5. PROPAGATION OF VARIANCES APPLIED TO LEAST SQUARES ADJUSTMENT OF INDIRECT OBSERVATIONS

A most important outcome of a least squares adjustment is that estimates of the precisions of the quantities sought, the elements of \mathbf{x}, the unknowns or the parameters, are easily obtained from the matrix equations of the solution. Application of the Law of Propagation of Variances demonstrates that \mathbf{N}^{-1}, the inverse of the normal equation coefficient matrix is equal to the cofactor matrix $\mathbf{Q}_{x x}$ that contains estimates of the variances and covariances of the elements of \mathbf{x}. In addition, estimates of the precisions of the residuals and adjusted observations may be obtained. This most useful outcome enables a statistical analysis of the results of a least squares adjustment and provides the practitioner with a degree of confidence in the results.

5.1. Cofactor matrices for adjustment of indirect observations

The observation equations for adjustment of indirect observations is given by

$$
\begin{equation*}
\mathbf{v}+\mathbf{B} \mathbf{x}=\mathbf{f} \tag{5.1}
\end{equation*}
$$

\mathbf{f} is an $(n, 1)$ vector of numeric terms derived from the $(n, 1)$ vector of observations \mathbf{l} and the $(n, 1)$ vector of constants \mathbf{d} as

$$
\begin{equation*}
\mathbf{f}=\mathbf{d}-\mathbf{l} \tag{5.2}
\end{equation*}
$$

Associated with the vector of observations \mathbf{I} is a variance-covariance matrix $\Sigma_{l l}$ as well as a cofactor matrix $\mathbf{Q}_{l l}$ and a weight matrix $\mathbf{W}_{l l}=\mathbf{Q}_{l l}^{-1}$. Remember that in most practical applications of least squares, the matrix $\Sigma_{l l}$ is unknown, but estimated a priori by $\mathbf{Q}_{l l}$ that contains estimates of the variances and covariances and $\Sigma_{l l}=\sigma_{0}^{2} \mathbf{Q}_{l l}$ where σ_{0}^{2} is the reference variance or variance factor.

Note: In the derivations that follow, the subscript "ll" is dropped from $\mathbf{Q}_{l l}$ and $\mathbf{W}_{l l}$

If equation (5.2) is written as

$$
\begin{equation*}
\mathbf{f}=(-\mathbf{I}) \mathbf{I}+\mathbf{d} \tag{5.3}
\end{equation*}
$$

then (5.3) is in a form suitable for employing the Law of Propagation of Variances developed in Chapter 3; i.e., if $\mathbf{y}=\mathbf{A x}+\mathbf{b}$ and \mathbf{y} and \mathbf{x} are random variables linearly related and \mathbf{b} is a vector of constants then $\mathbf{Q}_{y y}=\mathbf{A} \mathbf{Q}_{x x} \mathbf{A}^{T}$. Hence, the cofactor matrix of the numeric terms \mathbf{f} is

$$
\mathbf{Q}_{\mathrm{ff}}=(-\mathbf{I}) \mathbf{Q}(-\mathbf{I})^{T}=\mathbf{Q}
$$

Thus the cofactor matrix of \mathbf{f} is also the a priori cofactor matrix of the observations \mathbf{l}.

The solution "steps" in the least squares adjustment of indirect observations are set out Chapter 2 and restated as

$$
\begin{aligned}
\mathbf{N} & =\mathbf{B}^{T} \mathbf{W} \mathbf{B} \\
\mathbf{t} & =\mathbf{B}^{T} \mathbf{W} \mathbf{f} \\
\mathbf{x} & =\mathbf{N}^{-1} \mathbf{t} \\
\mathbf{v} & =\mathbf{f}-\mathbf{B} \mathbf{x} \\
\hat{\mathbf{l}} & =\mathbf{l}+\mathbf{v}
\end{aligned}
$$

To apply the Law of Propagation of Variances, these equations may be re-arranged in the form $\mathbf{y}=\mathbf{A x}+\mathbf{b}$ where the terms in parenthesis () constitute the A matrix.

$$
\begin{align*}
\mathbf{t} & =\left(\mathbf{B}^{T} \mathbf{W}\right) \mathbf{f} \tag{5.4}\\
\mathbf{x} & =\left(\mathbf{N}^{-1}\right) \mathbf{t} \tag{5.5}\\
\mathbf{v} & =\mathbf{f}-\mathbf{B x} \\
& =\mathbf{f}-\mathbf{B N}^{-1} \mathbf{t} \\
& =\mathbf{f}-\mathbf{B N}^{-1} \mathbf{B}^{T} \mathbf{W} \mathbf{f} \\
& =\left(\mathbf{I}-\mathbf{B N}^{-1} \mathbf{B}^{T} \mathbf{W}\right) \mathbf{f} \tag{5.6}\\
\hat{\mathbf{l}} & =\mathbf{l}+\mathbf{v} \\
& =\mathbf{l}+\mathbf{f}-\mathbf{B x} \\
& =\mathbf{d}-\mathbf{B x} \\
& =(-\mathbf{B}) \mathbf{x}+\mathbf{d} \tag{5.7}
\end{align*}
$$

Applying the Law of Propagation of Variances to equations (5.4) to (5.7) gives the following cofactor matrices

$$
\begin{align*}
\mathbf{Q}_{t t} & =\left(\mathbf{B}^{T} \mathbf{W}\right) \mathbf{Q}_{f f}\left(\mathbf{B}^{T} \mathbf{W}\right)^{T}=\mathbf{N} \tag{5.8}\\
\mathbf{Q}_{x x} & =\left(\mathbf{N}^{-1}\right) \mathbf{Q}_{t t}\left(\mathbf{N}^{-1}\right)^{T}=\mathbf{N}^{-1} \tag{5.9}\\
\mathbf{Q}_{v v} & =\left(\mathbf{I}-\mathbf{B N}^{-1} \mathbf{B}^{T} \mathbf{W}\right) \mathbf{Q}_{f f}\left(\mathbf{I}-\mathbf{B N}^{-1} \mathbf{B}^{T} \mathbf{W}\right)^{T} \\
& =\mathbf{Q}-\mathbf{B} \mathbf{N}^{-1} \mathbf{B}^{T} \tag{5.10}\\
\mathbf{Q}_{\overparen{\pi}} & =(-\mathbf{B}) \mathbf{Q}(-\mathbf{B})^{T} \\
& =\mathbf{B N}^{-1} \mathbf{B}^{T} \\
& =\mathbf{Q}-\mathbf{Q}_{v v} \tag{5.11}
\end{align*}
$$

Variance-covariance matrices for $\mathbf{t}, \mathbf{x}, \mathbf{v}$ and $\hat{\mathbf{I}}$ are obtained by multiplying the cofactor matrix by the variance factor σ_{0}^{2}.

5.2. Calculation of the quadratic form $\mathbf{v}^{T} \mathbf{W v}$

The a priori estimate of the variance factor may be computed from

$$
\begin{equation*}
\hat{\sigma}_{0}^{2}=\frac{\mathbf{v}^{T} \mathbf{W} \mathbf{v}}{r} \tag{5.12}
\end{equation*}
$$

where $\quad \mathbf{v}^{T} \mathbf{W v} \quad$ is the quadratic form, and
$r=n-u \quad$ is the degrees of freedom where n is the number of observations and u is the number of unknown parameters. r is also known as the number of redundancies.

A derivation of equation (5.12) is given below. The quadratic form $\mathbf{v}^{T} \mathbf{W} \mathbf{v}$ may be computed in the following manner.

Remembering, for the method of indirect observations, the following matrix equations

$$
\begin{aligned}
\mathbf{N} & =\mathbf{B}^{T} \mathbf{W B} \\
\mathbf{t} & =\mathbf{B}^{T} \mathbf{W} \mathbf{f} \\
\mathbf{x} & =\mathbf{N}^{-1} \mathbf{t} \\
\mathbf{v} & =\mathbf{f}-\mathbf{B x}
\end{aligned}
$$

then

$$
\begin{aligned}
\mathbf{v}^{T} \mathbf{W} \mathbf{v} & =(\mathbf{f}-\mathbf{B x})^{T} \mathbf{W}(\mathbf{f}-\mathbf{B x}) \\
& =\left(\mathbf{f}^{T}-\mathbf{x}^{T} \mathbf{B}^{T}\right) \mathbf{W}(\mathbf{f}-\mathbf{B x}) \\
& =\left(\mathbf{f}^{T} \mathbf{W}-\mathbf{x}^{T} \mathbf{B}^{T} \mathbf{W}\right)(\mathbf{f}-\mathbf{B} \mathbf{x}) \\
& =\mathbf{f}^{T} \mathbf{W} \mathbf{f}-\mathbf{f}^{T} \mathbf{W} \mathbf{B x}-\mathbf{x}^{T} \mathbf{B}^{T} \mathbf{W} \mathbf{f}+\mathbf{x}^{T} \mathbf{B}^{T} \mathbf{W} \mathbf{B} \mathbf{x} \\
& =\mathbf{f}^{T} \mathbf{W} \mathbf{f}-2 \mathbf{f}^{T} \mathbf{W} \mathbf{B} \mathbf{x}+\mathbf{x}^{T} \mathbf{B}^{T} \mathbf{W B x} \\
& =\mathbf{f}^{T} \mathbf{W} \mathbf{f}-2 \mathbf{t}^{T} \mathbf{x}+\mathbf{x}^{T} \mathbf{N} \mathbf{x} \\
& =\mathbf{f}^{T} \mathbf{W} \mathbf{f}-2 \mathbf{x}^{T} \mathbf{t}+\mathbf{x}^{T} \mathbf{t}
\end{aligned}
$$

and

$$
\begin{equation*}
\mathbf{v}^{T} \mathbf{W} \mathbf{v}=\mathbf{f}^{T} \mathbf{W} \mathbf{f}-\mathbf{x}^{T} \mathbf{t} \tag{5.13}
\end{equation*}
$$

5.3. Calculation of the Estimate of the Variance Factor $\hat{\sigma}_{0}^{2}$

The variance-covariance matrices of residuals $\Sigma_{v v}$, adjusted observations $\Sigma_{\hat{1}}$ and computed parameters $\Sigma_{x x}$ are calculated from the general relationship

$$
\begin{equation*}
\Sigma=\sigma_{0}^{2} \mathbf{Q} \tag{5.14}
\end{equation*}
$$

Cofactor matrices $\mathbf{Q}_{v v}, \mathbf{Q}_{x x}$ and $\mathbf{Q}_{\hat{1} \hat{\imath}}$ are computed from equations (5.9) to (5.11) and so it remains to determine an estimate of the variance factor $\hat{\sigma}_{0}^{2}$.

The development of a matrix expression for computing $\hat{\sigma}_{0}^{2}$ is set out below and follows Mikhail (1976, pp.285-288). Some preliminary relationships will be useful.

1. If \mathbf{A} is an (n, n) square matrix, the sum of its diagonal elements is a scalar quantity called the trace of \mathbf{A} and denoted by $\operatorname{tr}(\mathbf{A})$ The following relationships are useful

$$
\begin{align*}
& \operatorname{tr}(\mathbf{A}+\mathbf{B})=\operatorname{tr}(\mathbf{A})+\operatorname{tr}(\mathbf{B}) \text { for } \mathbf{A} \text { and } \mathbf{B} \text { of same order } \tag{5.15}\\
& \operatorname{tr}\left(\mathbf{A}^{T}\right)=\operatorname{tr}(\mathbf{A}) \tag{5.16}
\end{align*}
$$

and for the quadratic form $\mathbf{x}^{T} \mathbf{A} \mathbf{x}$ where \mathbf{A} is symmetric

$$
\begin{equation*}
\mathbf{x}^{T} \mathbf{A} \mathbf{x}=\operatorname{tr}\left(\mathbf{x} \mathbf{x}^{T} \mathbf{A}\right) \tag{5.17}
\end{equation*}
$$

2. The variance-covariance matrix $\Sigma_{x x}$ given by equation (3.21) can be expressed in the following manner, remembering that \mathbf{x} is a vector of random variables and \mathbf{m}_{x} is a vector of means.

$$
\begin{aligned}
\Sigma_{x x} & =E\left\{\left(\mathbf{x}-\mathbf{m}_{x}\right)\left(\mathbf{x}-\mathbf{m}_{x}\right)^{T}\right\} \\
& =E\left\{\left(\mathbf{x}-\mathbf{m}_{x}\right)\left(\mathbf{x}^{T}-\mathbf{m}_{x}^{T}\right)\right\} \\
& =E\left\{\mathbf{x x}^{T}-\mathbf{x} \mathbf{m}_{x}^{T}-\mathbf{m}_{x} \mathbf{x}^{T}+\mathbf{m}_{x} \mathbf{m}_{x}^{T}\right\} \\
& =E\left\{\mathbf{x} \mathbf{x}^{T}\right\}-E\left\{\mathbf{x} \mathbf{m}_{x}^{T}\right\}-E\left\{\mathbf{m}_{x} \mathbf{x}^{T}\right\}+E\left\{\mathbf{m}_{x} \mathbf{m}_{x}^{T}\right\} \\
& =E\left\{\mathbf{x x}^{T}\right\}-E\{\mathbf{x}\} \mathbf{m}_{x}^{T}-\mathbf{m}_{x} E\left\{\mathbf{x}^{T}\right\}+\mathbf{m}_{x} \mathbf{m}_{x}^{T}
\end{aligned}
$$

Now from equation (3.18) $\mathbf{m}_{x}=E\{\mathbf{x}\}$ hence

$$
\begin{align*}
& \qquad \begin{aligned}
\Sigma_{x x} & =E\left\{\mathbf{x} \mathbf{x}^{T}\right\}-\mathbf{m}_{x} \mathbf{m}_{x}^{T}-\mathbf{m}_{x} \mathbf{m}_{x}^{T}+\mathbf{m}_{x} \mathbf{m}_{x}^{T} \\
& =E\left\{\mathbf{x x}^{T}\right\}-\mathbf{m}_{x} \mathbf{m}_{x}^{T}
\end{aligned} \\
& \text { or } \quad E\left\{\mathbf{x x}^{T}\right\}=\boldsymbol{\Sigma}_{x x}+\mathbf{m}_{x} \mathbf{m}_{x}^{T} \tag{5.18}
\end{align*}
$$

3. The expected value of the residuals is zero, i.e.,

$$
\begin{equation*}
E\{\mathbf{v}\}=\mathbf{m}_{v}=\mathbf{0} \tag{5.20}
\end{equation*}
$$

4. By definition (see Chapter 2) the weight matrix \mathbf{W}, the cofactor matrix \mathbf{Q} and the variance-covariance matrix Σ are related by

$$
\begin{equation*}
\mathbf{W}=\mathbf{Q}^{-1}=\sigma_{0}^{2} \boldsymbol{\Sigma}^{-1} \tag{5.21}
\end{equation*}
$$

Now, for the least squares adjustment of indirect observations the following relationships are recalled

$$
\begin{aligned}
\mathbf{v}+\mathbf{B x} & =\mathbf{f}, & \mathbf{N} & =\mathbf{B}^{T} \mathbf{W B}, \quad \mathbf{t}
\end{aligned}=\mathbf{B}^{T} \mathbf{W} \mathbf{f}, ~ \mathbf{Q}_{f f}=\mathbf{Q}, \mathbf{Q}_{t t}=\mathbf{N}, \quad \mathbf{Q}_{x x}=\mathbf{N}^{-1}
$$

Bearing in mind equation (5.21), the following relationships may be introduced

$$
\Sigma^{-1}=\frac{1}{\sigma_{0}^{2}} \mathbf{W}, \quad \mathbf{M}=\mathbf{B}^{T} \Sigma^{-1} \mathbf{B}
$$

and from these follow

$$
\Sigma_{f f}=\Sigma, \quad \Sigma_{t}=\sigma_{0}^{4} \mathbf{M}, \quad \Sigma_{x x}=\mathbf{M}^{-1}
$$

In addition, the expectation of the vector \mathbf{f} is the mean \mathbf{m}_{f} and so we may write

$$
\mathbf{m}_{f}=E\{\mathbf{f}\}=E\{\mathbf{v}+\mathbf{B x}\}=E\{\mathbf{v}\}+\mathbf{B} E\{\mathbf{x}\}
$$

Now since $E\{\mathbf{x}\}=\mathbf{m}_{x}$ and $E\{\mathbf{v}\}=\mathbf{0}$

$$
\begin{equation*}
\mathbf{m}_{f}=\mathbf{B} \mathbf{m}_{x} \tag{5.22}
\end{equation*}
$$

Now the quadratic form

$$
\begin{equation*}
\mathbf{v}^{T} \mathbf{W} \mathbf{v}=\sigma_{0}^{2}\left(\mathbf{v}^{T} \Sigma^{-1} \mathbf{v}\right) \tag{5.23}
\end{equation*}
$$

and from equation (5.13)

$$
\begin{aligned}
\mathbf{v}^{T} \mathbf{W} \mathbf{v} & =\mathbf{f}^{T} \mathbf{W} \mathbf{f}-\mathbf{x}^{T} \mathbf{t} \\
& =\mathbf{f}^{T} \mathbf{W} \mathbf{f}-\mathbf{x}^{T} \mathbf{N} \mathbf{x}
\end{aligned}
$$

Using the relationships above

$$
\mathbf{v}^{T} \Sigma^{-1} \mathbf{v}=\mathbf{f}^{T} \Sigma^{-1} \mathbf{f}-\mathbf{x}^{T} \mathbf{M} \mathbf{x}
$$

Now the expected value of this quadratic form is

$$
\begin{aligned}
E\left\{\mathbf{v}^{T} \boldsymbol{\Sigma}^{-1} \mathbf{v}\right\} & =E\left\{\mathbf{f}^{T} \boldsymbol{\Sigma}^{-1} \mathbf{f}-\mathbf{x}^{T} \mathbf{M} \mathbf{x}\right\} \\
& =E\left\{\mathbf{f}^{T} \boldsymbol{\Sigma}^{-1} \mathbf{f}\right\}-E\left\{\mathbf{x}^{T} \mathbf{M} \mathbf{x}\right\}
\end{aligned}
$$

Recognising that the terms on the right-hand-side are both quadratic forms, equation (5.17) can be used to give

$$
\begin{aligned}
E\left\{\mathbf{v}^{T} \Sigma^{-1} \mathbf{v}\right\} & =E\left\{\operatorname{tr}\left(\mathbf{f f}^{T} \Sigma^{-1}\right)\right\}-E\left\{\operatorname{tr}\left(\mathbf{x x}^{T} \mathbf{M}\right)\right\} \\
& =\operatorname{tr}\left(E\left\{\mathbf{f f}^{T} \Sigma^{-1}\right\}\right)-\operatorname{tr}\left(E\left\{\mathbf{x x}^{T} \mathbf{M}\right\}\right) \\
& =\operatorname{tr}\left(E\left\{\mathbf{f f}^{T}\right\} \Sigma^{-1}\right)-\operatorname{tr}\left(E\left\{\mathbf{x x}^{T}\right\} \mathbf{M}\right)
\end{aligned}
$$

Now using equation (5.19)

$$
\begin{aligned}
E\left\{\mathbf{v}^{T} \Sigma^{-1} \mathbf{v}\right\} & =\operatorname{tr}\left(\left[\Sigma_{f f}+\mathbf{m}_{f} \mathbf{m}_{f}^{T}\right] \Sigma^{-1}\right)-\operatorname{tr}\left(\left[\Sigma_{x x}+\mathbf{m}_{x} \mathbf{m}_{x}^{T}\right] \mathbf{M}\right) \\
& =\operatorname{tr}\left(\mathbf{I}_{n n}+\mathbf{m}_{f} \mathbf{m}_{f}^{T} \Sigma^{-1}\right)-\operatorname{tr}\left(\mathbf{I}_{u u}+\mathbf{m}_{x} \mathbf{m}_{x}^{T} \mathbf{M}\right) \\
& =\operatorname{tr}\left(\mathbf{I}_{n n}-\mathbf{I}_{u u}\right)-\operatorname{tr}\left(\mathbf{m}_{f} \mathbf{m}_{f}^{T} \Sigma^{-1}+\mathbf{m}_{x} \mathbf{m}_{x}^{T} \mathbf{M}\right) \\
& =(n-u)-\mathbf{m}_{f}^{T} \Sigma^{-1} \mathbf{m}_{f}+\mathbf{m}_{x}^{T} \mathbf{M} \mathbf{m}_{x}
\end{aligned}
$$

From equation (5.22) $\mathbf{m}_{f}=\mathbf{B m}_{x}$ hence using the rule for matrix transpose $\mathbf{m}_{f}^{T}=\left(\mathbf{B} \mathbf{m}_{x}\right)^{T}=\mathbf{m}_{x}^{T} \mathbf{B}^{T}$, then

$$
\begin{aligned}
E\left\{\mathbf{v}^{T} \Sigma^{-1} \mathbf{v}\right\} & =(n-u)-\mathbf{m}_{x}^{T} \mathbf{B}^{T} \Sigma^{-1} \mathbf{B} \mathbf{m}_{x}+\mathbf{m}_{x}^{T} \mathbf{M} \mathbf{m}_{x} \\
& =(n-u)-\mathbf{m}_{x}^{T} \mathbf{M} \mathbf{m}_{x}+\mathbf{m}_{x}^{T} \mathbf{M} \mathbf{m}_{x} \\
& =(n-u)
\end{aligned}
$$

Thus according to equation (5.23) and the expression above

$$
\begin{aligned}
E\left\{\mathbf{v}^{T} \mathbf{W} \mathbf{v}\right\} & =\sigma_{0}^{2} E\left\{\mathbf{v}^{T} \Sigma^{-1} \mathbf{v}\right\} \\
& =\sigma_{0}^{2}(n-u)
\end{aligned}
$$

from which follows

$$
\sigma_{0}^{2}=\frac{E\left\{\mathbf{v}^{T} \mathbf{W} \mathbf{v}\right\}}{n-u}
$$

Consequently, an unbiased estimate of the variance factor $\hat{\sigma}_{0}^{2}$ can be computed from

$$
\begin{equation*}
\hat{\sigma}_{0}^{2}=\frac{\mathbf{v}^{T} \mathbf{W} \mathbf{v}}{n-u}=\frac{\mathbf{v}^{T} \mathbf{W} \mathbf{v}}{r} \tag{5.24}
\end{equation*}
$$

$r=n-u$ is the number of redundancies in the adjustment and is known as the degrees of freedom

Using equation (5.13) an unbiased estimate of the variance factor $\hat{\sigma}_{0}^{2}$ can be computed from

$$
\begin{equation*}
\hat{\sigma}_{0}^{2}=\frac{\mathbf{f}^{T} \mathbf{W} \mathbf{f}-\mathbf{x}^{T} \mathbf{t}}{r} \tag{5.25}
\end{equation*}
$$

