. The Weighted Mean 

Before demonstrating that the weighted mean of a set of observations is the result of a least 

squares process, some discussion of the term weight and its connection with precision is 

required. 
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2.3.1. Measures of Precision of a Finite Population 

In every least squares process it is assumed that the precision of measurements is known.  The 

precision is a measure of the dispersion (or spread) of a number of measurements from their 

mean (or average) value.  A common statistical measure of precision is the variance 2σ  and 

the positive square root of the variance is the standard deviation σ .  Equations for the 

variance and standard deviation differ depending on whether the population of measurements 

is finite or infinite and a population is a potential set of quantities that we want to make 

inference about based on a sample from that population. 

 

Following Deakin and Kildea (1999), consider a finite population, such as the examination 

marks  of a group of N students in a single subject.  Since we have complete information 

about the population, i.e., its size is known, the mean 

km

μ , the variance 2σ  and the standard 

deviation σ  of the finite population are 

 1

N

k
k

m

N
μ ==

∑
 (2.4) 

 
( )2

2 1

N

k
k

m

N

μ
σ =

−
=

∑
 (2.5) 

 
( )2

1

N

k
k

m

N

μ
σ =

−
=

∑
 (2.6) 

Note that the variance 2σ  is the average squared difference of a member of the population  

from the population mean 

km

μ .  The mean, variance and standard deviation are known as 

population parameters. 

2.3.2. Estimates of Precision of Samples of an Infinite Population 

Consider surveying measurements, drawn from infinite populations with the attendant 

difficulties of estimation since population averages can never be known.  In such cases we are 

usually dealing with small samples of measurements of size n and we can only obtain 

estimates of the unknown population parameters μ , 2σ  and σ .  For a sample of n 
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measurements 1 2 3, , , , nx x x x…  from an infinite population, estimates of the mean, variance 

and standard deviation, denoted by x , 2
xs  and xs  are 

 
1

1 n

k
k

x x
n =

= ∑  (2.7) 

 ( 22

1

1
1

n

x k
k

s x
n =

=
− ∑ )x−  (2.8) 

 ( )2

1

1
1

n

x k
k

s x
n =

=
− ∑ x−  (2.9) 

Note the divisor  (known as the degrees of freedom) in equations for the estimates of 

variance and standard deviation.  This ensures that 

1n −
2
xs  is an unbiased estimate of the 

population variance 2σ , but does not ensure that xs  is an unbiased estimate of the population 

standard deviation σ ; the action of "taking a square-root" changes the property of 

unbiasedness.  This is more an accident of mathematics rather than a cause of faulty 

estimation but it is not well appreciated in general.  Deakin and Kildea (1999, p. 76) show that 

an unbiased estimator xs∗  of the population standard deviation σ  is given by 

 ( )2

1

1 n

x k
kn

s x
c

∗

=

= −∑ x  (2.10) 

Values of  are given in Table 2.1 nc

n 2 3 4 5 10 15 20 30 90 

n-1 1 2 3 4 9 14 19 29 89 

nc  0.64 1.57 2.55 3.53 8.51 13.51 18.51 28.50 88.50 

 

Table 2.1  Values of divisor  for unbiased estimation of nc σ  

 

In these notes, it is always assumed that the terms mean, variance and standard deviation refer 

to estimates of population values. 
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2.3.3. Relationship between Weights and Estimates of Variance 

Another measure of precision, often used in least squares applications is weight w and the 

weight of an observation (or measurement) is defined as being inversely proportional to the 

variance 

 2

1
k

k

w
s

∝  (2.11) 

or 
2
0
2k
k

w
s
σ

=  (2.12) 

2
0σ  is a constant of proportionality known as the reference variance or variance factor.  This is 

the classical definition of weight and if an observation has unit weight ( )1kw =  its variance 

equals 2
0σ , hence the reference variance is sometimes called the variance of an observation of 

unit weight; a term often encountered in older surveying texts.  In this definition of weight, 

there is an assumption that the measurements are uncorrelated (a statistical term relating to the 

dependence between measurements, see section 2.5).  In cases where measurements are 

correlated, weights are not an adequate means of describing relative precisions. 

 

As an example of the connection between weights and standard deviations consider three 

uncorrelated (i.e., independent) observations of a particular distance, where each observation 

is the mean of several measurements and standard deviations of each observation have been 

determined from the measurements 

 

 observation 1 136.225 m (st. dev. 0.010 m) 

 observation 2 136.233 m (st. dev. 0.032 m) 

 observation 3 136.218 m (st. dev. 0.024 m) 

 

Since the weight is inversely proportional to the variance, the observation with the smallest 

weight will have the largest variance (standard deviation squared).  For convenience, this 

observation is given unit weight i.e., 2 1w =  and the other observations (with smaller 

variances) will have higher weight.  Hence from (2.12) 

 
( )

( )
2

220
2 021    and   0.032

0.032
w σ σ= = =  
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The weights of the three observations are then 

 

( )
( )
( )
( )
( )
( )

2

1 2

2

2 2

2

3 2

0.032
10.24

0.010

0.032
1

0.032

0.032
1.78

0.024

w

w

w

= =

= =

= =

 

Weights are often assigned to observations using "other information".  Say for example, a 

distance is measured three times and a mean value determined.  If two other determinations of 

the distance are from the means of six and four measurements respectively, the weights of the 

three observations may simply be assigned the values 3, 6 and 4.  This assignment of weights 

is a very crude reflection of the (likely) relative precisions of the observations since it is 

known that to double the precision of a mean of a set of measurements, we must quadruple 

the number of measurements taken (Deakin and Kildea, 1999, p. 76). 

2.3.4. Derivation of Equation for the Weighted Mean 

Consider a set of measurements of a quantity as 1 2 3, , , , nx x x x…  each having weight 

 and denote the best estimate of this quantity as q.  According to our general 

definition of measurements and corrections we may write: 

1 2 3, , , , nw w w w…

measurement + correction (or residual) = best estimate 

or 1 1 2 2 3 3, , , , n nx v q x v q x v q x v q+ = + = + = + ="  

These equations can be rearranged as 

  1 1 2 2 3 3, , , , n nv q x v q x v q x v q x= − = − = − = −"

Now each measurement has a weight reflecting relative precision and we may state the least 

squares principle as 

The best estimate q is that value which makes the sum of the squares 

of the residuals, multiplied by their weights, a minimum. 

We may define a least squares function ϕ  (phi) as 

  (2.13) 2

1

 the sum of the weighted squared residuals
n

k k
k

w vϕ
=

= = ∑
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or  ( ) ( ) (2 22
1 1 2 2

1

n

k k n n
k

w v w q x w q x w q xϕ
=

= = − + − + + −∑ " )2

We say that ϕ  is a function of q, the single parameter or variable in this equation.  The 

minimum value of the function (i.e., making the sum of the weighted squared residuals a 

minimum) can be found by equating the derivative d
dq
ϕ  to zero, i.e., 

  is a minimum when 0d
dq
ϕϕ =  

and ( ) ( ) ( )1 1 2 22 2 2 n n
d w q x w q x w q x
dq

0ϕ
= − + − + + −" =  

Cancelling the 2's and expanding gives 

  1 1 1 2 2 2 0n n nw q w x w q w x w q w x− + − + + − ="

Rearranging gives the weighted arithmetic mean q 

 1 1 2 2 1

1 2

1

n

k k
n n k

n
n

k
k

w x
w x w x w xq

w w w w

=

=

+ + +
=

+ + +

∑
=

∑
"
"

 (2.14) 

Hence, the weighted arithmetic mean of a series of measurements kx  each having weight  

is the best estimate according to Gauss' least squares principle. 

kw

 

It should be noted that the equation for the weighted mean (2.14) is valid only for 

measurements that are statistically independent.  If observations are dependent, then a 

measure of the dependence between the measurements, known as covariance, must be taken 

into account.  A more detailed discussion of weights, variances and covariances is given in 

later sections of these notes. 
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2.4. Line of Best Fit 

 

 

y

C

y = m x + c

1

2 3

4

5

•

• •

•

•

x

 

 

Figure 2.1  Line of Best Fit through data points 1 to 5 

 

The line of best fit shown in the Figure 2.1 has the equation y m x c= +  where m is the slope 

of the line 2 1

2 1

tan y ym
x x

θ
⎛ ⎞−

= =⎜ −⎝ ⎠
⎟  and c is the intercept of the line on the y axis. 

m and c are the parameters and the data points are assumed to accord with the mathematical 

model .  Obviously, only two points are required to define a straight line and so 

three of the five points in Figure 2.1 are 

y m x c= +

redundant measurements (or observations).  In this 

example the x,y coordinate pairs of each data point are considered as indirect measurements of 

the parameters m and c of the mathematical model. 

 

To estimate (or compute) values for m and c, pairs of points in all combinations (ten in all) 

could be used to obtain average values of the parameters; or perhaps just two points selected 

as representative could be used to determine m and c. 
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A better way is to determine a line such that it passes as close as possible to all the data 

points.  Such a line is known as a Line of Best Fit and is obtained (visually) by minimising the 

differences between the line and the data points.  No account is made of the "sign" of these 

differences, which can be considered as corrections to the measurements or residuals.  The 

Line of Best Fit could also be defined as the result of a least squares process that determines 

estimates of the parameters m and c such that those values will make the sum of the squares of 

the residuals, multiplied by their weights, a minimum.  Two examples will be considered, the 

first with all measurements considered as having equal precisions, i.e., all weights of equal 

value, and the second, measurements having different precisions, i.e., unequal weights. 

 

2.4.1. Line of Best Fit (equal weights) 

In Figure 2.1 there are five data points whose x,y coordinates (scaled from the diagram in 

mm's) are 

 

Point
1 40.0 24.0
2 15.0 24.0
3 10.0 12.0
4 38.0 15.0
5 67.0 30.0

x y
− −
− −

−
 

Table 2.2   Coordinates of data points (mm's) shown in Figure 2.1 

 

y m x cAssume that the data points accord with the mathematical model = +  and each 

measurement has equal precision.  Furthermore, assume that the residuals are associated with 

the y values only, which leads to an observation equation of the form 

 k k ky v m x c+ = +  (2.15) 

By adopting this observation equation we are actually saying that the measurements (the x,y 

coordinates) don't exactly fit the mathematical model, i.e., there are inconsistencies between 

the model and the actual measurements, and these inconsistencies (in both x and y 

measurements) are grouped together as residuals  and simply added to the left-hand-side of 

the mathematical model.  

kv

This is simply a convenience.  We could write an observation 

equation of the form 
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 ( )k kk y k xy v m x v c+ = + +  

kxv ,  are residuals associated with the x and y coordinates of the k
kyv th point.  Observation 

equations of this form require more complicated least squares solutions and are not considered 

in this elementary section. 

 

Equations (2.15) can be re-written as residual equations of the form 

 k kv m x c yk= + −  (2.16) 

The distinction here between observation equations and residual equations is simply that 

residual equations have only residuals on the left of the equals sign.  Rearranging observation 

equations into residual equations is an interim step to simplify the function ϕ  = sum of 

squares of residuals. 

 

Since all observations are of equal precision (equal weights), the least squares function to be 

minimised is 

 2

1

 the sum of the squares of the residuals
n

k
k

vϕ
=

= = ∑  

or  
5

2 2 2
1 1 2 2 5

1

( ) ( ) .... ( )k
k

v m x c y m x c y m x c yϕ
=

= = + − + + − + + + −∑ 2
5

ϕ  is a function of the u = 2 "unknown" parameters m and c and so to minimise the sum of 

squares of residuals, the partial derivatives 
m

∂ϕ
∂

 and 
c

∂ϕ
∂

 are equated to zero. 

 
1 1 1 2 2 2 5 5 5

1 1 2 2 5 5

2( )( ) 2( )( ) ... 2( )( ) 0

2( )(1) 2( )(1) ... 2( )(1) 0

m x c y x m x c y x m x c y x
m

m x c y m x c y m x c y
c

∂φ
∂
∂φ
∂

= + − + + − + + + − =

= + − + + − + + + − =
  

Cancelling the 2's, simplifying and re-arranging gives two normal equations of the form 

  (2.17) 

2

1 1 1

1 1

n n n

k k
k k k

n

k k
k k

m x c x x y

m x c n y

= = =

= =

+ =

+ =

∑ ∑ ∑

∑ ∑

k k

n
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The normal equations can be expressed in matrix form as 

 
2

k kk k

kk

x yx x m
yx n c

⎡ ⎤ ⎡ ⎤⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦

∑∑ ∑
∑∑

 (2.18) 

or =N x t  (2.19) 

Matrix algebra is a powerful mathematical tool that simplifies the theory associated with least 

squares.  The student should become familiar with the terminology and proficient with the 

algebra.  Appendix A contains useful information relating to matrix algebra. 

  is the (  11 12

21 22

n n
n n

⎡
= ⎢

⎣ ⎦
N ⎤

⎥ ),u u normal equation coefficient matrix

 1

2

x
x

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
x  is the (  ),1u vector of parameters (or "unknowns"), and 

  is the (  1

2

t
t

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
t ),1u vector of numeric terms. 

The solution of the normal equations for the vector of parameters is 

  (2.20) 1−=x N t

In this example (two equations in two unknowns) the matrix inverse 1−N  is easily obtained 

(see Appendix A 4.8) and the solution of (2.20) is given as 

 1 22

2 2111 22 12 21

1
( )

12 1

11 2

x n n t
x n n tn n n n

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x  (2.21) 

From the data given in Table 2.2, the normal equations are 

  
7858.00 60.00 3780.00

60.00 5.00 15.00
m
c

⎡ ⎤ ⎡ ⎤ ⎡
=⎢ ⎥ ⎢ ⎥ ⎢ −⎣ ⎦ ⎣ ⎦ ⎣

⎤
⎥
⎦

and the solutions for the best estimates of the parameters m and c are 

 
( ) ( ) ( ) ( )

5.00 60.00 0.5547771
60.00 7858.00 9.6573277858.00 5.00 60.00 60.00

m
c

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

Substitution of the best estimates of the parameters m and c into the residual equations 

 gives the residuals (mm's) as k kv m x c y= + − k
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1

2

3

4

5

v
v
v
v
v

=
=
=
=
=

7.8
6.0
7.9
3.6
2.5

−

−
−

 

 

2.4.2. Line of Best Fit (unequal weights) 

Consider again the Line of best Fit shown in Figure 2.1 but this time the x,y coordinate pairs 

are weighted, i.e., some of the data points are considered to have more precise coordinates 

than others.  Table 2.3 shows the x,y coordinates (scaled from the diagram in mm's) with 

weights. 

 

Point weight 
1 40.0 24.0 2
2 15.0 24.0 5
3 10.0 12.0 7
4 38.0 15.0 3
5 67.0 30.0 3

x y w
− −
− −

−
 

Table 2.3   Coordinates (mm) and weights of data points shown in Figure 2.1 

 

Similarly to before, a residual equation of the form given by (2.16) can be written for each 

observation but this time a weight  is associated with each equation and the least squares 

function to be minimised is 

kw

  2

1

 the sum of the weighted squared residuals
n

k k
k

w vϕ
=

= = ∑

or  
5

2 2 2
1 1 1 2 2 2 5 5 5

1

( ) ( ) .... ( )k k
k

w v w m x c y w m x c y w m x c yϕ
=

= = + − + + − + + + −∑ 2

ϕ  is a function of the u = 2 "unknown" parameters m and c and so to minimise ϕ  the partial 

derivatives 
m

∂ϕ
∂

 and 
c

∂ϕ
∂

 are equated to zero. 
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1 1 1 1 2 2 2 2 5 5 5 5

1 1 1 2 2 2 5 5 5

2 ( )( ) 2 ( )( ) ... 2 ( )( ) 0

2 ( )(1) 2 ( )(1) ... 2 ( )(1) 0

w m x c y x w m x c y x w m x c y x
m

w m x c y w m x c y w m x c y
c

∂φ
∂
∂φ
∂

= + − + + − + + + − =

= + − + + − + + + − =
  

Cancelling the 2's simplifying and re-arranging gives two normal equations of the form 

  

2

1 1 1

1 1 1

n n n

k k k k k k k
k k k

n n n

k k k k k
k k k

m w x c w x w x y

m w x c w w y

= = =

= = =

+ =

+ =

∑ ∑ ∑

∑ ∑ ∑

The normal equations expressed in matrix form =Nx t  are 

 
2

k k kk k k k

k kk k k

w x yw x w x m
w yw x w c

⎡ ⎤ ⎡ ⎤⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦

∑∑ ∑
∑∑ ∑

 

Substituting the data in Table 2.3, the normal equations are 

  
22824.00 230.00 10620.00

230.00 20.00 117.00
m
c

⎡ ⎤ ⎡ ⎤ ⎡
=⎢ ⎥ ⎢ ⎥ ⎢ −⎣ ⎦ ⎣ ⎦ ⎣

⎤
⎥
⎦

The solution for the best estimates of the parameters m and c is found in exactly the same 

manner as before (see section 2.4.1) 

 
0.592968

12.669131
m
c

=
= −

 

Substitution of m and c into the residual equations k kv m x c yk= + −  gives the residuals 

(mm's) as 

 

1

2

3

4

5

v
v
v
v
v

=
=
=
=
=

12.4
2.4
5.3
5.1
2.9

−

−
−

 

Comparing these residuals with those from the Line of Best Fit (equal weights), shows that 

the line has been pulled closer to points 2 and 3, i.e.; the points having largest weight. 
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2.5. Variances, Covariances, Cofactors and Weights 

Some of the information in this section has been introduced in previously in section 2.3 The 

Weighted Mean and is re-stated here in the context of developing general matrix expressions 

for variances, covariances, cofactors and weights of sets or arrays of measurements. 

 

In surveying applications, we may regard a measurement x as a possible value of a continuous 

random variable drawn from an infinite population.  To model these populations, and thus 

estimate the quality of the measurements, probability density functions have been introduced.  

In surveying, Normal (Gaussian) probability density functions are the usual model.  A 

probability density function is a non-negative function where the area under the curve is one.  

For  and  the values of ( ) 0f x ≥ ( ) 1f x dx
+∞

−∞
=∫ ( )f x  are not probabilities.  The probability a 

member of the population lies in the interval a to b is ( )
b

a
f x dx∫ .  The population mean μ , 

population variance 2
xσ  and the family of Normal probability density functions are given by 

Kreyszig (1970) as 

 ( )x x f x dxμ
+∞

−∞
= ∫  (2.22) 

 ( )22 ( )x xx f x dxσ μ
+∞

−∞
= −∫  (2.23) 

 

2
1
21( ; , )

2

x

x

x

x x
x

f x e
μ

σμ σ
σ π

⎛ ⎞−
− ⎜ ⎟

⎝ ⎠=  (2.24) 

Since the population is infinite, means and variances are never known, but may be estimated 

from a sample of size n.  The sample mean x  and sample variance 2
xs , are unbiased estimates 

of the population mean xμ  and population variance 2
xσ  

 
1

1 n

k
k

x x
n =

= ∑  (2.25) 

 ( 22

1

1
1

n

x k
k

s x
n =

=
− ∑ )x−  (2.26) 
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The sample standard deviation xs  is the positive square root of the sample variance and is a 

measure of the precision (or dispersion) of the measurements about the mean x . 

 

In least squares applications, an observation may be the mean of a number measurements or a 

single measurement.  In either case, it is assumed to be from an infinite population of 

measurements having a certain (population) standard deviation and that an estimate this 

standard deviation is known. 

 

When two or more observations are jointly used in a least squares solution then the 

interdependence of these observations must be considered.  Two measures of this 

interdependence are covariance and correlation.  For two random variables x and y with a 

joint probability density function ( , )f x y  the covariance x yσ  is 

 ( ) ( ) ( , )x y x yx y f x y dx dyσ μ μ
+∞ +∞

−∞ −∞
= − −∫ ∫  (2.27) 

and the correlation coefficient ρ  is given by 

 x y
x y

x y

σ
ρ

σ σ
=  (2.28) 

The correlation coefficient ρ  will vary between 1± .  If 0x yρ =  random variables x and y 

are said to be uncorrelated and, if 1x yρ = ± , x and y are linked by a linear relationship 

(Kreyszig 1970, pp.335-9).  Correlation and statistical dependence are not the same, although 

both concepts are used synonymously.  It can be shown that the covariance x yσ  is always 

zero when the random variables are statistically independent (Kreyszig 1970, p.137-9).  

Unfortunately, the reverse is not true in general.  Zero covariance does not necessarily imply 

statistical independence.  Nevertheless, for multivariate Normal probability density functions, 

zero covariance (no correlation) is a sufficient condition for statistical independence (Mikhail 

1976, p.19). 

 

The sample covariance x ys  between n pairs of values 1 1( , )x y , 2 2( , )x y , ..., ( , )n nx y  with 

means x  and y  is (Mikhail 1976, p.43) 

 
1

1 ( )(
1

n

x y k k
k

s x x
n =

= −
− ∑ )y y−  (2.29) 
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Variances and covariances of observations can be conveniently represented using matrices.  

For n observations 1 2 3, , , ..., nx x x x  with variances 2 2 2
1 2 3, , , ..., n

2σ σ σ σ  and covariances 

12 13, , ...σ σ  the variance-covariance matrix Σ  is defined as 

 

2
1 12 13 1

2
21 2 23 2

2
1 2 3

...

...
.... .... .... ....

...

n

n

n n n n n

σ σ σ σ
σ σ σ σ

σ σ σ σ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Σ  (2.30) 

Note that the variance-covariance matrix Σ  is symmetric since in general k j j kσ σ= . 

 

In practical applications of least squares, population variances and covariances are unknown 

and are replaced by estimates , , … ,  and , , … or by other numbers 

representing relative variances and covariances.  These are known as 

2
1s

2
2s 2

ns 12s 13s

cofactors and the 

cofactor matrix Q, which is symmetric, is defined as 

 

11 12 13 1

21 22 23 2

1 2 3

...

...
.... .... .... ....

...

n

n

n n n n n

q q q q
q q q q

q q q q

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Q  (2.31) 

The relationship between variance-covariance matrices and cofactor matrices is 

  (2.32) 2
0σ= QΣ

2
0σ  is a scalar quantity known as the variance factor.  The variance factor is also known as the 

reference variance and the variance of an observation of unit weight (see section 2.3 for 

further discussion on this subject). 

 

The inverse of the cofactor matrix Q is the weight matrix W. 

 1−=W Q  (2.33) 

Note that since Q is symmetric, its inverse W is also symmetric.  In the case of uncorrelated 

observations, the variance-covariance matrix Σ  and the cofactor matrix Q are both diagonal 

matrices (see Appendix A) and the weight of an observation w is a value that is inversely 

proportional to the estimate of the variance i.e., 
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 2
0kk kkw qσ=    or   2 2

0kk kkw σ= s  (2.34) 

For uncorrelated observations, the off-diagonal terms will be zero and the double subscripts 

may be replaced by single subscripts; equation (2.34) becomes 

 2 2
0kw σ= ks  (2.35) 

This is the classical definition of a weight where 2
0σ  is a constant of proportionality. 

 

Note: The concept of weights has been extensively used in classical least squares theory but 

is limited in its definition to the case of independent (or uncorrelated) observations.  

(Mikhail 1976, pp.64-65 and Mikhail and Gracie 1981, pp.66-68). 

 

2.6. Matrices and Simple Least Squares Problems 

Matrix algebra is a powerful mathematical tool that can be employed to develop standard 

solutions to least squares problems.  The previous examples of the Line of Best Fit will be 

used to show the development of standard matrix equations that can be used for any least 

squares solution. 

 

In previous developments, we have used a least squares function ϕ  as meaning either the sum 

of squares of residuals or the sum of squares of residuals multiplied by weights. 

 

In the Line of Best Fit (equal weights), we used the least squares function  

 2

1

 the sum of the squares of the residuals
n

k
k

vϕ
=

= = ∑  

If the residuals  are elements of a (column) vector v, the function kv ϕ  can be written as the 

matrix product 

  [ ]

1

22
1 2

1

n
T

k n
k

n

v
v

v v v v

v

ϕ
=

⎡ ⎤
⎢ ⎥
⎢ ⎥= = =
⎢ ⎥
⎢ ⎥
⎣ ⎦

∑ v v"
#
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In the Line of Best Fit (unequal weights), we used the least squares function  

  2

1

 the sum of the weighted squared residuals
n

k k
k

w vϕ
=

= = ∑

If the residuals  are elements of a (column) vector v and the weights are the diagonal 

elements of a diagonal weight matrix W, the function 

kv

ϕ  can be written as the matrix product 

  [ ]

1 1

2 22
1 2

1

0 0 0
0 0 0
0 0 0
0 0 0

n
T

k k n
k

n n

w v
w v

w v v v v

w v

ϕ
=

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= = =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

∑ v Wv"
% #

Note that in this example the weight matrix W represents a set of uncorrelated measurements. 

 

In general, we may write least squares function as a matrix equation 

  (2.36) Tϕ = v Wv

Note that replacing W with the identity matrix I gives the function for the case of equal 

weights and that for n observations, the order of v is (n,1), the order of W is (n,n) and the 

function  is a scalar quantity (a single number). Tϕ = v Wv

 

yIn both examples of the Line of Best Fit an observation equation k k kv m x c+ = +

k

1

2

3

4

5

 was used 

that if re-arranged as  yields five equations for the coordinate pairs k kv m x c y− + = −

 

1 1

2 2

3 3

4 4

5 5

v mx c y
v mx c y
v mx c y
v mx c y
v mx c y

− − = −
− − = −
− − = −
− − = −
− − = −

 

Note that these re-arranged observation equations have all the unknown quantities v, m and c 

on the left of the equals sign and all the known quantities on the right. 
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These equations can be written in matrix form 

  

1 1

2 2

5 5

1
1

1

v x
v x ym

c
v x y

− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

# # # #

1

2

5

y

and written symbolically as 

 + =v Bx f  (2.37) 

where = −f d l  (2.38) 

If n is the number of observations (equal to the number of equations) and u is the number of 

unknown parameters 

 v is an (n,1) vector of residuals, 

 B is an (n,u) matrix of coefficients, 

 x is the (u,1) vector of unknown parameters, 

 f is the (n,1) vector of numeric terms derived from the observations, 

 d is an (n,1) vector of constants and 

 l is the (n,1) vector of observations. 

Note that in many least squares problems the vector d is zero. 

 

By substituting (2.37) into (2.36), we can obtain an expression for the least squares function 

  
( ) ( )

( )( ) ( )

( ) ( )

T

T

TT

T T T

ϕ =

= − −

= − −

= − −

v Wv

f Bx W f Bx

f Bx W f Bx

f x B W f Bx

and multiplication, observing the rule of matrix algebra gives 

  (2.39) T T T T T Tϕ = − − +f Wf f WBx x B Wf x B WBx

Since ϕ  is a scalar (a number), the four terms on the right-hand-side of (2.39) are also scalars.  

Furthermore, since the transpose of a scalar is equal to itself, the second and third terms are 

equal , remembering that W is symmetric hence , giving ( )TT T=f WBx x B WfT T=W W

 ( )2T T T Tϕ = − +f Wf f WBx x B WB x  (2.40) 
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In equation (2.40) all matrices and vectors are numerical constants except x, the vector of 

unknown parameters, therefore for the least squares function ϕ  to be a minimum, its partial 

derivative with respect to each element in vector x must be equated to zero, i.e., ϕ  will be a 

minimum when Tϕ∂
=

∂
0

x
.  The first term of (2.40) does not contain x so its derivative is 

automatically zero and the second and third terms are bilinear and quadratic forms 

respectively and their derivatives are given in Appendix A, hence ϕ  will be a minimum when 

 ( )2 2T T T Tϕ∂
= − + =

∂
f WB x B WB 0

x
 

Cancelling the 2's, re-arranging and transposing gives a set of normal equations 

 ( )T =B WB x B WfT  (2.41) 

Equation (2.41) is often given in the form 

 =Nx t  (2.42) 

where   is a (u,u) coefficient matrix (the normal equation coefficient 

matrix), 

T=N B WB

 x is the (u,1) vector of unknown parameters and 

  is a (u,1) vector of numeric terms. T=t B Wf

 

The solution for the vector of parameters x is given by 

 1−=x N t  (2.43) 

After solving for the vector x, the residuals are obtained from 

 = −v f Bx  (2.44) 

and the vector of "adjusted" or estimated observations  is l̂

 ˆ = +l l v  (2.45) 

The "hat" symbol (^) is used to denote quantities that result from a least squares process.  

Such quantities are often called adjusted quantities or least squares estimates. 
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These equations are the standard matrix solution for 

 

least squares adjustment of indirect observations. 

 

The name "least squares adjustment of indirect observations", adopted by Mikhail (1976) and 

Mikhail & Gracie (1981), recognises the fact that each observation is an indirect measurement 

of the unknown parameters.  This is the most common technique employed in surveying and 

geodesy and is described by various names, such as 

 parametric least squares 

 least squares adjustment by observation equations 

 least squares adjustment by residual equations 

 

The technique of least squares adjustment of indirect observations has the following 

characteristics 

 

• A mathematical model (equation) links observations, residuals (corrections) and 

unknown parameters. 

• For n observations, there is a minimum number  required to determine the u 

unknown parameters.  In this case 

0n

0n u=  and the number of redundant observations is 

. 0r n n= −

• An equation can be written for each observation, i.e., there are n observation 

equations.  These equations can be represented in a standard matrix form; see equation 

(2.37), representing n equations in u unknowns and solutions for the unknown 

parameters, residuals and adjusted observations obtained from equations (2.41) to 

(2.45). 

 

The popularity of this technique of adjustment is due to its easy adaptability to computer-

programmed solutions.  As an example, the following MATLAB program best_fit_line.m 

reads a text file containing coordinate pairs (measurements) x and y and a weight w (a 

measure of precision associated with each coordinate pair) and computes the parameters m 

and c of a line of best fit y mx c= + . 

 

© 2005, R.E. Deakin Notes on Least Squares (2005) 2–25 



RMIT University Geospatial Science 

MATLAB program best_fit_line 
 

 
function best_fit_line 
% 
% BEST_FIT_LINE reads an ASCII textfile containing coordinate pairs (x,y) 
%   and weights (w) associated with each pair and computes the parameters 
%   m and c of the line of best fit y = mx + c using the least squares 
%   principle.  Results are written to a textfile having the same path and  
%   name as the data file but with the extension ".out" 
 
%============================================================================ 
% Function:  best_fit_line 
% 
% Author: 
%  Rod Deakin,  
%  Department of Geospatial Science, RMIT University, 
%  GPO Box 2476V, MELBOURNE VIC 3001 
%  AUSTRALIA 
%  email: rod.deakin@rmit.edu.au 
% 
% Date: 
%  Version 1.0  18 March 2003 
% 
% Remarks: 
%  This function reads numeric data from a textfile containing coordinate 
%  pairs (x,y) and weights (w) associated with each pair and computes the 
%  parameters m and c of a line of best fit y = mx + c using the least 
%  squares principle.  Results are written to a textfile having the same 
%  path and name as the data file but with the extension ".out" 
% 
% Arrays: 
%  B       - (n,u) coeff matrix of observation equation v + Bx = f 
%  f       - (n,1) vector of numeric terms 
%  N       - (u,u) coefficient matrix of Normal equations Nx = t 
%  Ninv    - (u,u) inverse of N 
%  t       - (u,1) vector of numeric terms of Normal equations Nx = t 
%  v       - (n,1) vector of residuals 
%  W       - (n,n) weight matrix 
%  weight  - (n,1) vector of weights 
%  x       - (u,1) vector of solutions 
%  x_coord - (n,1) vector of x coordinates  
%  y_coord - (n,1) vector of y coordinates  
%   
% 
% Variables 
%  n       - number of equations 
%  u       - number of unknowns 
% 
% References: 
%  Notes on Least Squares (2003), Department of Geospatial Science, RMIT 
%      University, 2003 
% 
%============================================================================ 
 
 
%------------------------------------------------------------------------- 
% 1. Call the User Interface (UI) to choose the input data file name 
% 2. Concatenate strings to give the path and file name of the input file 
% 3. Strip off the extension from the file name to give the rootName 
% 4. Add extension ".out" to rootName to give the output filename 
% 5. Concatenate strings to give the path and file name of the output file 
%------------------------------------------------------------------------- 
filepath = strcat('c:\temp\','*.dat'); 
[infilename,inpathname] = uigetfile(filepath); 
infilepath = strcat(inpathname,infilename); 
rootName   = strtok(infilename,'.'); 
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MATLAB program best_fit_line 
 

outfilename = strcat(rootName,'.out'); 
outfilepath = strcat(inpathname,outfilename); 
 
%---------------------------------------------------------- 
% 1. Load the data into an array whose name is the rootName 
% 2. set fileTemp = rootName 
% 3. Copy columns of data into individual arrays 
%---------------------------------------------------------- 
load(infilepath); 
fileTemp = eval(rootName); 
x_coord = fileTemp(:,1); 
y_coord = fileTemp(:,2); 
weight  = fileTemp(:,3); 
 
% determine the number of equations 
n = length(x_coord); 
 
% set the number of unknowns 
u = 2; 
 
% set the elements of the weight matrix W 
W = zeros(n,n); 
for k = 1:n 
  W(k,k) = weight(k); 
end   
 
% form the coefficient matrix B of the observation equations 
B = zeros(n,u); 
for k = 1:n 
  B(k,1) = -x_coord(k); 
  B(k,2) = -1; 
end   
 
% for the vector of numeric terms f 
f = zeros(n,1); 
for k = 1:n 
  f(k,1) = -y_coord(k); 
end   
 
% form the normal equation coefficient matrix N 
N = B'*W*B; 
 
% form the vector of numeric terms t 
t = B'*W*f; 
 
% solve the system Nx = t for the unknown parameters x 
Ninv = inv(N); 
x = Ninv*t; 
 
% compute residuals 
v = f - (B*x); 
 
% open the output file print the data 
fidout  = fopen(outfilepath,'wt'); 
 
fprintf(fidout,'\n\nLine of Best Fit Least Squares Solution'); 
 
fprintf(fidout,'\n\nInput Data'); 
fprintf(fidout,'\n     x(k)       y(k)     weight w(k)'); 
for k = 1:n 
  fprintf(fidout,'\n%10.4f %10.4f %10.4f',x_coord(k),y_coord(k),weight(k)); 
end   
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MATLAB program best_fit_line 
 

fprintf(fidout,'\n\nCoefficient matrix B of observation equations v + Bx = f'); 
for j = 1:n 
  fprintf(fidout,'\n'); 
  for k = 1:u 
    fprintf(fidout,'%10.4f',B(j,k)); 
  end   
end   
 
fprintf(fidout,'\n\nVector of numeric terms f of observation equations v + Bx = 
f'); 
for k = 1:n 
  fprintf(fidout,'\n%10.4f',f(k,1)); 
end   
 
fprintf(fidout,'\n\nCoefficient matrix N of Normal equations Nx = t'); 
for j = 1:u 
  fprintf(fidout,'\n'); 
  for k = 1:u 
    fprintf(fidout,'%12.4f',N(j,k)); 
  end   
end   
 
fprintf(fidout,'\n\nVector of numeric terms t of Normal equations Nx = t'); 
for k = 1:u 
  fprintf(fidout,'\n%10.4f',t(k,1)); 
end   
 
fprintf(fidout,'\n\nInverse of Normal equation coefficient matrix'); 
for j = 1:u 
  fprintf(fidout,'\n'); 
  for k = 1:u 
    fprintf(fidout,'%16.4e',Ninv(j,k)); 
  end   
end   
 
fprintf(fidout,'\n\nVector of solutions x'); 
for k = 1:u 
  fprintf(fidout,'\n%10.4f',x(k,1)); 
end   
 
fprintf(fidout,'\n\nVector of residuals v'); 
for k = 1:n 
  fprintf(fidout,'\n%10.4f',v(k,1)); 
end 
 
fprintf(fidout,'\n\n'); 
 
% close the output file 
fclose(fidout); 
 
 

MATLAB program best_fit_line 
 

Data file c:\Temp\line_data.dat 
 
 
% data file for function "best_fit_line.m" 
%   x       y      w 
  -40.0  -24.0     2 
  -15.0  -24.0     5 
   10.0  -12.0     7 
   38.0   15.0     3 
   67.0   30.0     3 
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MATLAB program best_fit_line 
 

 

Running the program from the MATLAB command window prompt >> opens up a standard 

Microsoft Windows file selection window in the directory c:\Temp.  Select the appropriate 

data file (in this example: line_data.dat) by double clicking with the mouse and the program 

reads the data file, computes the solutions and writes the output data to the file 
c:\Temp\line_data.out   
 

MATLAB command window 
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MATLAB program best_fit_line 
 

Output file c:\Temp\line_data.out 
 
 
Line of Best Fit Least Squares Solution 
 
Input Data 
     x(k)       y(k)     weight w(k) 
  -40.0000   -24.0000     2.0000 
  -15.0000   -24.0000     5.0000 
   10.0000   -12.0000     7.0000 
   38.0000    15.0000     3.0000 
   67.0000    30.0000     3.0000 
 
Coefficient matrix B of observation equations v + Bx = f 
   40.0000   -1.0000 
   15.0000   -1.0000 
  -10.0000   -1.0000 
  -38.0000   -1.0000 
  -67.0000   -1.0000 
 
Vector of numeric terms f of observation equations v + Bx = f 
   24.0000 
   24.0000 
   12.0000 
  -15.0000 
  -30.0000 
 
Coefficient matrix N of Normal equations Nx = t 
  22824.0000    230.0000 
    230.0000     20.0000 
 
Vector of numeric terms t of Normal equations Nx = t 
10620.0000 
 -117.0000 
 
Inverse of Normal equation coefficient matrix 
     4.9556e-005    -5.6990e-004 
    -5.6990e-004     5.6554e-002 
 
Vector of solutions x 
    0.5930 
  -12.6691 
 
Vector of residuals v 
  -12.3878 
    2.4363 
    5.2605 
   -5.1363 
   -2.9403 
 
 

The data in this example is taken from section  2.4.2  Line of Best Fit (unequal weights) 

 

 

© 2005, R.E. Deakin Notes on Least Squares (2005) 2–30 



RMIT University Geospatial Science 

MATLAB program best_fit_line 
 

By adding the following lines to the program, the Line of Best Fit is shown on a plot together 

with the data points. 
%-------------------------------------- 
% plot data points and line of best fit 
%-------------------------------------- 
 
%  copy solutions from vector x 
m = x(1,1); 
c = x(2,1); 
 
% find minimum and maximum x coordinates 
xmin = min(x_coord); 
xmax = max(x_coord); 
 
% create a vector of x coordinates at intervals of 0.1 
% between min and max coordinates 
x = xmin:0.1:xmax; 
 
% calculate y coordinates of Line of Best Fit 
y = m*x + c; 
 
% Select Figure window and clear figure 
figure(1); 
clf(1); 
hold on; 
grid on; 
box on; 
 
% plot line of best fit and then the data points with a star (*) 
plot(x,y,'k-'); 
plot(x_coord,y_coord,'k*'); 
 
% anotate the plot 
title('Least Squares Line of Best Fit')  
xlabel('X coordinate'); 
ylabel('Y coordinate'); 
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Figure 2.3  Least Squares Line of Best Fit 
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2.7. Least Squares Curve Fitting 

The general matrix solutions for least squares adjustment of indirect observations (see 

equations (2.37) to (2.45) of section 2.6) can be applied to curve fitting.  The following two 

examples (parabola and ellipse) demonstrate the technique. 

2.7.1. Least Squares Best Fit Parabola 

Consider the following:  A surveyor working on the re-alignment of a rural road is required to 

fit a parabolic vertical curve such that it is a best fit to the series of natural surface Reduced 

Levels (RL's) on the proposed new alignment.  Figure 2.2 shows a Vertical Section of the 

proposed alignment with Chainages (x-values) and RL's (y-values). 
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Figure 2.2  Vertical Section of proposed road alignment 

 

The general equation of a parabolic curve is 

 2y ax bx c= + +  (2.46) 

This is the mathematical model that we assume our data accords with and to account for the 

measurement inconsistencies, due to the irregular natural surface and small measurement 

errors we can add residuals to the left-hand-side of (2.46) to give an observation equation 

 2
k k k ky v ax bx c+ = + +  (2.47) 
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Equation (2.47) can be re-arranged as 

 2
k kv ax bx c yk− − − = −  (2.48) 

n = 6 equations in u = 3 unknown parameters a, b, c can be written in matrix form  

as 

+ =v Bx f

  

2
1 11 1

2
2 22 2

2
6 66 6

1
1

1

v yx x
a

v yx x
b
c

v yx x

−⎡ ⎤− − −⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥−− − − ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥+ =⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ −− − −⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

# ## # #

where 

  ( ) ( ) ( ) ( )

2
1 11 1

2
2 22 2

6,1 6,3 3,1 6,1

2
6 66 6

1
1

, , ,

1

v yx x
a

v yx x
b
c

v yx x

−⎡ ⎤− − −⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥−− − − ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥= = = =⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ −− − −⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

v B x f
# ## # #

Considering all the measurements to be of equal precision, i.e., W = I, the least squares 

solution for the three parameters in the vector x is given by the following sequence of 

operations 

• form the normal coefficient matrix:  T=N B WB

• form the vector of numeric terms:  T=t B Wf

• compute the matrix inverse: 1−N  

• compute the solutions: 1−=x N t  

• compute the residuals: = −v f Bx  

This is the identical series of operations to solve for the parameters of the Line of Best Fit, 

except in this case u = 3.  With minor modifications to the MATLAB program best_fit_line.m 

another MATLAB program best_fit_parabola.m can be created to determine the parameters a, 

b, c of the best fit parabola.  The relevant modifications are shown below. 
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MATLAB program best_fit_parabola 
 

Making the following changes to the MATLAB program best_fit_line, a new program 
best_fit_parabola can be created. 
 
Changes to function name and help instructions 
 
function best_fit_parabola 
% 
% BEST_FIT_PARABOLA reads an ASCII textfile containing coordinate pairs (x,y) 
%   and weights (w) associated with each pair and computes the parameters 
%   a, b and c of a best fit parabola y = a(x*x) + bx + c using the least 
%   squares principle.  Results are written to a textfile having the same  
%   path and name as the data file but with the extension ".out" 
 
 

Changes to function remarks in documentation section 
 
% Remarks: 
%  This function reads numeric data from a textfile containing coordinate 
%  pairs (x,y) and weights (w) associated with each pair and computes the 
%  parameters a, b, and c of a best fit parabola y = a(x*x) + bx + c using 
%  the least squares principle.  Results are written to a textfile having 
%  the same path and name as the data file but with the extension ".out" 
 
 

Changes to formation of coefficient matrix B 
 
% form the coefficient matrix B of the observation equations 
B = zeros(n,u); 
for k = 1:n 
  B(k,1) = -(x_coord(k)^2); 
  B(k,2) = -x_coord(k); 
  B(k,3) = -1; 
end   
 
 

Changes to data plotting section 
 
%------------------------------------------ 
% plot data points and Parabola of best fit 
%------------------------------------------ 
 
%  copy solutions from vector x 
a = x(1,1); 
b = x(2,1); 
c = x(3,1); 
 
% find minimum and maximum x coordinates 
xmin = min(x_coord); 
xmax = max(x_coord); 
 
% create a vector of x coordinates at intervals of 0.1 
% between min and max coordinates 
x = xmin:0.1:xmax; 
 
% calculate y coordinates of Parabola of Best Fit 
y = a*(x.*x) + b*x + c; 
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MATLAB program best_fit_parabola 
 

Using the data from Figure 2.2 a data file c:\Temp\parabola_data.dat was created 
 
% data file for function "best_fit_parabola.m" 
%   x       y      w 
 100.0    63.48    1 
 150.0    46.20    1 
 200.0    36.62    1 
 250.0    38.96    1 
 300.0    47.42    1 
 350.0    57.72    1 
 
 
 

Running the program from the MATLAB command window generated the following output 
file c:\Temp\parabola_data.out and a plot of the Least Squares Parabola of best Fit 
 
 
Parabola of Best Fit Least Squares Solution 
 
Input Data 
     x(k)       y(k)     weight w(k) 
  100.0000    63.4800     1.0000 
  150.0000    46.2000     1.0000 
  200.0000    36.6200     1.0000 
  250.0000    38.9600     1.0000 
  300.0000    47.4200     1.0000 
  350.0000    57.7200     1.0000 
 
Coefficient matrix B of observation equations v + Bx = f 
    -10000.0000      -100.0000        -1.0000 
    -22500.0000      -150.0000        -1.0000 
    -40000.0000      -200.0000        -1.0000 
    -62500.0000      -250.0000        -1.0000 
    -90000.0000      -300.0000        -1.0000 
   -122500.0000      -350.0000        -1.0000 
 
Vector of numeric terms f of observation equations v + Bx = f 
       -63.4800 
       -46.2000 
       -36.6200 
       -38.9600 
       -47.4200 
       -57.7200 
 
Coefficient matrix N of Normal equations Nx = t 
29218750000.0000   97875000.0000     347500.0000 
   97875000.0000     347500.0000       1350.0000 
     347500.0000       1350.0000          6.0000 
 
Vector of numeric terms t of Normal equations Nx = t 
  16912600.0000 
     64770.0000 
       290.4000 
 
Inverse of Normal equation coefficient matrix 
     4.2857e-009    -1.9286e-006     1.8571e-004 
    -1.9286e-006     8.9071e-004    -8.8714e-002 
     1.8571e-004    -8.8714e-002     9.3714e+000 
 
Vector of solutions x 
       0.001500 
      -0.688221 
     116.350000 
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MATLAB program best_fit_parabola 
 

 
Vector of residuals v 
         -0.948 
          0.676 
          2.103 
         -0.889 
         -2.498 
          1.555 
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Figure 2.4  Least Squares Parabola of Best Fit 

 

 

2.7.2. Least Squares Best Fit Ellipse 

In November 1994, a survey was undertaken by staff of the Department of Geospatial Science 

at the Melbourne Cricket Ground (MCG) to determine the dimensions of the playing surface.  

This survey was to decide which of two sets of dimensions was correct, those of the 

Melbourne Cricket Club (MCC) or those of the Australian Football League (AFL).  The MCC 

curator Tony Ware and the AFL statistician Col Hutchison both measured the length of the 

ground (Tony Ware with a 100-metre nylon tape and Col Hutchison with a measuring wheel) 

and compared their distances with the "true" distance determined by Electronic Distance 

Measurement (EDM) with a Topcon 3B Total Station.  Their measurements were both 

reasonably close to the EDM distance and it turned out that the "official" AFL dimensions 
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were incorrect.  After this "measure-off", observations (bearings and distances) were made to 

seventeen points around the edge of the playing surface to determine the Least Squares 

Ellipse of Best Fit and to see if the major axis of this ellipse was the actual line between the 

goals at either end.  The Total Station was set-up close to the goal-to-goal axis and 20-25 

metres from the centre of the ground.  An arbitrary X,Y coordinate system was used with the 

origin at the Total Station and the positive X-axis in the direction of the Brunton Avenue end 

of the Great Southern Stand (approximately west).  The table of coordinates is given below; 

point numbers 1 to 6 were not points on the edge of the ground. 

 
Point No. X-coordinate Y-coordinate 

7 -54.58 17.11 
8 -45.47 36.56 
9 -28.40 53.22 
10 -2.02 63.72 
11 28.12 63.44 
12 57.49 52.55 
13 80.85 34.20 
14 98.08 9.14 
15 105.69 -17.30 
16 103.83 -46.96 
17 88.42 -71.50 
18 61.26 -86.84 
19 26.47 -91.07 
20 -6.59 -81.37 
21 -34.55 -59.24 
22 -51.51 -29.28 
23 -56.30 -2.31 

 

Table 2.4 Arbitrary coordinates of points around the 
perimeter of the playing surface of the MCG 
(date of survey November 1994) 

 

 

To develop an observation equation for the Least Squares Ellipse of Best Fit and to determine 

the lengths and directions of the axes of the ellipse the following derivation of the general 

equation of an ellipse is necessary. 

 

Figure 2.5 shows an ellipse whose axes are aligned with the u-v axes.  The semi-axes lengths 

are a and b ( ) , the centre of the ellipse is at a b> 0 0,X Y  and the ellipse axes are rotated by an 
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angle β , measured positive anti-clockwise from the x-axis.  The x-y axes are parallel to the X-

Y axes and pass through the centre of the ellipse. 
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Figure 2.5 

 

The u,v Cartesian equation of the ellipse is 

 
2 2

2 2 1u v
a b

+ =  (2.49) 

Equation (2.49) can be expressed in matrix form as 

 [ ]
2

2

1 0
1

0 1
ua

u v
vb

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
 (2.50) 

The u,v axes are rotated (positive anti-clockwise) by an angle β  from the x,y axes and the 

relationship between coordinates is shown in Figure 2.6 

 

y

x
β
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v •

y cos β

x sin β

x cos β

y sin β

 
 

Figure 2.6 
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Inspection of Figure 2.6 shows 

 
cos sin
sin cos

u x y
v x y

β β
β β

= +
= − +

 (2.51) 

Replacing cos β  and sin β  with the letters c and s the coordinate relationships can be 

represented as a matrix equation 

 
c s
s c

u x
v y

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (2.52) 

Transposing this equation (remembering the reversal rule with the transpose of matrix 

products) gives 

 [ ] [ ] c s
s c

u v x y
−⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (2.53) 

Substituting (2.52) and (2.53) into (2.50) and multiplying the matrices gives 

 

[ ]

[ ]

2

2

2 2

2 2 2 2

2 2

2 2 2 2

c s c s1 0
1

s c s c0 1

c s cs cs

1
cs cs s c

xa
x y

yb

a b a b x
x y

y
a b a b

− ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞+ −⎢ ⎥⎜ ⎟⎜ ⎟
⎝ ⎠ ⎡ ⎤⎝ ⎠⎢ ⎥ =⎢ ⎥⎢ ⎥⎛ ⎞ ⎣ ⎦⎛ ⎞⎢ ⎥− +⎜ ⎟ ⎜ ⎟

⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

 

Replacing the elements of the square matrix with the symbols A, B and H, noting that the top-

right and lower-left elements are the same, this equation may be written in a general form as 

 [ ] 1
A H x

x y
H B y

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
 

or 2 2Ax Hxy By2 1+ + =  (2.54) 

Equation (2.54) is the equation of an ellipse centred at the coordinate origin but with axes 

rotated from the x,y axes.  The semi axes lengths a and b, and the rotation angle β  can be 

determined from (2.54) by the following method. 

 

Letting cosx r θ=  and siny r θ=  in equation (2.54) gives the polar equation of the ellipse
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 2
2

1cos 2 cos sin sinA H B
r

θ θ θ θ+ + 2 =  (2.55) 

r is the radial distance from the centre of the ellipse and θ  is the angle measured positive 

anti-clockwise from the x-axis.  Equation (2.55) has maximum and minimum values defining 

the lengths and directions of the axes of the ellipse.  To determine these values from (2.55), 

consider the following 

Let 2 2
2

2 2

1 cos 2 cos sin sin

cos sin 2 sin

f A H B
r

A H B

θ θ θ

θ θ θ

= = + +

= + +

θ  

and aim to find the optimal (maximum and minimum) values of f and the values of θ  when 

these occur by investigating the first and second derivatives f ′  and f ′′  respectively, i.e., 

 
max 0 and 0

 is  when 
min 0 and 0

f f
f

f f
′ ′′= <⎧ ⎫ ⎧

⎨ ⎬ ⎨ ′ ′′= >⎩ ⎭ ⎩

⎫
⎬
⎭

2

 

where 
( )

( )
sin 2 2 cos2

2 cos2 4 sin

f B A H

f B A H

θ θ

θ θ

′ = − +

′′ = − −
 (2.56) 

Now the maximum or minimum value of f occurs when 0f ′ =  and from the first member of 

(2.56) the value of θ  is given by 

 2tan 2 H
A B

θ =
−

 (2.57) 

But this value of θ  could relate to either a maximum or a minimum value of f.  So from the 

second member of equations (2.56) with a value of 2θ  from equation (2.57) this ambiguity 

can be resolved by determining the sign of the second derivative f ′′  giving 

 max

min

0
 when 

0
f f
f f

′′ <⎧ ⎫ ⎧ ⎫
⎨ ⎬ ⎨ ′′ >⎩ ⎭⎩ ⎭

⎬

 

In the polar equation of the ellipse given by equation (2.55) maxf  coincides with  and minr minf  

coincides with  so the angle maxr β  (measured positive anti-clockwise) from the x-axis to the 

major axis of the ellipse (see Figure 2.5) is found from 

 max
1

min 2

0
 when  and 

0
r f
r f

β θ
β θ π

′′ => ⎧ ⎫⎧ ⎫ ⎧ ⎫
⎨ ⎬ ⎨ ⎬ ⎨′′ = −<⎩ ⎭⎩ ⎭ ⎩ ⎭

⎬  (2.58) 
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These results can be verified by considering the definitions of A, B and H used in the 

derivation of the polar equation of the ellipse, i.e., 

 
2 2 2 2

2 2 2 2 2 2

cos sin sin cos cos sin cos sin, ,A B H
a b a b a b

β β β β β β β
= + = + = −

β  

and 2 2 2 2

1 1 1 1cos2 , 2 sin 2A B H
a b a b

β β⎛ ⎞ ⎛ ⎞− = − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

giving 2tan 2 H
A B

β =
−

 

Noting that the values of θ  coinciding with the maximum or minimum values of the function 

f are found from equation (2.57) then 2tan 2 tan 2H
A B

β θ= =
−

 or 

 tan 2 tan 2θ β=  

whereupon 

 1
22 2   or    where  is an integern n nθ β π θ β π= + = +  

Also, from the second member of equations (2.56) 

 ( )2 cos2 4 sinf B A H 2θ θ′′ = − −  

Now, for  0n =

 θ β= , 2 2

1 12f
a bθ β=

⎛′′ = − −⎜
⎝ ⎠

⎞
⎟  and since a b , > 0f

θ β=
′′ >  

 So θ β=  makes f minimum and so r is maximum and 

 ( )

2 2
min

22 2

2 2

cos 2 sin cos sin

cos sin 1

f A H B

a a

β β β

β β

= + +

+
= =

β
 

 So  maxr a=

When  1n =

 1
2θ β π= + , sin 2 sin 2θ β= − , cos2 cos2θ β= −  and so 

1
2

2 2

1 12f
a bθ β π= +

⎛′′ = −⎜
⎝ ⎠

⎞
⎟  and since a b , > 1

2
0f

θ β π= +
′′ <  

 So 1
2θ β π= +  makes f maximum and so r is minimum and 
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( )22 2

max 2 2

sin cos 1f
b b

β β+
= =  

 So  minr b=

When  2n =

 θ β π= + , sin 2 cos2θ β= , cos2 cos2θ β=  and 0f
θ β π= +

′′ >  

 So 1
2θ β π= +  makes min 2

1f
a

=  and maxr a=  

When  3n =

 3
2θ β π= + , sin 2 cos2θ β= − , cos2 cos2θ β= −  and 3

2
0f

θ β π= +
′′ <  

 So 3
2θ β π= +  makes max 2

1f
b

=  and minr b=  

All other even values of n give the same result as 2n =  and all other odd values of n give the 

same result as  1n =

 

Now consider Figure 2.5 and the general Cartesian equation of the ellipse, re-stated again as 

  (2.59) 2 22aX hXY bY dX eY+ + + + 1=

where the translated x,y coordinate system is related to the X,Y system by 

 0X x X= +     and    0Y y Y= +  

Substituting these relationships into (2.59) gives 

  ( ) ( ) ( ) ( ) ( ) ( )2 2
0 0 0 0 02 1a x X h x X y Y b y Y d x X e y Y+ + + + + + + + + + =0

Expanding and gathering terms gives 

 
( )
( )

2 2
0 0

0 0

2 2
0 0 0 0 0 0

2 2 2

2 2

2 1

ax hxy by aX hY d x

aY hX e y

aX hX Y bY dX eY

+ + + + +

+ + +

+ + + + + =

2

 

Inspection of the left-hand-side of this equation reveals three parts: 

(i)  is the left-hand-side of the equation of an ellipse, similar in form 

to equation 

2 2ax hxy by+ +

(2.54) , 

(ii) coefficient terms of x and y; ( )0 02 2aX hY d+ +  and ( )0 02 2aY hX e+ + , 
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(iii) a constant term  2 2
0 0 0 0 02aX hX Y bY dX eY+ + + + 0

2

 

Now when the coefficients of x and y are zero the ellipse will be centred at the origin of the 

x,y axes with an equation of the form 

 2 2ax hxy by c+ + =  (2.60) 

where ( )2 2
0 0 0 0 01 2c aX hX Y bY dX eY= − + + + + 0

0
0

 (2.61) 

and 0 0

0 0

2 2
2 2
aX hY d
hX bY e

+ + =
+ + =

 (2.62) 

Equations (2.62) can be written in matrix form and solved (using the inverse of a 2,2 matrix) 

to give 0X  and  0Y

 

0

0

0
2

0

2 2
2 2

1
2 2

Xd a h
Ye h b

X b h d
Y h a eab h

− − ⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥−− ⎣ ⎦ ⎣ ⎦⎣ ⎦

 

giving ( )0 22
eh bdX
ab h

−
=

−
 and ( )0 22

dh aeY
ab h

−
=

−
 (2.63) 

Dividing both sides of (2.60) by c gives 

 2 2Ax Hxy By2 1+ + =  (2.64) 

where , ,a hA H B
c c

b
c

= = =  

Equation (2.64), identical to equation (2.54), is the equation of an ellipse centred at the x,y 

coordinate origin whose axes are rotated from the x,y axes by an angle β .  The rotation angle 

β  and semi-axes lengths a and b of the ellipse can be determined using the method set out 

above and equations (2.58), (2.57), (2.56) and (2.55).  Thus, we can see from the development 

that the general Cartesian equation of an ellipse is given by 

  (2.65) 2 22aX hXY bY dX eY+ + + + 1=

Note that the coefficients a and b in this equation are not the semi-axes lengths of the ellipse. 
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Returning to the problem of the Least Squares Ellipse of Best Fit for the MCG, the size, shape 

location and orientation of this ellipse can be determined from a set of observation equations 

of the form 

  (2.66) 2 22k k k k k k kv aX hX Y bY dX eY+ + + + + = 1

This observation equation is the general Cartesian equation of an ellipse with the addition of 

the residual .  The addition of  to the left-hand-side of kv kv (2.65) is simply a convenience and 

reflects the fact that the measured coordinates ,k kX Y  are inconsistent with the mathematical 

model.  For each of the 17 measured points around the perimeter of the MCG an equation can 

be written and arranged in the matrix form + =v Bx f  

 

2 2
1 1 1 1 1 1 1

2 2
2 2 2 2 2 2 2

2 2
17 17 17 17 17 17 17

1
2

1

1

a
v X X Y Y X Y

h
v X X Y Y X Y

b
d

v X X Y Y X Y
e

⎡ ⎤
⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥+ =⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦

# ## # # # #
 

The vector x contains the parameters a, h, b, d and e of the general equation of the ellipse and 

with a weight matrix W = I (i.e., all observations of equal precision) the solution for x is 

given by the following sequence of operations 

• form the normal coefficient matrix:  T=N B WB

• form the vector of numeric terms:  T=t B Wf

• compute the matrix inverse: 1−N  

• compute the solutions: 1−=x N t  

• compute the residuals: = −v f Bx  

This is the identical series of operations to solve for the parameters of the Line of Best Fit, 

and for the Parabola of Best Fit except in this case the residuals v have little practical meaning 

because they are not connected to quantities such as distances or coordinates.  In the case of 

the Least Squares Ellipse of Best Fit, it is better to compute the offsets h (perpendicular 

distances) from the ellipse to the data points rather than the residuals v. 
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To compute offsets h the following preliminary sequence of operations is required: 

 

(i) compute the parameters a, h, b, d and e using the Least Squares process set out 

above. 

(ii) compute the coordinates of the origin 0 0,X Y  and the constant c using equations 

(2.63) and (2.61). 

(iii) compute coefficients A, H and B of the ellipse given by (2.64) which can then be 

used to compute the rotation angle β  and the semi-axes lengths a and b from 

equations (2.55) to (2.58) and. 

(iv) compute the u,v coordinates of the data points using equations (2.51). 

 

Now, having the u,v coordinates, the offsets h can be computed.  Consider the sectional view 

of a quadrant of an ellipse in Figure 2.7.  The u,v axes are in the direction of the major and 

minor axes respectively (a and b are the semi-axes lengths) and P is a point related to the 

ellipse by the normal, which makes an angle φ  with the major axis, and the distance h = QP 

along the normal.  The u,v coordinates of P are the distances LP and MP respectively.  From 

the geometry of an ellipse, the normal intersects the minor axis at H and the distance QH ν=  

(where ν  is the Greek symbol nu) and the distances DH and OH are 2eν  and 2 sineν φ  

respectively.  e is the eccentricity of the ellipse and the eccentricity and flattening f of an 

ellipse are related to the semi-axes a and b. 
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Figure 2.7  u,v coordinates of P related to an ellipse (a,b) 

 

The equations for f, 2 and e ν  are 

 ( )2

2 2

2

1 sin

a bf
a

e f f
a

e
ν

φ

−
=

= −

=
−

 

Using these relationships, the angle φ  and perpendicular distance h are given by 

 
2 sintan v e

u
ν φφ +

=  (2.67) 

 
cos

uh ν
φ

= −  (2.68) 

Inspecting these equations; if the semi-axes a,b and the u,v coordinates of P are known, the 

perpendicular offset h can be determined from (2.68) and (2.67).  It should be noted that 

functions of φ  appear on both sides of the equals sign of equation (2.67) and φ  must be 

solved by iteration. 
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To determine the Least Square Best Fit Ellipse for the playing surface of the MCG a 

MATLAB program best_fit_ellipse.m operating in the same way as the MATLAB programs 

best_fit_line and best_fit_parabola with a data file (in this example: MCG_ellipse_data.dat)  
 

Data file c:\Temp\MCG_ellipse_data.dat 
 
 
% Data file for MCG Survey, November 1994 
% Coordinates of 17 boundary points (edge of concrete) 
% 
% point      X       Y    weight 
    7     -54.58   17.11    1 
    8     -45.47   36.56    1 
    9     -28.40   53.22    1 
   10      -2.02   63.72    1 
   11      28.12   63.44    1 
   12      57.49   52.55    1 
   13      80.85   34.20    1 
   14      98.08    9.14    1 
   15     105.69  -17.30    1  
   16     103.83  -46.96    1 
   17      88.42  -71.50    1 
   18      61.26  -86.84    1 
   19      26.47  -91.07    1 
   20      -6.59  -81.37    1 
   21     -34.55  -59.24    1  
   22     -51.51  -29.28    1 
   23     -56.30   -2.31    1 
 

 

gives the following results (contained in an output file having the same name and path as the 

data file but with the extension .dat) and plot on the screen. 

 

Output file c:\Temp\MCG_ellipse_data.out 
 
 
Ellipse of Best Fit Least Squares Solution 
 
Input Data 
 point     x(k)         y(k)       weight w(k) 
  7     -54.5800      17.1100       1.0000 
  8     -45.4700      36.5600       1.0000 
  9     -28.4000      53.2200       1.0000 
 10      -2.0200      63.7200       1.0000 
 11      28.1200      63.4400       1.0000 
 12      57.4900      52.5500       1.0000 
 13      80.8500      34.2000       1.0000 
 14      98.0800       9.1400       1.0000 
 15     105.6900     -17.3000       1.0000 
 16     103.8300     -46.9600       1.0000 
 17      88.4200     -71.5000       1.0000 
 18      61.2600     -86.8400       1.0000 
 19      26.4700     -91.0700       1.0000 
 20      -6.5900     -81.3700       1.0000 
 21     -34.5500     -59.2400       1.0000 
 22     -51.5100     -29.2800       1.0000 
 23     -56.3000      -2.3100       1.0000 
 

© 2005, R.E. Deakin Notes on Least Squares (2005) 2–47 



RMIT University Geospatial Science 

 General Equation of Ellipse with X,Y origin not at centre of ellipse 
 aXX + 2hXY + bYY + dX + eY = 1 
 a =  1.720717e-004 
 h =  2.690541e-005 
 b =  1.865607e-004 
 d = -7.743828e-005 
 e =  3.729881e-005 
 
 Equation of Ellipse with x,y origin at centre of ellipse 
 Axx + 2Hxy + Byy = 1 
 A =  1.535544e-004 
 H =  2.401002e-005 
 B =  1.664842e-004 
 
 Ellipse parameters 
 semi-major axis a =   86.017 
 semi-minor axis b =   73.544 
 
 Bearing of major axis 
 beta(degrees) =   -37.465030 
 beta(DMS)      =  -37 27 54.11 
 Brg(degrees)   =   127.465030 
 Brg(DMS)       =  127 27 54.11 
 
 Coordinates of centre of ellipse 
 X(centre) =       24.620 
 Y(centre) =      -13.547 
 
 
Data and offsets to ellipse of best fit 
  pt      offset       X          Y          x          y          u          v 
   7       0.129    -54.580     17.110    -79.200     30.657    -81.511    -23.842 
   8       0.159    -45.470     36.560    -70.090     50.107    -86.111     -2.863 
   9       0.162    -28.400     53.220    -53.020     66.767    -82.696     20.744 
  10       0.164     -2.020     63.720    -26.640     77.267    -68.145     45.124 
  11       0.060     28.120     63.440      3.500     76.987    -44.051     63.236 
  12      -0.090     57.490     52.550     32.870     66.097    -14.116     72.457 
  13      -0.223     80.850     34.200     56.230     47.747     15.588     72.101 
  14      -0.216     98.080      9.140     73.460     22.687     44.507     62.691 
  15      -0.123    105.690    -17.300     81.070     -3.753     66.630     46.334 
  16       0.936    103.830    -46.960     79.210    -33.413     83.195     21.661 
  17       0.284     88.420    -71.500     63.800    -57.953     85.891     -7.191 
  18      -1.181     61.260    -86.840     36.640    -73.293     73.664    -35.887 
  19      -0.224     26.470    -91.070      1.850    -77.523     48.624    -60.407 
  20       0.627     -6.590    -81.370    -31.210    -67.823     16.483    -72.817 
  21       0.554    -34.550    -59.240    -59.170    -45.693    -19.171    -72.259 
  22      -0.438    -51.510    -29.280    -76.130    -15.733    -50.856    -58.796 
  23      -0.703    -56.300     -2.310    -80.920     11.237    -71.063    -40.303 
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Figure 2.8  Plot of Least Squares Best Fit Ellipse and data points for the MCG 

 

The MATLAB program best_fit_ellipse.m calls two other MATLAB functions ellipse.m (a 

function to compute the coordinates of points on an ellipse) and DMS.m (a function to convert 

decimal degree to degrees, minutes and seconds).  A copy of these programs is shown below. 
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MATLAB program best_fit_ellipse 
 

 
function best_fit_ellipse 
% 
% BEST_FIT_ELLIPSE reads an ASCII textfile containing point numbers of 
%   coordinate pairs (X,Y) and weights (W) associated with each pair and  
%   computes the cordinates of the origin, the lengths of the axes and  
%   the rotation angle of the Best Fit Ellipse using the least squares 
%   principle.  Results are written to a textfile having the same path 
%   and name as the data file but with the extension ".out" 
 
%============================================================================ 
% Function:  best_fit_ellipse 
% 
% Author: 
%  Rod Deakin,  
%  School of Mathematical and Geospatial Sciences, RMIT University, 
%  GPO Box 2476V, MELBOURNE VIC 3001 
%  AUSTRALIA 
%  email: rod.deakin@rmit.edu.au 
% 
% Date: 
%  Version 1.0  22 March 2003 
%  Version 1.1  10 May   2003 
%  Version 1.2   9 November 2005 
% 
% Functions Required: 
%    [X,Y] = ellipse(a,b,theta) 
%  [D,M,S] = DMS(DecDeg)            
% 
% Remarks:   
%  The general equation of an ellipse is 
%    aXX + 2hXY + bYY + dX + eY = 1 
%  This function computes the parameters a,h,b,d,e of a Least Squares Best Fit 
%  Ellipse given a set of X,Y coordinate pairs and weights (w) associated with  
%  each pair.  The centre of the best fit ellipse is at Xo = (eh-db)/(2ab-2hh) 
%  and Yo = (dh-ea)/(2ab-2hh).   
%  A constant c = 1 - (aXoXo + 2hXoYo + bYoYo + dXo + eYo) is divided into a,  
%  h and b giving A = a/c, H = h/c and B = b/c which are the parameters of an  
%  ellipse Axx +2Hxy + Byy = 1.  The major axis of this ellipse is rotated 
%  from the coordinate axes by an angle beta which can be determined from the 
%  polar equation of an ellipse 
%  A*cos_squared(theta) + 2H*cos(theta)*sin(theta) + B*sin_squared(theta) = 
1/r_squared 
%  The maximum and minimum values of this function occur for theta given by 
%  tan(2*theta) = 2H/(A-B) and the angle beta is determined by evaluating 
%  the sign of the second derivative of the polar equation.  This angle is 
%  substituted into the polar equation to determine the length of the semi-major 
%  axis length a.  Beta - 90 degrees will give the length of the semi-minor 
%  axis length b 
%  Note that the semi-axes lengths a,b are not the same as the parameters  
%  a and b in the general equation of the ellipse. 
%  Results are written to a textfile having the same path and name as the  
%  data file but with the extension ".out" 
% 
% References: 
%  Notes on Least Squares (2005), Geospatial Science, RMIT 
%      University, 2005 
% 
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MATLAB program best_fit_ellipse 
 

% Arrays: 
%  B       -  coeff matrix of observation equation v + Bx = f 
%  f       -  vector of numeric terms 
%  N       -  coefficient matrix of Normal equations Nx = t 
%  Ninv    -  inverse of N 
%  p       -  vector of perpendicular distances from ellipse to points 
%  point   -  vector of point numbers 
%  t       -  vector of numeric terms of Normal equations Nx = t 
%  u,v     -  vectors of u,v coords of ellipse 
%  W       -  weight matrix 
%  weight  -  vector of weights 
%  x       -  vector of solutions 
%  x,y     -  vectors of x,y coords of ellipse 
%  x_coord -  vector of X coordinates  
%  y_coord -  vector of Y coordinates 
%  xpt,ypt -  vectors of coords for point number locations on plot 
%  Xpt,Ypt -  vectors Xpt = xpt + Xc, Ypt = ypt + Yc 
%   
% 
% Variables: 
%  A,B,H   - parameters of ellipse Axx + 2Hxy + Byy = 1 
%  a,h,b,  - parameters of ellipse aXX + 2hXY + bYY + dX + eY = 1 
%  d,e 
%  a1,b1   - semi-major and semi-minor axes of ellipse 
%  beta    - angle between x-axis and major axis of ellipse (degrees) 
%  brg     - bearing of major axis (u-axis) of ellipse (degrees) 
%  c       - constant of translated ellipse or cos(x) 
%  d2r     - degree to radian conversion factor = 180/pi = 57.29577951... 
%  e2      - eccentricity squared 
%  flat    - flattening of ellipse 
%  f_dd    - second derivative of the function "f" where f is the polar 
%            equation of an ellipse 
%  lat     - latitude (radians) of point related to an ellipse 
%  n       - number of equations 
%  new_lat - new latitude in iteration  
%  nu      - radius of curvature in prime meridian 
%  pion2   - 90 degrees or pi/2 
%  u       - number of unknowns 
%  s       - sin(x) 
%  s1,s2   - sin(lat) and sin_squared(lat) 
%  scale   - scale factor to reduce size of numbers in normal equations 
%  theta   - angle for which polar equation of ellipse gives max/min 
%            values 
%  two_theta - 2*theta 
%  Xc,Yc   - coords of centre of ellipse X = x + Xc, Y = y + Yc 
%  X0,Y0   - scaled coords of centre of ellipse 
% 
%============================================================================ 
 
% 
% Set program constants 
d2r   = 180/pi; 
pion2 = pi/2; 
scale = 100; 
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MATLAB program best_fit_ellipse 
 

%------------------------------------------------------------------------- 
% 1. Call the User Interface (UI) to choose the input data file name 
% 2. Concatenate strings to give the path and file name of the input file 
% 3. Strip off the extension from the file name to give the rootName 
% 4. Add extension ".out" to rootName to give the output filename 
% 5. Concatenate strings to give the path and file name of the output file 
%------------------------------------------------------------------------- 
filepath = strcat('c:\temp\','*.dat'); 
[infilename,inpathname] = uigetfile(filepath); 
infilepath = strcat(inpathname,infilename); 
rootName   = strtok(infilename,'.'); 
outfilename = strcat(rootName,'.out'); 
outfilepath = strcat(inpathname,outfilename); 
 
%---------------------------------------------------------- 
% 1. Load the data into an array whose name is the rootName 
% 2. set fileTemp = rootName 
% 3. Copy columns of data into individual arrays 
%---------------------------------------------------------- 
load(infilepath); 
fileTemp = eval(rootName); 
point   = fileTemp(:,1); 
x_coord = fileTemp(:,2); 
y_coord = fileTemp(:,3); 
weight  = fileTemp(:,4); 
 
% Determine the number of equations and set the number of unknowns 
n = length(point); 
u = 5; 
 
% Set the elements of the weight matrix W 
W = zeros(n,n); 
for k = 1:n 
  W(k,k) = weight(k); 
end   
 
% Form the coefficient matrix B of the observation equations. 
% Note that the coordinates are scaled by a factor 1/100 to 
% reduce the size of equations. 
B = zeros(n,u); 
for k = 1:n 
  B(k,1) = (x_coord(k)/scale)^2; 
  B(k,2) = (x_coord(k)/scale)*(y_coord(k)/scale); 
  B(k,3) = (y_coord(k)/scale)^2; 
  B(k,4) = x_coord(k)/scale; 
  B(k,5) = y_coord(k)/scale; 
end   
 
% Form the vector of numeric terms f 
f = ones(n,1); 
 
% Form the normal equation coefficient matrix N 
% and the vector of numeric terms t 
N = B'*W*B; 
t = B'*W*f; 
 
% Compute the inverse and solve the system Nx = t 
Ninv = inv(N); 
x = Ninv*t; 
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MATLAB program best_fit_ellipse 
 

% Copy the results into the variables a,h,b,d,e 
a = x(1,1); 
h = x(2,1)/2; 
b = x(3,1); 
d = x(4,1); 
e = x(5,1); 
 
% Compute the coordinates of the centre of the ellipse 
X0 = (e*h - b*d)/(2*(a*b - h*h)); 
Y0 = (d*h - a*e)/(2*(a*b - h*h)); 
Xc = X0*scale; 
Yc = Y0*scale; 
 
% Compute the variables A,H,B and then the lengths 
% of the axes and the rotation angle beta 
c  = 1-(a*X0*X0 + 2*h*X0*Y0 + b*Y0*Y0 + d*X0 + e*Y0); 
A = a/c; 
H = h/c; 
B = b/c; 
 
% compute the angle theta for max or min 
two_theta = atan2(2*H,(A-B)); 
% compute second derivative 
f_dd = 2*(B-A)*cos(two_theta) - 4*H*sin(two_theta); 
% test the second derivative to determine max or min 
theta     = two_theta/2; 
if f_dd < 0 
    beta = theta - pion2; 
else 
    beta = theta; 
end     
% compute semi-major axis length 
c = cos(beta); 
s = sin(beta); 
a1 = sqrt(1/(A*c*c + 2*H*c*s + B*s*s))*scale; 
% compute semi-minor axis length 
c = cos(beta+pion2); 
s = sin(beta+pion2); 
b1 = sqrt(1/(A*c*c + 2*H*c*s + B*s*s))*scale; 
% convert beta to degrees 
beta = beta*d2r; 
 
% Calculate bearing of major axis noting that the rotation angle 
% beta is considered positive anti-clockwise from the X-axis to 
% the major axis of the ellipse 
brg = 360+90-beta; 
if(brg>360) 
  brg = brg-360; 
end 
 
%----------------------------------------------------------------------- 
% Compute perpendicular distances from points to the ellipse of best fit 
%----------------------------------------------------------------------- 
% Create a set of u,v coordinates by first reducing the X,Y coords  
% to x,y coordinates and then rotating these coordinates by the  
% rotation angle beta.  The u-axis is the major axis of the ellipse. 
x = x_coord-Xc; 
y = y_coord-Yc; 
for k=1:n 
  u(k,1) =  x(k)*cos(beta/d2r) + y(k)*sin(beta/d2r); 
  v(k,1) = -x(k)*sin(beta/d2r) + y(k)*cos(beta/d2r); 
end 
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MATLAB program best_fit_ellipse 
 

% Compute the flattening and eccentricity squared for the ellipse 
flat = (a1-b1)/a1; 
e2   = flat*(2-flat); 
 
% Compute the distance along the normal to the ellipse passing 
% through the point 
for k=1:n 
  % Compute the latitude of the normal to the ellipse through  
  % the point by iteration.  nu is the radius of curvature of 
  % the prime vertical normal section 
  lat     = pi/2; 
  new_lat = atan2(v(k,1),u(k,1)); 
  while(abs(new_lat-lat)>1e-10) 
    lat     = new_lat; 
    s1      = sin(lat); 
    s2      = s1*s1; 
    nu      = a1/sqrt(1-e2*s2); 
    new_lat = atan2((v(k,1)+nu*e2*s1),u(k,1));  
  end 
  % p is the distance along the normal from the ellipse to the point 
  p(k,1) = (u(k,1)/cos(lat))-nu; 
end 
 
%---------------------------------------------------- 
% Compute the coordinate locations for a point number 
% to be shown on the plot.  These locations used in 
% in the plot routines below. 
%---------------------------------------------------- 
for k=1:n 
  theta  = atan2(x(k),y(k)); 
  if theta<0 
    theta = theta + 2*pi;   
  end   
  r      = sqrt(x(k)^2 + y(k)^2)-10; 
  xpt(k) = r*sin(theta);  
  ypt(k) = r*cos(theta);  
end 
Xpt = xpt + Xc; 
Ypt = ypt + Yc; 
 
 
%----------------------------- 
% print the data to the screen 
%----------------------------- 
fprintf('\n Ellipse of Best Fit\n'); 
fprintf('\n General Equation of Ellipse with X,Y origin not at centre of ellipse'); 
fprintf('\n aXX + 2hXY + bYY + dX + eY = 1'); 
fprintf('\n a = %14.6e',a/scale^2); 
fprintf('\n h = %14.6e',h/scale^2); 
fprintf('\n b = %14.6e',b/scale^2); 
fprintf('\n d = %14.6e',d/scale^2); 
fprintf('\n e = %14.6e\n',e/scale^2); 
fprintf('\n Equation of Ellipse with x,y origin at centre of ellipse'); 
fprintf('\n Axx + 2Hxy + Byy = 1'); 
fprintf('\n A = %14.6e',A/scale^2); 
fprintf('\n H = %14.6e',H/scale^2); 
fprintf('\n B = %14.6e\n',B/scale^2); 
fprintf('\n Ellipse parameters'); 
fprintf('\n semi-major axis a = %8.3f',a1); 
fprintf('\n semi-minor axis b = %8.3f\n',b1); 
fprintf('\n Bearing of major axis'); 
fprintf('\n beta(degrees) = %12.6f',beta); 
[D,M,S] = DMS(beta); 
fprintf('\n beta(DMS)      = %4d %2d %5.2f',D,M,S); 
fprintf('\n Brg(degrees)   = %12.6f',brg); 
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[D,M,S] = DMS(brg); 
fprintf('\n Brg(DMS)       = %4d %2d %5.2f\n',D,M,S); 
fprintf('\n Coordinates of centre of ellipse'); 
fprintf('\n X(centre) = %12.3f',Xc); 
fprintf('\n Y(centre) = %12.3f\n',Yc); 
fprintf('\n Data and offsets to ellipse of best fit'); 
fprintf('\n  pt      offset       X          Y          x          y          u          
v'); 
for k=1:n 
  fprintf('\n %3d  %10.3f %10.3f %10.3f %10.3f %10.3f %10.3f 
%10.3f',point(k),p(k,1),x_coord(k),y_coord(k),x(k),y(k),u(k,1),v(k,1)); 
end   
 
fprintf('\n\n'); 
 
%---------------------------------- 
% print the data to the output file 
%---------------------------------- 
 
% Open the output file 
fidout  = fopen(outfilepath,'wt'); 
 
fprintf(fidout,'\n\nEllipse of Best Fit Least Squares Solution'); 
 
fprintf(fidout,'\n\nInput Data'); 
fprintf(fidout,'\n point     x(k)         y(k)       weight w(k)'); 
for k = 1:n 
  fprintf(fidout,'\n%3d %12.4f %12.4f 
%12.4f',point(k),x_coord(k),y_coord(k),weight(k)); 
end   
 
fprintf(fidout,'\n\n General Equation of Ellipse with X,Y origin not at centre of 
ellipse'); 
fprintf(fidout,'\n aXX + 2hXY + bYY + dX + eY = 1'); 
fprintf(fidout,'\n a = %14.6e',a/scale^2); 
fprintf(fidout,'\n h = %14.6e',h/scale^2); 
fprintf(fidout,'\n b = %14.6e',b/scale^2); 
fprintf(fidout,'\n d = %14.6e',d/scale^2); 
fprintf(fidout,'\n e = %14.6e\n',e/scale^2); 
fprintf(fidout,'\n Equation of Ellipse with x,y origin at centre of ellipse'); 
fprintf(fidout,'\n Axx + 2Hxy + Byy = 1'); 
fprintf(fidout,'\n A = %14.6e',A/scale^2); 
fprintf(fidout,'\n H = %14.6e',H/scale^2); 
fprintf(fidout,'\n B = %14.6e\n',B/scale^2); 
fprintf(fidout,'\n Ellipse parameters'); 
fprintf(fidout,'\n semi-major axis a = %8.3f',a1); 
fprintf(fidout,'\n semi-minor axis b = %8.3f\n',b1); 
fprintf(fidout,'\n Bearing of major axis'); 
fprintf(fidout,'\n beta(degrees) = %12.6f',beta); 
[D,M,S] = DMS(beta); 
fprintf(fidout,'\n beta(DMS)      = %4d %2d %5.2f',D,M,S); 
fprintf(fidout,'\n Brg(degrees)   = %12.6f',brg); 
[D,M,S] = DMS(brg); 
fprintf(fidout,'\n Brg(DMS)       = %4d %2d %5.2f\n',D,M,S); 
fprintf(fidout,'\n Coordinates of centre of ellipse'); 
fprintf(fidout,'\n X(centre) = %12.3f',Xc); 
fprintf(fidout,'\n Y(centre) = %12.3f\n',Yc); 
fprintf(fidout,'\n Data and offsets to ellipse of best fit'); 
fprintf(fidout,'\n  pt      offset       X          Y          x          y          
u          v'); 
for k=1:n 
  fprintf(fidout,'\n %3d  %10.3f %10.3f %10.3f %10.3f %10.3f %10.3f 
%10.3f',point(k),p(k,1),x_coord(k),y_coord(k),x(k),y(k),u(k,1),v(k,1)); 
end   
 

© 2005, R.E. Deakin Notes on Least Squares (2005) 2–55 



RMIT University Geospatial Science 

MATLAB program best_fit_ellipse 
 

fprintf(fidout,'\n\n'); 
 
% Close the output file 
fclose(fidout); 
 
%------------------------------------------------------------------- 
% Call function 'ellipse' with parameters a,b,theta and receive back 
% X,Y coordinates whose origin is at the centre of the ellipse 
%------------------------------------------------------------------- 
[X,Y] = ellipse(a1,b1,beta);   
X = X + Xc; 
Y = Y + Yc; 
   
%------------------------------------------------------------------- 
% Set the X,Y coordinates of the major and minor axes of the ellipse 
%------------------------------------------------------------------- 
aX = [X(180) X(360)]; 
aY = [Y(180) Y(360)]; 
bX = [X(90) X(270)]; 
bY = [Y(90) Y(270)]; 
 
%------------------------------------------------- 
% plot the ellipse of Best Fit and the data points 
%------------------------------------------------- 
figure(1); 
clf(1); 
plot(X,Y,'r-',aX,aY,'b-',bX,bY,'b-'); 
hold on; 
plot(x_coord,y_coord,'k.'); 
axis equal; 
box off; 
 
% plot the point numbers inside the ellipse 
point_string=int2str(point); 
text(Xpt,Ypt,point_string); 
 
% anotate the plot 
title('Least Squares Ellipse of Best Fit')  
xlabel('X coordinate'); 
ylabel('Y coordinate'); 
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function [X,Y] = ellipse(a,b,theta) 
 
% ELLIPSE[X Y] = (A,B,THETA)  Function to compute the X,Y coordinates of  
%   an ellipse given semi-axes A and B and a rotation angle THETA.   
%   The angle THETA is considered to be positive anti-clockwise from the x-axis 
 
% set degree to radian conversion factor 
d2r = pi/180; 
 
% Calculate u,v coordinates of ellipse using parametric equations 
% u = a*cos(psi) 
% v = b*sin(psi) 
% where the u-axis is the major axis, the v-axis is the minor axis  
% and psi is the auxiliary angle measured positive anti-clockwise 
% from the u-axis to a point moving around the auxiliary circle of  
% radius a.  The x,y coordinates are computed by rotating the ellipse 
% axes by an angle theta, considered as positive anti-clockwise from the x-axis. 
% x = u*cos(theta) - v*sin(theta) 
% y = u*sin(theta) + v*cos(theta) 
 
for k=1:360 
  u    = a*cos(k*d2r);   
  v    = b*sin(k*d2r);   
  X(k) = u*cos(theta*d2r) - v*sin(theta*d2r); 
  Y(k) = u*sin(theta*d2r) + v*cos(theta*d2r); 
end 
return 
 

 

MATLAB program DMS 
 

 
function [D,M,S] = DMS(DecDeg) 
% [D,M,S] = DMS(DecDeg)  This function takes an angle in decimal degrees 
%   and returns Degrees, Minutes and Seconds 
 
val = abs(DecDeg); 
D = fix(val); 
M = fix((val-D)*60); 
S = (val-D-M/60)*3600; 
if(DecDeg<0) 
  D = -D; 
end 
return 
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