5. PROPAGATION OF VARIANCES APPLIED TO LEAST SQUARES
ADJUSTMENT OF INDIRECT OBSERVATIONS

A most important outcome of a least squares adjustment is that estimates of the precisions of
the quantities sought, the elements of x, the unknowns or the parameters, are easily obtained
from the matrix equations of the solution. Application of the Law of Propagation of
Variances demonstrates that N^{-1}, the inverse of the normal equation coefficient matrix is
equal to the cofactor matrix Q_{xx} that contains estimates of the variances and covariances of
the elements of x. In addition, estimates of the precisions of the residuals and adjusted
observations may be obtained. This most useful outcome enables a statistical analysis of the
results of a least squares adjustment and provides the practitioner with a degree of confidence
in the results.

5.1. Cofactor matrices for adjustment of indirect observations

The observation equations for adjustment of indirect observations is given by

$$\mathbf{v} + Bx = f$$ \hspace{1cm} (5.1)

f is an $(n,1)$ vector of numeric terms derived from the $(n,1)$ vector of observations l and the
$(n,1)$ vector of constants d as

$$f = d - l$$ \hspace{1cm} (5.2)

Associated with the vector of observations l is a variance-covariance matrix Σ_{ll} as well as a
cofactor matrix Q_{ll} and a weight matrix $W_{ll} = Q_{ll}^{-1}$. Remember that in most practical
applications of least squares, the matrix Σ_{ll} is unknown, but estimated \textit{a priori} by Q_{ll} that
contains estimates of the variances and covariances and $\Sigma_{ll} = \sigma_0^2 Q_{ll}$ where σ_0^2 is the
reference variance or variance factor.

Note: In the derivations that follow, the subscript “ll” is dropped from Q_{ll} and W_{ll}.

If equation (5.2) is written as

$$\mathbf{f} = (-\mathbf{I})l + \mathbf{d}$$ \hspace{1cm} (5.3)
then (5.3) is in a form suitable for employing the Law of Propagation of Variances developed in Chapter 3; i.e., if \(y = Ax + b \) and \(y \) and \(x \) are random variables linearly related and \(b \) is a vector of constants then \(Q_{yy} = A Q_{xx} A^T \). Hence, the cofactor matrix of the numeric terms \(f \) is

\[
Q_{ff} = (-1)Q(-1)^T = Q
\]

Thus the cofactor matrix of \(f \) is also the \textit{a priori} cofactor matrix of the observations \(l \).

The solution "steps" in the least squares adjustment of indirect observations are set out Chapter 2 and restated as

\[
N = B^T W B
\]

\[
t = B^T W f
\]

\[
x = N^{-1} t
\]

\[
v = f - B x
\]

\[
\hat{l} = l + v
\]

To apply the Law of Propagation of Variances, these equations may be re-arranged in the form \(y = Ax + b \) where the terms in parenthesis () constitute the \(A \) matrix.

\[
t = (B^T W) f \tag{5.4}
\]

\[
x = (N^{-1}) t \tag{5.5}
\]

\[
v = f - B x = f - B N^{-1} t = f - B N^{-1} B^T W f = (I - B N^{-1} B^T W) f \tag{5.6}
\]

\[
\hat{l} = l + v = l + f - B x = d - B x = (-B)x + d \tag{5.7}
\]

Applying the Law of Propagation of Variances to equations (5.4) to (5.7) gives the following cofactor matrices
\[Q_{tt} = (B^TW)Q_{ff}(B^TW)^T = N \] (5.8)

\[Q_{xx} = (N^{-1})Q_{tt}(N^{-1})^T = N^{-1} \] (5.9)

\[Q_{vv} = (I - BN^{-1}B^TW)Q_{ff}(I - BN^{-1}B^TW)^T \]
\[= Q - BN^{-1}B^T \] (5.10)

\[Q_{ff} = (-B)Q(-B)^T \]
\[= BN^{-1}B^T \]
\[= Q - Q_{vv} \] (5.11)

Variance-covariance matrices for \(t, x, v \) and \(\hat{l} \) are obtained by multiplying the cofactor matrix by the variance factor \(\sigma_0^2 \).

5.2. Calculation of the quadratic form \(v^TWv \)

The \textit{a priori} estimate of the variance factor may be computed from

\[\hat{\sigma}_0^2 = \frac{v^TWv}{r} \] (5.12)

where \(v^TWv \) is the quadratic form, and

\(r = n - u \) is the degrees of freedom where \(n \) is the number of observations and \(u \) is the number of unknown parameters. \(r \) is also known as the number of redundancies.

A derivation of equation (5.12) is given below. The quadratic form \(v^TWv \) may be computed in the following manner.

Remembering, for the method of indirect observations, the following matrix equations

\[N = B^TWB \]
\[t = B^Wf \]
\[x = N^{-1}t \]
\[v = f - Bx \]

then
\[v^T W v = (f - Bx)^T W (f - Bx) \]
\[= (f^T - x^T B^T) W (f - Bx) \]
\[= (f^T W - x^T B^T W) (f - Bx) \]
\[= f^T W f - f^T W B x - x^T B^T W f + x^T B^T W B x \]
\[= f^T W f - 2 f^T W B x + x^T B^T W B x \]
\[= f^T W f - 2 f^T x + x^T N x \]
\[= f^T W f - 2 x^T t + x^T t \]

and

\[v^T W v = f^T W f - x^T t \]
(5.13)

5.3. Calculation of the Estimate of the Variance Factor \(\hat{\sigma}_0^2 \)

The variance-covariance matrices of residuals \(\Sigma_v \), adjusted observations \(\Sigma_{ii} \) and computed parameters \(\Sigma_{xx} \) are calculated from the general relationship

\[\Sigma = \sigma^2 \Omega \]
(5.14)

Cofactor matrices \(Q_{vv} \), \(Q_{xx} \) and \(Q_{ii} \) are computed from equations (5.9) to (5.11) and so it remains to determine an estimate of the variance factor \(\hat{\sigma}_0^2 \).

The development of a matrix expression for computing \(\hat{\sigma}_0^2 \) is set out below and follows Mikhail (1976, pp.285-288). Some preliminary relationships will be useful.

1. If \(A \) is an \((n,n)\) square matrix, the sum of its diagonal elements is a scalar quantity called the trace of \(A \) and denoted by \(tr(A) \). The following relationships are useful

\[tr(A + B) = tr(A) + tr(B) \quad \text{for} \quad A \text{ and } B \text{ of same order} \]
(5.15)

\[tr(A^T) = tr(A) \]
(5.16)

and for the quadratic form \(x^T A x \) where \(A \) is symmetric

\[x^T A x = tr(xx^T A) \]
(5.17)
2. The variance-covariance matrix Σ_{xx} given by equation (3.21) can be expressed in the following manner, remembering that \mathbf{x} is a vector of random variables and \mathbf{m}_x is a vector of means.

$$\Sigma_{xx} = E\{(x - \mathbf{m}_x)(x - \mathbf{m}_x)^T\}$$

$$= E\{(x - \mathbf{m}_x)(x^T - \mathbf{m}_x^T)\}$$

$$= E\{xx^T - x\mathbf{m}_x^T - \mathbf{m}_x x^T + \mathbf{m}_x \mathbf{m}_x^T\}$$

$$= E\{xx^T\} - E\{x\mathbf{m}_x^T\} - E\{\mathbf{m}_x x^T\} + E\{\mathbf{m}_x \mathbf{m}_x^T\}$$

$$= E\{xx^T\} - E\{x\}\mathbf{m}_x^T - \mathbf{m}_x E\{x^T\} + \mathbf{m}_x \mathbf{m}_x^T$$

Now from equation (3.18) $\mathbf{m}_x = E\{x\}$ hence

$$\Sigma_{xx} = E\{xx^T\} - \mathbf{m}_x \mathbf{m}_x^T - \mathbf{m}_x \mathbf{m}_x^T + \mathbf{m}_x \mathbf{m}_x^T$$

$$= E\{xx^T\} - \mathbf{m}_x \mathbf{m}_x^T$$

(5.18)

or

$$E\{xx^T\} = \Sigma_{xx} + \mathbf{m}_x \mathbf{m}_x^T$$

(5.19)

3. The expected value of the residuals is zero, i.e.,

$$E\{\mathbf{v}\} = \mathbf{m}_v = 0$$

(5.20)

4. By definition (see Chapter 2) the weight matrix \mathbf{W}, the cofactor matrix \mathbf{Q} and the variance-covariance matrix Σ are related by

$$\mathbf{W} = \mathbf{Q}^{-1} = \sigma_0^2 \Sigma^{-1}$$

(5.21)

Now, for the least squares adjustment of indirect observations the following relationships are recalled

$$\mathbf{v} + \mathbf{Bx} = \mathbf{f}, \quad \mathbf{N} = \mathbf{B}^T \mathbf{WB}, \quad \mathbf{t} = \mathbf{B}^T \mathbf{Wf}$$

$$\mathbf{Q}_{ff} = \mathbf{Q}, \quad \mathbf{Q}_{it} = \mathbf{N}, \quad \mathbf{Q}_{xx} = \mathbf{N}^{-1}$$

Bearing in mind equation (5.21), the following relationships may be introduced

$$\Sigma^{-1} = \frac{1}{\sigma_0^2} \mathbf{W}, \quad \mathbf{M} = \mathbf{B}^T \Sigma^{-1} \mathbf{B}$$

and from these follow
\[\Sigma_g = \Sigma, \quad \Sigma_n = \sigma_0^4 \mathbf{M}, \quad \Sigma_{xx} = \mathbf{M}^{-1} \]

In addition, the expectation of the vector \(\mathbf{f} \) is the mean \(\mathbf{m}_f \) and so we may write

\[
\mathbf{m}_f = E\{\mathbf{f}\} = E\{\mathbf{v} + \mathbf{Bx}\} = E\{\mathbf{v}\} + \mathbf{B}E\{\mathbf{x}\}
\]

Now since \(E\{\mathbf{x}\} = \mathbf{m}_x \) and \(E\{\mathbf{v}\} = \mathbf{0} \)

\[
\mathbf{m}_f = \mathbf{Bm}_x \tag{5.22}
\]

Now the quadratic form

\[
\mathbf{v}^T \mathbf{Wv} = \sigma_0^2 \left(\mathbf{v}^T \Sigma^{-1} \mathbf{v} \right) \tag{5.23}
\]

and from equation (5.13)

\[
\mathbf{v}^T \mathbf{Wv} = \mathbf{f}^T \mathbf{Wf} - \mathbf{x}^T \mathbf{t} = \mathbf{f}^T \mathbf{Wf} - \mathbf{x}^T \mathbf{Nx}
\]

Using the relationships above

\[
\mathbf{v}^T \Sigma^{-1} \mathbf{v} = \mathbf{f}^T \Sigma^{-1} \mathbf{f} - \mathbf{x}^T \mathbf{Mx}
\]

Now the expected value of this quadratic form is

\[
E\{\mathbf{v}^T \Sigma^{-1} \mathbf{v}\} = E\{\mathbf{f}^T \Sigma^{-1} \mathbf{f} - \mathbf{x}^T \mathbf{Mx}\} = E\{\mathbf{f}^T \Sigma^{-1} \mathbf{f}\} - E\{\mathbf{x}^T \mathbf{Mx}\}
\]

Recognising that the terms on the right-hand-side are both quadratic forms, equation (5.17) can be used to give

\[
E\{\mathbf{v}^T \Sigma^{-1} \mathbf{v}\} = tr\left(\left[\mathbf{ff}^T \Sigma^{-1}\right]\right) - E\left\{tr\left(\mathbf{xx}^T \mathbf{M}\right)\right\} = tr\left(E\{\mathbf{ff}^T \Sigma^{-1}\}\right) - tr\left(E\{\mathbf{xx}^T \mathbf{M}\}\right) = tr\left(E\{\mathbf{ff}^T \Sigma^{-1}\}\right) - tr\left(E\{\mathbf{xx}^T \Sigma^{-1}\}\right) = tr\left(E\{\mathbf{ff}^T \Sigma^{-1}\}\right) - tr\left(E\{\mathbf{xx}^T \Sigma^{-1}\}\right)
\]

Now using equation (5.19)

\[
E\{\mathbf{v}^T \Sigma^{-1} \mathbf{v}\} = tr\left(\left[\Sigma_{gg} + \mathbf{m}_f \mathbf{m}_f^T \right] \Sigma^{-1}\right) - tr\left(\left[\Sigma_{xx} + \mathbf{m}_f \mathbf{m}_f^T \right] \mathbf{M}\right) = tr\left(\mathbf{I}_{nn} \mathbf{m}_f \mathbf{m}_f^T \Sigma^{-1}\right) - tr\left(\mathbf{I}_{nn} \mathbf{m}_f \mathbf{m}_f^T \mathbf{M}\right) = tr\left(\mathbf{I}_{nn} - \mathbf{I}_{uu}\right) - tr\left(\mathbf{m}_f \mathbf{m}_f^T \Sigma^{-1} + \mathbf{m}_f \mathbf{m}_f^T \mathbf{M}\right) = (n - u) - m_f^T \Sigma^{-1} \mathbf{m}_f + m_f^T \mathbf{Mm}_f
\]
From equation (5.22) \(\mathbf{m}_f = \mathbf{Bm}_r \) hence using the rule for matrix transpose

\[
\mathbf{m}_f^T = (\mathbf{Bm}_r)^T = \mathbf{m}_r^T \mathbf{B}^T,
\]

then

\[
E\{\mathbf{v}^T \mathbf{\Sigma}^{-1} \mathbf{v}\} = (n - u) - \mathbf{m}_i^T \mathbf{B}^T \mathbf{\Sigma}^{-1} \mathbf{B} \mathbf{m}_i + \mathbf{m}_i^T \mathbf{M}_i \mathbf{m}_i
\]

\[
= (n - u) - \mathbf{m}_i^T \mathbf{M}_i + \mathbf{m}_i^T \mathbf{M}_i
\]

\[
= (n - u)
\]

Thus according to equation (5.23) and the expression above

\[
E\{\mathbf{v}^T \mathbf{W} \mathbf{v}\} = \sigma_0^2 E\{\mathbf{v}^T \mathbf{\Sigma}^{-1} \mathbf{v}\}
\]

\[
= \sigma_0^2 (n - u)
\]

from which follows

\[
\sigma_0^2 = \frac{E\{\mathbf{v}^T \mathbf{W} \mathbf{v}\}}{n - u}
\]

Consequently, an unbiased estimate of the variance factor \(\hat{\sigma}_0^2 \) can be computed from

\[
\hat{\sigma}_0^2 = \frac{\mathbf{v}^T \mathbf{W} \mathbf{v}}{n - u} = \frac{\mathbf{v}^T \mathbf{W} \mathbf{v}}{r} \quad (5.24)
\]

\(r = n - u \) is the number of redundancies in the adjustment and is known as the degrees of freedom.

Using equation (5.13) an unbiased estimate of the variance factor \(\hat{\sigma}_0^2 \) can be computed from

\[
\hat{\sigma}_0^2 = \frac{\mathbf{f}^T \mathbf{W} \mathbf{f} - \mathbf{x}^T \mathbf{t}}{r} \quad (5.25)
\]