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7. LINEARIZATION USING TAYLOR'S THEOREM AND THE DERIVATION OF 
SOME COMMON SURVEYING OBSERVATION EQUATIONS 

In many surveying "problems" the solution depends upon selection of a mathematical model 

suitable to the problem, and using this, together with the observations (or measurements) 

obtain a solution. 

 

For example, a surveyor is required to determine the location (the coordinates) of a point.  

From this "unknown" point, they can see three known points (i.e., points of known 

coordinates).  Understanding geometric principles, the surveyor measures the directions to 

these three known points with a theodolite, determines the two angles α  and β  between the 

three lines and "solves the problem".  In surveying parlance, this technique of solution of 

position is known as a resection; the mathematical model is based on geometric principles and 

the observations are the directions, from which the necessary angles are obtained for a 

solution. 

 

Choosing a resection, as an example of a "surveying problem" is appropriate, since it 

demonstrates the case of determining quantities (the coordinates of the unknown point) from 

indirect measurements.  That is, the surveyor's measurements of directions are indirect 

measurements of coordinate differences between the unknown point and the known points. 

 

In many surveying problems, the observations exceed the necessary number required for a 

unique solution.  Again, using a resection as an example, consider the case where the surveyor 

(at an unknown point) measures the directions to four known points.  There are now multiple 

solutions for the resection point, since the four directions give rise to three angles, exceeding 

the minimum geometric requirements for a unique solution.  That is, there is a redundancy in 

the mathematical model.  In this case of the resection, and other surveying problems where 

there are redundant measurements, the method of least squares can be employed to obtain the 

best estimate of the "unknowns". 

 

Least squares (as a method of determining best estimates), depends upon the formation of sets 

of observation equations and their solution.  The normal techniques of solution of systems of 

equations require that the sets of observation equations must be linear, i.e., "unknowns" 
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linearly related to measurements.  This is not always the case.  For example, in a resection, 

the measurements, directions ikα  from the unknown point  to known points , are non-

linear functions of the coordinate differences (the unknowns). 

iP kP

 

The observation equations for observed directions in a mathematical model of a resection 

have the general form 

 1tan k i
ik ik i

k i

E Ev z
N N

α − ⎛ −
+ + = ⎜ −⎝ ⎠

⎞
⎟  (7.1) 

 ikα  are the observed directions from the resection point  to the known points , iP kP

  are the residuals (small corrections) associated with observed directions, ikv

  is an orientation "constant"; the bearing of the Reference Object (RO) for the 

set of observed directions, 

iz

 ,  are the east and north coordinates of the known points, and kE Nk

i ,  are the east and north coordinates of the resection point. iE N

 

Clearly, in this case, the measurements ikα  are non-linear functions of the unknowns  

and any system of equations in the form of 

,i iE N

(7.1) would be non-linear and could not be solved 

by normal means.  Consequently, whenever the equations in a mathematical model are non-

linear functions linking the measurements with the unknowns, some method of linearization 

must be employed to obtain sets of linear equations. 

 

The most common method of linearization is by using Taylor's theorem to represent the 

function as a power series consisting of zero order terms, 1st order terms, 2nd order terms and 

higher order terms.  By choosing suitable approximations, second and higher-order terms can 

be neglected, yielding a linear approximation to the function.  This linear approximation of 

the mathematical model can be used to form sets of linear equations, which can be solved by 

normal means. 
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7.1. Taylor's Theorem 

This theorem, due to the English mathematician Brook Taylor (1685–1731) enables the value 

of a real function ( )f x  near a point x a=  to be estimated from the values ( )f a  and the 

derivatives of ( )f x  evaluated at x a= .  Taylor's theorem also provides an estimate of the 

error made in a polynomial approximation to a function.  The Scottish mathematician Colin 

Maclaurin (1698–1746) developed a special case of Taylor's theorem, which was named in his 

honour, where the function ( )f x  is expanded about the origin 0x a= = .  The citations 

below, from the Encyclopaedia Britannica give some historical information about Taylor and 

Maclaurin. 

 

Taylor, Brook (b. Aug. 18, 1685, Edmonton, Middlesex, Eng.– d. Dec. 29, 1731, 
London), British mathematician noted for his contributions to the development of 
calculus.  
In 1708 Taylor produced a solution to the problem of the centre of oscillation.  The 
solution went unpublished until 1714, when his claim to priority was disputed by the 
noted Swiss mathematician Johann Bernoulli.  Taylor's Methodus incrementorum directa 
et inversa (1715; "Direct and Indirect Methods of Incrementation") added to higher 
mathematics a new branch now called the calculus of finite differences.  Using this new 
development, he was the first to express mathematically the movement of a vibrating 
string on the basis of mechanical principles.  Methodus also contained the celebrated 
formula known as Taylor's theorem, the importance of which remained unrecognized 
until 1772.  At that time the French mathematician Joseph-Louis Lagrange realized its 
importance and proclaimed it the basic principle of differential calculus. 
A gifted artist, Taylor set forth in Linear Perspective (1715) the basic principles of 
perspective.  This work and his New Principles of Linear Perspective contained the first 
general treatment of the principle of vanishing points.  Taylor was elected a fellow of the 
Royal Society of London in 1712 and in that same year sat on the committee for 
adjudicating Sir Isaac Newton's and Gottfried Wilhelm Leibniz's conflicting claims of 
priority in the invention of calculus.  
 
Maclaurin, Colin (b. February 1698, Kilmodan, Argyllshire, Scot.–d. June 14, 1746, 
Edinburgh), Scottish mathematician who developed and extended Sir Isaac Newton's 
work in calculus, geometry, and gravitation.  A child prodigy, he entered the University 
of Glasgow at age 11.  At the age of 19, he was elected professor of mathematics at 
Marischal College, Aberdeen, and two years later he became a fellow of the Royal 
Society of London.  At this time he became acquainted with Newton.  In his most 
important work, Geometrica Organica; Sive Descriptio Linearum Curvarum Universalis 
(1720; "Organic Geometry, with the Description of the Universal Linear Curves"), 
Maclaurin developed several theorems similar to some in Newton's Principia, 
introduced the method of generating conics (the circle, ellipse, hyperbola, and parabola) 
that bears his name, and showed that certain types of curves (of the third and fourth 
degree) can be described by the intersection of two movable angles.  On the 
recommendation of Newton, he was made professor of mathematics at the University of 
Edinburgh in 1725.  In 1740 he shared, with the mathematicians Leonhard Euler and 
Daniel Bernoulli, the prize offered by the Académie des Sciences for an essay on tides.  
His Treatisw of Fluxions (1742) was written in reply to criticisms by George Berkeley of 
England that Newton's calculus was based on faulty reasoning.  In this essay he showed 
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that stable figures for a homogeneous rotating fluid mass are the ellipsoids of revolution, 
later known as Maclaurin's ellipsoids.  He also gave in his Fluxions, for the first time, 
the correct theory for distinguishing between maxima and minima in general and pointed 
out the importance of the distinction in the theory of the multiple points of curves.  The 
Maclaurin series, a special case of the Taylor series, was named in his honour.  In 1745, 
when Jacobites (supporters of the Stuart king James II and his descendants) were 
marching on Edinburgh, Maclaurin took a prominent part in preparing trenches and 
barricades for the city's defense.  As soon as the rebel army captured Edinburgh, 
Maclaurin fled to England until it was safe to return.  The ordeal of his escape ruined his 
health, and he died at age 48.  Maclaurin's Account of Sir Isaac Newton's Philosophical 
Discoveries was published posthumously, as was his Treatise of Algebra (1748).  "De 
Linearum Geometricarum Proprietatibus Generalibus tractatus" ("A Tract on the General 
Properties of Geometrical Lines"), noted for its elegant geometric demonstrations, was 
appended to his Algebra.  Copyright 1994-1999 Encyclopædia Britannica 

 

Taylor's theorem may be expressed in the following form 

 

( ) ( )

( )
( )

( )

2 3

1
1

( ) ( ) ( ) ( ) ( ) ( )
2! 3!

( )
1 !

n
n

n

x a x a
f x f a x a f a f a f a

x a
f a R

n

−
−

− −
′ ′′ ′′′= + − + + +

−
+ +

−

 (7.2) 

where nR  is the remainder after n terms and lim 0nn
R

→∞
=  for ( )f x  about x a=  

  are derivatives of the function( ) , ( ) , etcf a f a′ ′′ ( )f x  evaluated at x a= . 

 

Taylor's theorem can also be expressed as power series 

 ( ) ( ) ( ) ( )
0 !

kn
k

k

x a
f x f a

k=

−
= ∑  (7.3) 

where ( ) ( )kf a  denotes the kth derivative of the function ( )f x  evaluated at x a=  and 

( ) ( )0f a  is the function ( )f x  evaluated at x a= , and 0! 1= . 

 

Other forms of Taylor's theorem may be obtained by a change of notation, for example: let 

x a h= + , then ( ) ( )f x f a h= +  and x a h− = .  Substitution into equation (7.2) gives 

 
( )

( )
( )

2 3

1
1

( ) ( ) ( ) ( ) ( )
2! 3!

( )
1 !

n
n

n

h hf x f a h f a h f a f a f a

h f a R
n

−
−

′ ′′ ′′′= + = + + + +

+ +
−

 (7.4) 

This may be a more convenient form of Taylor's theorem for a particular application. 
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Inspection of equations (7.2), (7.3) and (7.4) show that Taylor's theorem can be used to 

expand a non-linear function (about a point) into a linear series.  Expansions of this form, also 

called Taylor's series, are a convergent power series approximating ( )f x . 

 

Taylor's series for functions of two variables 

 

Say ( , )f x yφ =  then the Taylor series expansion of the function φ  about x a=  and y b=  is 

 

( ) ( ) ( )

( ) ( ) ( ) ( )
2 2

2 2
2 2

,

1
2!

f ff a b x a y b
x y

f f f fx a y b x a y b
x y x y

φ ∂ ∂
= + − + −

∂ ∂

⎧ ⎫∂ ∂ ∂ ∂
+ − + − + − −⎨ ⎬∂ ∂ ∂ ∂⎩ ⎭

+

)

 (7.5) 

where ( ,f a b  is the function φ  evaluated at x a=  and y b=  

 
2

2, , , etf f f
x y x
∂ ∂ ∂
∂ ∂ ∂

c  are partial derivatives of the function φ  evaluated at x a=  and 

y b= . 

 

Taylor's series for functions of three variables 

 

Say ( , , )f x y zφ =  then the Taylor series expansion of the function φ  about x a= , y b=  and 

 z c=

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2 2
2 2 2

2 2 2

, ,

1
2!

f f ff a b c x a y b z c
x y z

f f fx a y b z c
x y z

f f f f f fx a y b x a z c y b z c
x y x z y z

φ ∂ ∂ ∂
= + − + − + −

∂ ∂ ∂

⎧ ∂ ∂ ∂
+ − + − + −⎨ ∂ ∂ ∂⎩

⎫∂ ∂ ∂ ∂ ∂ ∂
+ − − + − − + − − +⎬∂ ∂ ∂ ∂ ∂ ∂ ⎭

 (7.6) 

where ( , , )f a b c  is the function φ  evaluated at x a= , y b=  and z c=  

 
2

2, , , , etf f f f
x y z x
∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

c  are partial derivatives evaluated at x a= , y b=  and z c= . 
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Extensions to four or more variables follow a similar pattern.  Equations (7.5) and (7.6) show 

only terms up to the 2nd order; no remainder terms are shown. 

 

7.2. Linear Approximations to Functions using Taylor's Theorem 

In the Taylor expansions of functions shown above, suppose that the variables , , ,  etcx y z  

are expressed as 0x x x= + Δ , 0y y y= + Δ ,  where  are 

approximate values and 

0 etcz z z= + Δ 0 0 0, , ,  etcx y z

, ,x yΔ Δ   are small corrections. ,  etczΔ

 

The Taylor series expansion of a single variable can be expressed as 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( )

2 32 30 0 0 0
2 3

2 3
2 30

2 3

0  higher order terms

df d f d ff x f x x x x x x x
dx dx dx

df d f d ff x x x x
dx dx dx
dff x x
dx

φ = = + − + − + − +

= + Δ + Δ + Δ +

= + Δ +  

where the derivatives 
2 3

2 3, , ,  edf d f d f
dx dx dx

tc  are evaluated at the approximation 0x .  If the 

correction xΔ  is small, then ( )  will be exceedingly small and the higher 

order terms may be neglected, giving the following linear approximation 

( )2 3, ,  x xΔ Δ etc

For ( )f xφ =  0( ) ( ) dff x f x x
dx

φ = + Δ  (7.7) 

Using similar reasoning, linear approximations can be written for functions of two and three 

variables. 

For ( ),f x yφ =  ( )0 0( , ) , f ff x y f x y x y
x y

φ ∂ ∂
= + Δ + Δ

∂ ∂
 (7.8) 

For ( ), ,f x y zφ = , ( )0 0 0( , , ) , , f f ff x y z f x y z x y z
x y z

φ ∂ ∂
= + Δ + Δ

∂
+ Δ

∂ ∂ ∂
 (7.9) 

Similar linear approximations can be written for functions of four or more variables.  In 

equations (7.7), (7.8) and (7.9) the derivatives are evaluated at the approximations 0 0, , 0x y z . 
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Generalizing this linear form gives, for ( )1 2 3, , , nf x x x xφ =  

( )0 0 0 0
1 2 3 1 2 3 1 2 3

1 2 3

( , , , ) , , ,n n
n

n
f f ff x x x x f x x x x x x x x f
x x x

φ
x

∂ ∂ ∂
= + Δ + Δ + Δ

∂
+ + Δ

∂ ∂ ∂ ∂
 (7.10) 

This equation can be written in matrix form 

 ( ) ( )0f fφ = + Δx x j x  (7.11) 

where x is a vector of variables,  a vector of approximate values of the variables, j is a row 

vector of partial derivatives and  is a column vector of corrections. 

0x

Δx

 

Suppose this generalized form, equation (7.11), is extended to the general case of m variables 

1 2 3, , , my y y y  and each variable ky  is a function of a set of variables 1 2 3, , , nx x x x  i.e., 

 

( )
( )

( )

1 1 1 2 3

2 2 1 2 3

1 2 3

, , ,
, , ,

, , ,

n

n

m m n

y f x x x x
y f x x x x

y f x x x x

=
=

=

 

Expressing each variable ky  in a linearized form gives 

 

0 1 1 1
1 1 1 2

1 2

0 2 2 2
2 2 1 2

1 2

0
1 2

1 2

n
n

n
n

m m m
m m

n

y y y

n

y y x x x
x x x
y y yy y x x
x x x

y y y

x

y y x x
x x x

∂ ∂ ∂
= + Δ + Δ + + Δ

∂ ∂ ∂
∂ ∂ ∂

= + Δ + Δ + + Δ
∂ ∂ ∂

∂ ∂ ∂
= + Δ + Δ + + Δ

∂ ∂ ∂
x

 (7.12) 

Equations (7.12) can be expressed in matrix notation as 

 0= + Δy y J x  (7.13) 

where  

 y is an (m,1) vector of (unknown) function values, [ ]1 2
T

my y y=y  

 0y  is an (m,1) vector of approximate values of the functions, 0 0 0 0
1 2

T

my y y⎡ ⎤= ⎣ ⎦y  

  is an (n,1) vector of corrections to the approx. values, Δx [ ]1 2
T

nx x xΔ = Δ Δ Δx  
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 J is the (m,n) the Jacobian matrix of partial derivatives 

 

1 1 1 1

1 2 3

2 2 2 2

1 2 3

1 2 3

n

n

m m m m

n

y y y y
x x x x
y y y y
x x x x

y y y y
x x x x

∂ ∂ ∂ ∂⎡ ⎤
⎢ ⎥∂ ∂ ∂ ∂
⎢ ⎥
∂ ∂ ∂ ∂⎢ ⎥

⎢ ⎥∂ ∂ ∂ ∂= ⎢ ⎥
⎢ ⎥
⎢ ⎥∂ ∂ ∂ ∂⎢ ⎥
∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦

J  

 

7.3. The Derivation of some Common Surveying Observation Equations 

Consider Figure 7.1.   is the instrument point and directions iP ikα  and distances  have been 

observed to stations .   is the Reference Object (RO) and the direction 

.  A bearing is assigned to the RO and bearings to all other stations may be 

obtained by adding the observed directions to the bearing of the RO. 

iks

1 2 3, , kP P P P 1P

1 0 00 00iα ′ ′′=

 

E

N

P3

Pi

P1
P2

Pk

(RO)

z

φik

ikα

α i2
αα

s
s

s

s

i1
i1

i2

i3

ik
αi3

i

EEEkkk - E- E- Eiii

N k
- N

i

E'

N'

 
 

Figure 7.1  Observed directions α  and distances s from  iP

 

 ikα  observed direction  to  iP kP

 ikφ  bearing  to  iP kP
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  distance  to  iks iP kP

  orientation constant for directions at  (bearing of the RO) iz iP

 ikθ  "observed" bearing ik ik izθ α= +  

 ,  coordinates of  iE Ni

k

iP

 ,  coordinates of  kE N kP

 

From Figure 7.1 the bearings ikφ  and distances  are non-linear functions of the coordinates 

of points  and  

iks

iP kP

 1tan k i
ik

k i

E E
N N

φ − ⎛ ⎞−
= ⎜ −⎝ ⎠

⎟

)

 (7.14) 

 ( ) (2
ik k i k is E E N N= − + − 2

0

 (7.15) 

With  and  where  are approximate values of the 

coordinates and  are small corrections, linear approximations of 

0E E E= + Δ 0N N N= + Δ 0 ,E N

,E NΔ Δ ikφ  and  can be 

written as 

iks

 0 ik ik ik ik
ik ik k k i i

k k i

E N E N
E N E iN
φ φ φφ φ ∂ ∂ ∂

= + Δ + Δ + Δ + Δ
∂ ∂ ∂

φ∂
∂

 (7.16) 

 0 ik ik ik ik
ik ik k k i i

k k i

s s ss s E N E N
E N E
∂ ∂ ∂

= + Δ + Δ + Δ + Δ
∂ ∂ ∂ i

s
N
∂
∂

 (7.17) 

where 0
ikφ  and  are approximate bearings and distances respectively, obtained by 

substituting the approximate coordinates  into equations 

0
iks

0 0 0, , ,k k i iE N E N 0 (7.14) and (7.15). 

 

The partial derivatives in equations (16) are evaluated in the following manner. 

 

Using the relationships: 1
2 2

1tan       and      
1

du dvv ud du d u dx dxu
dx u dx dx v v

−
−⎛ ⎞= =⎜ ⎟+ ⎝ ⎠

 

The partial derivative ik

kE
φ∂
∂
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 ( )
( ) ( ) ( )

2

2 2
1

1

k iik k i k i

k k k i k i k i k ik i

k i

N NE E N N
E E N N N N E E N NE E

N N

φ −⎛ ⎞∂ ∂ −
= =⎜ ⎟∂ ∂ − − + − −⎛ ⎞ ⎝ ⎠−+ ⎜ ⎟−⎝ ⎠

2 2
−  

giving 

 
( ) ( )2 2 2

cosik k i k i ik
ik

k ikk i k i

N N N N b
E sN N E E iks
φ φ∂ − −

= = =
∂ − + −

=  (7.18) 

Similarly 

 ( )
( ) ( )

( )
2 2 2

sink i k iik ik
ik

k ikk i k i

E E E E
a

N sN N E E
φ φ− − − −∂

= = =
∂ − + − iks

−
=  (7.19) 

 ( )
( ) ( )

( )
2 2 2

cosk i k iik ik
ik

i ikk i k i

N N N N
b

E sN N E E
φ φ− − − −∂

= = =
∂ − + − iks

−
= −  (7.20) 

 ( )
( ) ( )

( )
2 2 2

sink i k iik ik
ik

i ikk i k i

E E E E
a

N sN N E E
φ − −∂

= = =
∂ − + − iks

φ
= −

b

 (7.21) 

 and ik ika  are known as direction coefficients. 

 

The partial derivatives of equation (7.17) are evaluated in the following manner 

 

The partial derivative ik

k

s
E
∂
∂

 

 ( ) ( ) ( )
1

2 2 21 2 s
2

ik k i
k i k i k i ik

k ik

s EE E N N E E d
E s

φ
−∂ −⎡ ⎤= − + − − = = =⎣ ⎦∂

in ik
E  (7.22) 

Similarly 

 cosik k i
ik ik

k ik

s N N c
N s

φ∂ −
= =

∂
=  (7.23) 

 ( ) sink iik
ik ik

i ik

E Es d
E s

φ
− −∂

= = − =
∂

−  (7.24) 

 ( ) cosk iik
ik ik

i ik

N Ns c
N s

φ
− −∂

= = −
∂

= −  (7.25) 
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 and ik ikc d  are known as distance coefficients. 

 

7.3.1. Observation equation for measured directions 

An observation equation, relating observed directions to coordinates  and  can be written 

as 

iP kP

 1tan k i
ik ik i ik

k i

E Ev z
N N

α φ − ⎛ −
+ + = = ⎜ −⎝ ⎠

⎞
⎟  (7.26) 

where are the residuals (small corrections) associated with observed directions.  Using 

equation 

ikv

(7.16) together with the partial derivatives given in equations (7.18) to (7.21) gives a 

linear approximation of the observation equation for an observed direction 

 0
ik ik i ik k ik k ik i ik i ikv z a N b E a N b Eα φ+ + = Δ + Δ − Δ − Δ +  (7.27) 

where ( )
2

sink i ik
ik

ik ik

E E
a

s s
φ− − −

= =  and 2

cosk i i
ik

ik ik

N Nb
s s

kφ−
= =  are the direction coefficients

 

7.3.2. Observation equation for measured distances 

An observation equation, relating observed distances to coordinates  and  can be written 

as 

iP kP

 ( ) ( )2
ik ik k i k is v E E N N+ = − + − 2  (7.28) 

where are the residuals (small corrections) associated with observed distances.  Using ikv

(7.17) together with the partial derivatives given in equations (7.22) to (7.25) gives a linear 

approximation of the observation equation for an observed distance 

  (7.29) 0
ik ik ik k ik k ik i ik i iks v c N d E c N d E s+ = Δ + Δ − Δ − Δ +

where cosk i
ik ik

ik

N Nc
s

φ−
= =  and sink i

ik ik
ik

E Ed
s

φ−
= =  are the distance coefficients
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7.4. An Example of Taylor's Theorem in Practice 

Figure 7.2 shows a point P, whose coordinates are unknown, intersected by bearings from 

stations A and B whose coordinates are known. 

 

A

B

P

N

E

φ

φA

B

N

N
⊗

 
Figure 7.2  Bearing intersection 

Coordinates 

A:  B:  12273.910 E
29612.310 N

12875.270 E
28679.600 N

 

Bearings 

81 01 23Aφ ′ ′′=   34 47 52Bφ ′ ′= ′

 

Approximate coords P:  13677 E
29834 N

 

The information given above can be used to compute the coordinates of P by using an 

iterative technique employing linearized observation equations approximating the bearings 

 and A Bφ φ .  These observation equations [see equation (7.27)] have been derived using 

Taylor's theorem. 

 

In general, a bearing is a function of the coordinates of the ends of the line, i.e., 

 (1tan , , ,k i
ik k k i i

k i

E E )f E N E N
N N

φ − ⎛ ⎞−
= =⎜ ⎟−⎝ ⎠

 (7.30) 

where subscripts i and k represent instrument and target respectively.  In this example 

(intersection) A and B are instrument points and are known and P is a target point and is 

unknown hence 

 ( ),ik k kf E Nφ =  

is a non-linear function of the variables  and  only (the coordinates of P).  Using 

equations 

kE kN

(7.26) and (7.27) with modifications 0i iE NΔ = Δ =  since the coordinates of the 

instrument points are known gives 

 0
ik ik k ik k ika N b Eφ φ= Δ + Δ +  (7.31) 
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0

k k kE E E= + Δ 0
k k kN N N= + Δ k,  and , 0 0,k kE N ,kE NΔ Δ  are approximate coordinates and 

small corrections respectively.  ( )
2

sink i ik
ik

ik ik

E E
a

s s
φ− − −

= =  and 2

cosk i i
ik

ik ik

N Nb
s s

kφ−
= =  are 

direction coefficients and 0
ikφ  is an approximate bearing.  Note that 0

ikφ  and the direction 

coefficients  and  are computed using the approximate coordinates of P. ika ikb

 

Using equation (7.31), two equations for bearings and A Bφ φ  may be written as 

 
0

0
A A P A P

B B P B P

a N b E

a N b E
A

B

φ φ

φ φ

= Δ + Δ +

= Δ + Δ +
 

These equations can be rearranged and expressed in matrix form as 

 
0

0
A A P A A

B B P B B

a b N
a b E

φ φ
φ φ

Δ ⎡ ⎤−⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥Δ −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

or =Cx u  

where C is a matrix of direction coefficients, x is the vector of corrections to the approximate 

coordinates of P and u is a vector of numeric terms (observed bearing – computed bearing).   

 

The solution for the corrections in vector x is given by 

  1−=x C u

From the information given with Figure 7.2 the computed bearings ( )0
ikφ  and distances ( )0

iks  

using the approximate coordinates of P are 

 

 AP: 81º 01' 17.1" BP: 34º 46' 47.8" 

  1420.5 m  1405.5 m 

and the numeric terms in vector u are 

 

0

81 01 23 81 01 17.1
5.9

A A Au φ φ= −

′ ′′ ′ ′′= −
′′=

  

0

34 47 52 34 46 47.8
64.2

B B Bu φ φ= −

′ ′′ ′ ′′= −
′′=
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With the elements of x (the corrections to the approximate coordinates of P) in centimetres 

and the elements of u (the differences in observed and computed bearings) in seconds of arc 

 cm's seconds
    

=
↓

Cx u

 

the elements of the coefficient matrix C will be computed in sec cm  (seconds per centimetre) 

to maintain consistency of units so that 

 

1

cm cm sec sec

−=
↓

x C u

 

Note that if the units (or dimensions) of the elements of C are sec cm  then the units of the 

elements of the inverse  are 1−C cm sec . 

 

The elements of C are the direction coefficients and with distances  in centimetres 0
iks

 
0

0

sin ik
ik

ik

a
s
φ ρ− ′′= ×  and 

0

0

cos ik
ik

ik

b
s
φ ρ′′= ×  where 180 3600ρ

π
′′ = ×  

giving 
( )

( ) ( )
( )

( ) ( )

sin 81 01 17.1
1.43426 sec cm

1420.5 100

cos 81 01 17.1
0.22662 sec cm

1420.5 100
0.83714 sec cm

1.20538 sec cm

A

A

B

B

a

b

a
b

ρ

ρ

′ ′′−
′′= × = −

′ ′′
′′= × =

= −
=

 

The matrix equation  is =Cx u

  
1.43426 0.22662 5.9
0.83714 1.20538 64.2

P

P

N
E

Δ− ⎡ ⎤⎡ ⎤
=⎢ ⎥⎢ ⎥ Δ−⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥
⎣ ⎦

⎤
⎥
⎦

and the solution  is 1−=x C u

  
0.78316 0.14724 5.9 4.83 cm
0.54391 0.93187 64.2 56.62 cm

P

P

N
E

Δ −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡
= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢Δ −⎣ ⎦ ⎣ ⎦ ⎣⎣ ⎦
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giving the "adjusted" coordinates of P as 

  
0

0

29834.400 0.048 29834.048

13677.000 0.566 13677.566
P P P

P P P

N N N

E E E

= + Δ = + =

= + Δ = + =

These are the "new" approximate coordinates for P.  A further iteration will show that the 

corrections to these values are less than 0.5 mm, hence the values above could be regarded as 

exact. 
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