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ABSTRACT

These notes provide a detailed derivation of the equation for the curve of alignment on an
ellipsoid. Using this equation and knowing the terminal points of the curve, a technique is
developed for computing the location of points along the curve. A MATLAB function is
provided that demonstrates the algorithm developed.

INTRODUCTION

In geodesy, the curve of alignment between P and P, on the ellipsoid is the locus of a

point P on the surface that moves so that a normal section plane at P contains the

terminal points P and P,.
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Figure 1: Curve of alignment on ellipsoid
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Figure 1 shows P on the curve of alignment between P, and P,. The normal to the

ellipsoid at P intersects the z-axis of the ellipsoid at H, and is contained in the plane
PPPH,. This normal section plane cuts the ellipsoid along the normal section curve
PPP,. As Pmoves from P, to P, — maintaining the condition that a normal section

plane contains P, and P, — it traces out the curve of alignment. This is a curve on the

surface having both curvature and torsion, i.e., it twists across the surface between P, and
P, . Note that in Figure 1, the normal at P intersects the z-axis at H and is not

contained in the plane PPP H,, unless Pis at P,.

The curve of alignment can also be described physically in the following way. Imagine a
theodolite, in adjustment, that is setup on the surface of the ellipsoid somewhere between
P and P,, and whose vertical axis is coincident with the ellipsoid normal. The theodolite
is pointed to the backsight P and the horizontal circle is clamped; then the telescope is
rotated in the vertical plane and pointed towards the forsight P,. Unless there is some
fluke of positioning, it is unlikely that the theodolite cross-hairs will bisect the target P,.
So the theodolite is repositioned by moving appropriate amounts perpendicular to the line
until the vertical plane of the theodolite at P contains both the backsight P, and the
forsight P,. A peg is place on the surface at this point. This process of “jiggling in” or
“middling in” between P and P, is repeated a short distance further along the line and

another peg placed. After the last peg has been placed the curve of alignment is now

defined by the pegged line on the surface.

The curve of alignment follows a path very similar to that of the geodesic and it is slightly
longer; although the difference is practicably negligible at distances less than 5,000 km.
This will be demonstrated below using equations developed by Clarke (1880) and Bowring
(1972).

The equation for the curve developed below is similar to that derived by Thomas (1952)
although the method of development is different; and it is not in a form suitable for
computing the distance or azimuth of the curve. But, as it contains functions of both the
latitude and longitude of a point on the curve, it is suitable for computing the latitude of a
point (by iteration) given a certain longitude. Alternatively, by choosing suitable
functions of given latitude, the longitude of a point on the curve can be computed directly

(by solving a trigonometric equation).
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EQUATION OF CURVE OF ALIGNMENT

normal section curve
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Figure 2: Normal section plane containing P and P,

Figure 2 shows a normal section plane of P on an ellipsoid that passes through P and P,.
The semi-axes of the ellipsoid are a and b (a > b) and the first-eccentricity squared e*,

second-eccentricity squared e’ and the flattening f of the ellipsoid are defined by

Parallels of latitude ¢ and meridians of longitude A have their respective reference planes;
the equator and the Greenwich meridian, and Longitudes are measured 0° to £180° (east
positive, west negative) from the Greenwich meridian and latitudes are measured 0° to
+90° (north positive, south negative) from the equator. The z,y,2z geocentric Cartesian
coordinate system has an origin at O, the centre of the ellipsoid, and the z-axis is the
minor axis (axis of revolution). The zOz plane is the Greenwich meridian plane (the origin
of longitudes) and the xOy plane is the equatorial plane. The positive z-axis passes

through the intersection of the Greenwich meridian and the equator, the positive y-axis is
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advanced 90° east along the equator and the positive z-axis passes through the north pole

of the ellipsoid.

The normal section plane in Figure 2 is defined by points ©, @ and ® that are P,

H respectively where H is at the intersection of the normal through P and the z-axis.

Cartesian coordinates of ® and @ are computed from the following equations

T = I/ COS ) COS A
Yy = v cos ¢sin \
z= V(l—e2)sin¢
where v = PH is the radius of curvature in the prime vertical plane and
a

J1—e’*sin® ¢

The distance OH = ve*sin¢ and the Cartesian coordinates of point @ are

UV =

T, 0
Yy | = 0
z,| |-ve’sing

The General equation of a plane may be written as

Arx+By+Cz+D =0

P and

(5)

And the equation of the plane passing through points ®, @ and @ is given in the form of

a 3rd-order determinant

-z, Y-y, z—2
T, =z Y, =y 2z —%|=0

Ty =Xy Yy =Y, 23— %

or expanded into 2nd-order determinants

(2—=,)-
Expanding the determinants in equation (7) gives

(:E _xl){(% B y1)<z3 _Z2) B (Z2 B z1>(y3 —y2>}
(v =w )l )5 —2) = (2= 2) (5, -2}
e =a)ilm =) —w) = (5 —w)(z -2}

Y=Y 2%

Yy =Yy 23— %

T, =, 22_Zl(y_y1>+$2_$1 Yy — Y
Ty =Ty Yy =Y,

Ly — T, 23— %

=0
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0 and equation (8) becomes

(- 1)( —yl)( a)-(e-a)(z - 2)(-w)
~(y =)o =)z 2 (=) (2 - 2) ()
He=a)lm —a)w) +lz=2)-n)(-w)=0 ©)

Expanding and simplifying equation (9) gives

Now from equation (4) =,

H

‘Q

Lz (yQ - y1> + :L’(y122 B yQZl> + 2 (:1:2y1 B x1y2>
+ yz, (Il - wQ) +uy (I221 — a:lz2) +z (x1y2 — xgyl) =0 (10)
Now from equations (2) and (4) z = vcos¢pcos A, y =vcospsin\,z = V(l - eQ)Siruﬁ and

z, = —ve’ sin ¢ , and substituting these into equation (10) gives

ve’ {({B2 — a:l)sin)\ — (y2 — yl)cos )\}sin ¢ — (y221 — yle)cos A
—|—<x221 — xle)sin)\ — <x2y1 — xlyQ)tanqﬁ =0

that is equivalent to

V(l—eQ){e2 (y2 — yl)cosA —é <x2 — :cl)sin)\}simb — (1—62>(y1z2 —y2zl)cos)\
—(1 —62)<I122 —x2z1>sin/\ —(1—62)($1y2 — x2y1>tanq5 =0

or, following Thomas (1952, p. 67, eq. 183); the equation of the curve of alignment is

V(l—eQ){Ccos)\—Hsin)\}sinqb—Ucos)\—VsinA—W(l—ez)tangb =0 (11)

where

c U=(1-¢)(vzs-uz) W=1y -y,
H=¢ (a; — :r1> V = (1 — 62><I221 — x1z2) (12)

Equation (11) is not suitable for computing the distance along a curve of alignment, nor is
it suitable for computing the azimuth of the curve, but by certain re-arrangements it is
possible to solve (iteratively) for the latitude of a point on the curve given a longitude
somewhere between the longitudes of the terminal points of the curve. Or alternatively,
solve (a trigonometric equation) for the longitude of a point given a latitude somewhere

between the latitudes of the terminal points.
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SOLVING FOR THE LATITUDE

Equation (11) can be re-arranged as

Avsing — Btan¢g — D =0 (13)

where A and D are functions of longitude alone and B is a constant for the curve, and
A= <1—62)(CCOS>\ - Hsin)\); B = W<1—62); D =UcosA+VsinA (14)

C, H, U, V and W are constants for the particular curve and are given by equation (12).

v is a function of the latitude of P on the curve and is given by equation (3).

The latitude ¢ can be evaluated using Newton-Raphson iteration for the real roots of the

equation f(¢)= 0 given in the form of an iterative equation
g

f\e,
¢(7z+1) - ¢(n) B M (15)
(o)
where n denotes the n™ iteration and f (¢> is given by equation (13) as
f(¢) = Avsing — Btang — D (16)
and the derivative f’(qﬁ) = %{f <¢)} is given by
f’(qb):Z—;Asin¢+yAcos¢—Bse(:2¢ (17)

where, from equation (3)

dv v*?

— = —¢’sin¢cos 18
= g oso (19
An initial value of gzbm (¢ for n =1) can be taken as the latitude of P and the functions

o) ana 1'(s,

can now be computed from equation (15) and this process repeated to obtain values

evaluated from equations (16) and (17) using ¢, . gzb(g) (¢ for n=2)

¢(3>,q§( g This iterative process can be concluded when the difference between qﬁ(nﬂ) and

qb(n) reaches an acceptably small value.
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SOLVING FOR THE LONGITUDE

Equation (11) can also be re-arranged as

PcosA—Qsin\ =S (19)
where P, () and S are functions of latitude alone and
fnzcy@—eﬂﬂn¢—Ug Q::Hy@—eﬂﬁn¢+vy S:LV@—eﬂmm¢ (20)

C, H, U, V and W are constants for the particular curve and are given by equation (12).

v is a function of the latitude of P on the curve and is given by equation (3).
The longitude can be evaluated using Newton-Raphson iteration where

ARS
b

o)

and

f(A) = PcosA—QsinA—§
f’(A) = —Psin A\ — Qcos\

An initial value of )\( ) (A for n =1) can be taken as the longitude of P,.

Alternatively, the longitude can be evaluated by a trigonometric equation derived as

follows. Equation (19) can be expressed as a trigonometric addition of the form

S = Rcos()\ - 0)
= RcosAcosf + Rsin Asin 6

Now, equating the coefficients of cosA and sin A in equations (19) and (23) gives
P =Rcost; Q= —Rsinf
and using these relationships

R=\P +Q’; taan%

Substituting these results into equation (23) gives

A= arccos[

Ll + arctan {ﬁ}
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DIFFERENCE IN LENGTH BETWEEN A GEODESIC AND CURVE OF ALIGNMENT

There are five curves of interest in geodesy; the geodesic, the normal section, the great

elliptic arc the loxodrome and the curve of alisnment.

The geodesic between P, and P, on an ellipsoid is the unique curve on the surface defining

the shortest distance; all other curves will be longer in length. The normal section curve

PP, is a plane curve created by the intersection of the normal section plane containing the

normal at P, and also P, with the ellipsoid surface. And as we have shown (Deakin 2009)

2

there is the other normal section curve P,P,. The curve of alignment is the locus of all
points P such that the normal section plane at P also contains the points P and P,. The
curve of alignment is very close to a geodesic. The great elliptic arc is the plane curve
created by intersecting the plane containing P, P, and the centre O with the surface of
the ellipsoid and the loxodrome is the curve on the surface that cuts each meridian

between P and P, at a constant angle.

Approximate equations for the difference in length between the geodesic, the normal
section curve and the curve of alignment were developed by Clarke (1880, p. 133) and
Bowring (1972, p. 283) developed an approximate equation for the difference between the
geodesic and the great elliptic arc. Following Bowring (1972), let

s = geodesic length

L = normal section length

D = great elliptic length

S = curve of alignment length

then
4 4
I e ) 4 ) 2
—s _%5 I cos” ¢, sin” ay, cos” ay, + -+
4 2
D—s :;—45[%] sin® ¢, cos” ¢, sin” ar, + -+ (27)
4 4
g . e S 4 ) 2
-5 —%S[E] cos” ¢, sin” o, cos” a, + -+

where R can be taken as the radius of curvature in the prime vertical at P . Now for a

given value of s, § —s will be a maximum if ¢, = 0° (P, on the equator) and o, = 45" in

1
: 4 <2 2
which case cos” ¢, sin” o, cos” ), = 1 thus
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4 4
(S - s) <2 5|2 (28)
1440 | R
For the GRS80 ellipsoid where f = 1/298.257222101, 2 = f(2 - f), and for s = 2000000 m
(2,000 km) and R = 6371000 m , equation (28) gives S —s < 0.001 m.

MATLAB FUNCTIONS

Two MATLAB functions are shown below; they are: curve of alignment lat.m and
curve_of alignment lon.m Assuming that the terminal points of the curve are known,
the first function computes the latitude of a point on the curve given a longitude and the

second function computes the longitude of a point given the latitude.

Output from the two functions is shown below for points on a curve of alignment between
the terminal points of the straight-line section of the Victorian-New South Wales border.
This straight-line section of the border, between Murray Spring and Wauka 1978, is known
as the Black-Allan Line in honour of the surveyors Black and Allan who set out the border
line in 1870-71. Wauka 1978 (Gabo PM 4) is a geodetic concrete border pillar on the coast
at Cape Howe and Murray Spring (Enamo PM 15) is a steel pipe driven into a spring of
the Murray River that is closest to Cape Howe. The straight line is a normal section curve
on the reference ellipsoid of the Geocentric Datum of Australia (GDA94) that contains the
normal to the ellipsoid at Murray Spring. The GDA94 coordinates of Murray Spring and
Wauka 1978 are:

Murray Spring: ¢ —37°47/49.2232" )\ 148°11'48.3333"
Wauka 1978: ¢ —37°3018.0674" )\ 149°58'32.9932"

The normal section azimuth and distance are:

116° 58'14.173757"  176495.243760 m

The geodesic azimuth and distance are:

116°58'14.219146"”  176495.243758 m

Figure 3 shows a schematic view of the Black-Allan line (normal section) and the geodesic
and curve of alignment. The relationships between these two curves and the normal
section have been computed at seven locations along the line (A, B, C, etc.) where

meridians of longitude at 0°15" intervals cut the line. The relationships are shown in

Table 1.

Curve of Alignment.doc 9



BLACK-ALLAN LINE:

148°15"

148°30

148°45"

149°00"

Murray Spring

Geodesic

VIC

149°15°

Curve of ///////i

NS W

149°30"

Alignment

The geodesic and the Curve of Alignment are shown plotted at an
(normal section).
At longitude 149°00’E. the Geodesic is 0.016 m south of the Border

exaggerated scale with respect to the Border Line

Line and the Curve of Alignment is 0.015 m south.

At longitude 149°30’E. the Geodesic is 0.015 m south of the Border

Line and the Curve of Alignment is 0.019 m south.

BLACK-ALLAN LINE:

VICTORIA/NSW

BORDER

149°45"

Figure 3

The Black-Allan Line is a normal section curve
on the reference ellipsoid between P1 (Murray
Spring) and P2 (Wauka 1978) . This curve is the
intersection of the normal section plane and the
ellipsoid, and the normal section contains PI1,
the normal to the ellipsoid at P1l, and P2.

The GDA94 coordinates of Murray Spring and
Wauka 1978 are:

Murray Spring: ¢ -37°47749.2232"
Wauka 1978: ¢ -37°30718.0674"

A 148°11748.3333”
A 149°58732.9932”

The normal section azimuth and distance are:
116°58714.173757” 176495.243760 m.

Normal Section

Wauka 1978

VICTORIA/NSW BORDER

NAME GDA94 Ellipsoid values
LATITUDE LONGITUDE do P dm = pxdg
Murray | _36°47-49.223200" 148°11°48.333300"
Spring
-36°49°07.598047" N
A -36°49°07.598090" G 148°15°00.000000” | -00°00.000043" 6358356.102 -0.0013
-36°49°07.598051" CoA -00°00.000004" -0.0001
-36°55713.876510" N
B -36°55713.876745" G 148°30°00.000000” | -00°00.000235" 6358465.209 -0.0072
-36°55713.876614" CoA -00°00.000104" .-0.0032
-37°01°17.289080" N
C -37°01°17.289478" G 148°45°00.000000” | -00°00.000398" 6358573.577 -0.0123
-37°01°17.289366" CoA -00°00.000286" -0.0088
-37°07°17.845554" N
D -37°07°17.846060" G 149°00°00.000000” | -00°00.000506" 6358681.204 -0.0156
-37°07°17.846030" CoA -00°00.000476" -0.0147
-37°13715.555723” N
E -37°13715.556262" G 149°15°00.000000” | -00°00.000539" 6358788.089 -0.01l66
-37°13715.556326" CoA -00°00.000603" -0.0186
-37°19°10.429372" N
F -37°19°10.429845" G 149°30°00.000000” | -00°00.000473" 6358894.232 -0.0146
-37°19°10.429972" CoA -00°00.000600" -0.0185
-37°25702.476276" N
G -37°25702.476564" G 149°45°00.000000” | -00°00.000288" 6358999.632 -0.0089
-37°25°02.476677" CoA -00°00.000401" -0.0124
Wauka | _37930°18.067400" 149°58°32.993200"
1978
TABLE 1: Points where curves cut meridians of A, B, C, etc at 0°15° intervals of longitude along

Border Line

N = Normal Section, G = Geodesic, CoA
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>> curve of alignment lat

Curve of Alignment

Ellipsoid parameters
a = 6378137.0000
f 1/298.257222101

Terminal points of curve

Latitude Pl = -36 47 49.223200 (D M S)
Longitude P1 = 148 11 48.333300 (D M S)
Latitude P2 = -37 30 18.067400 (D M S)
Longitude P2 = 149 58 32.993200 (D M 9)

Cartesian coordinates

X Y Z
Pl -4345789.609716 2694844.030716 -3799378.032024
P2 -4386272.668061 2534883.268540 -3862005.992252

Given longitude of P3

Longitude P3 = 149 30 0.000000 (D M S)

Latitude of P3 computed from Newton-Raphson iteration
Latitude P3 = -37 19 10.429972 (D M S)

iterations = 4

>>

>> curve of alignment lon

Curve of Alignment

Ellipsoid parameters
a = 6378137.0000
f 1/298.257222101

Terminal points of curve

Latitude Pl = =36 47 49.223200 (D M S)
Longitude P1 = 148 11 48.333300 (D M S)
Latitude P2 = =37 30 18.067400 (D M S)
Longitude P2 = 149 58 32.993200 (D M S)

Cartesian coordinates

X Y Z
Pl -4345789.609716 2694844.030716 -3799378.032024
P2 -4386272.668061 2534883.268540 -3862005.992252

Given latitude of P3
Latitude P3 = =37 19 10.429972 (D M S)

Longitude of P3 computed from Newton-Raphson iteration
Longitude P3 = 149 29 60.000000 (D M S)
iterations 5

Longitude of P3 computed from trigonometric equation

Longitude P3 = 149 29 60.000000 (D M S)
theta P3 = 8 32 44.447661 (D M 9)
>>
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MATLAB function curve_of alignment lat.m

function curve of alignment lat

% curve of alignment lat: Given the terminal points Pl and P2 of a curve of
% alignment on an ellipsoid, and the longitude of a point P3 on the curve,
% this function computes the latitude of P3.

% Function: curve of alignment lat

% Usage: curve of alignment lat

% Author: R.E.Deakin,

% School of Mathematical & Geospatial Sciences, RMIT University
% GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA.

% email: rod.deakin@rmit.edu.au

% Version 1.0 3 October 2009

% Version 1.1 31 December 2009

% Purpose: Given the terminal points Pl and P2 of a curve of alignment on

% an ellipsoid, and the longitude of a point P3 on the curve, this
% function computes the latitude of P3.

% Functions required:

% [D,M,S] = DMS (DecDeq)
% [X,Y,Z2] = Geo2Cart(a,flat,lat,lon,h)
% [rm, rp] = radii(a,flat,lat);

% Variables:

% A,D - curve of alignment functions of longitude

% a - semi-major axis of ellipsoid

$ Db - semi-minor axis of ellipsoid

$ B,C,H,W,U,V - constants of curve of alignment

% d2r - degree to radian conversion factor 57.29577951...
% d nu - derivative of nu w.r.t latitude

s ez - eccentricity of ellipsoid squared

s £ - f = 1/flat is the flattening of ellipsoid

s flat - denominator of flattening of ellipsoid

s £ lat3 - function of latitude of P3

% fdash lat3 - derivative of function of latitude of P3

% hl,h2 - ellipsoidal heights of Pl and P2 (Note: hl = h2 = 0)
% iter - number of iterations

% latl,lat2,lat3 - latitude of P1l, P1l, P3 (radians)
% lonl,lon2,lon3 - longitude of P1l, P2, P3 (radians)

% new lat3 - next latiude in Newton-Raphson iteration

% nu - radius of curvature in prime vertical plane
% rho - radius of curvature in meridain plane

$ X1,Y1,7z1 - Cartesian coordinates of P1

S X2,Y2,722 - Cartesian coordinates of P2

% Remarks:

% Given the terminal points Pl and P2 of a curve of alignment on an

% ellipsoid, and the longitude of a point P3 on the curve, this function
% computes the latitude of P3.

% References:
% [1] Deakin, R.E., 2009, 'The Curve of Alignment on an Ellipsoid',

% Lecture Notes, School of Mathematical and Geospatial Sciences,
% RMIT University, December 2009

% [2] Thomas, P.D., 1952, Conformal Projections in Geodesy and

% Cartography, Special Publication No. 251, Coast and Geodetic
% Survey, U.S. Department of Commerce, Washington, DC: U.S.

% Government Printing Office, pp. 66-67.

oe

Degree to radian conversion factor
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d2r = 180/pi;

% Set ellipsoid parameters
= 6378137; % GRS80
lat = 298.257222101;

Hh

o

Compute ellipsoid constants
1/flat;
= £*(2-f);

.
Il

% Set lat, lon and height of Pl and P2 on ellipsoid
latl = -(36 + 47/60 + 49.2232/3600) /d2r; % Spring

)
lonl = (148 + 11/60 + 48.3333/3600)/d2r;
lat2 = -(37 + 30/60 + 18.0674/3600) /d2r; % Wauka 1978
lon2 = (149 + 58/60 + 32.9932/3600) /d2r;
hl = 0;
h2 = 0;

Compute Cartesian coords of Pl and P2
X1,Y1,21] = Geoz2Cart(a,flat,latl,lonl,hl);
X2,Y¥2,722] = Geo2Cart(a,flat,lat2,lon2,h2);

— — o°

Compute constants of Curve of Alignment
e2*(Y2-Y1);

= e2* (X2-X1);

X1*Y2-X2*Y1;

(1-e2) *(Y1*Z22-Y2*Z1) ;
(1-e2) * (X2*Z21-X1*Z22) ;

= (l-e2)*W;

w<<a=imQoe
I

% Set longitude of P3
lon3 = (149 + 30/60)/d2r;

% Set constants A and D that are functions of longitude only
A = (l-e2)*(C*cos(lon3)-H*sin (lon3));
D

= U*cos (lon3)+V*sin(lon3);

% Set starting value of phi = latitude
lat3 = latl;

iter = 1;
while 1
% Compute radii of curvature
[rho, nu] = radii(a, flat,lat3);
d nu = nu”3/ (a*a)*e2*sin(lat3) *cos (lat3);
f lat3 = A*nu*sin(lat3)-B*tan(lat3)-D;
fdash lat3 = d_nu*A*sin(lat3)+nu*A*cos(lat3)—B/(cos(lat3)A2);
new lat3 = lat3—(f_lat3/fdash_lat3);
if abs(new lat3 - lat3) < le-15
break;
end

lat3 = new lat3;
if iter > 100
fprintf ('Iteration for latitude failed to converge after 100 iterations');
break;
end
iter = iter + 1;
end;

fprintf ('\n ") ;
fprintf ('\nCurve of Alignment');
fprintf ("\n ')
fprintf ('\nEllipsoid parameters');
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fprintf ('\na
fprintf ('\nf

%12.4f',a);
1/%13.9f',flat);

fprintf ('\n\nTerminal points of curve');
% Print lat and lon of Pl

[D,M,S] = DMS (latl*d2r);
if D == 0 && latl < O

fprintf ('\nLatitude Pl = -0 %2d %9.06f (D M S)',M,S);
else

fprintf ('\nLatitude Pl = %4d %2d %9.6f (D M S)',D,M,S);
end

[D,M,S] = DMS(lonl*d2r);
if D == 0 && lonl < O

fprintf ('\nLongitude P1 = -0 %2d %9.06f (DM S)',M,S);
else

fprintf ('\nLongitude P1 = %4d %2d %9.6f (DM S)',D,M,S);
end
% Print lat and lon of P2

[D,M,S] = DMS (lat2*d2r);
if D == 0 && lat2 < O

fprintf ('\n\nLatitude P2 = -0 %2d %9.6f (DM S)',M,S);
else

fprintf ('\n\nLatitude P2 = %4d %2d %9.6f (D M S)',D,M,S);
end

[D,M,S] = DMS (lon2*d2r);
if D == 0 && lon2 < 0

fprintf ('\nLongitude P2 = -0 %2d %9.06f (DM S)',M,S);
else

fprintf ('\nLongitude P2 = %4d %2d %9.6f (D M S)',D,M,S);
end

)

% Print Coordinate table

fprintf ('\n\nCartesian coordinates"');

fprintf ('\n X Y VAR
fprintf ('\nP1 %$15.6f %$15.6f %$15.6f',X1,Y1,21);

fprintf ('\nP2 $15.6f %15.6f %$15.6f',X2,Y2,72);

% Print lat and lon of P3
fprintf ('\n\nGiven longitude of P3');

[D,M,S] = DMS (lon3*d2r);
if D == 0 && 1lon3 < 0

fprintf ('\nLongitude P3 = -0 %2d %9.6f (DM S)',M,S);
else

fprintf ('\nLongitude P3 = %4d %2d %9.6f (D M S)',D,M,S);
end
fprintf ('"\n\nLatitude of P3 computed from Newton-Raphson iteration');
[D,M,S] = DMS (lat3*d2r);
if D == 0 && lat3 < 0

fprintf ('\nLatitude P3 = -0 %$2d %9.6f (DM S)',M,S);
else

fprintf ('\nLatitude P3 = %4d %2d %9.6f (D M S)',D,M,S);
end
fprintf ('\niterations = %44',iter);

fprintf ("\n\n");
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MATLAB function curve_of alignment lon.m

function curve of alignment lon

curve of alignment lon: Given the terminal points Pl and P2 of a curve of
alignment on an ellipsoid, and the latitude of a point P3 on the curve,
this function computes the longitude of P3.

Function: curve of alignment lon
Usage: curve of alignment lon
Author: R.E.Deakin,

School of Mathematical & Geospatial Sciences, RMIT University
GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA.

email: rod.deakin@rmit.edu.au

Version 1.0 31 December 2009

Purpose: Given the terminal points Pl and P2 of a curve of alignment on
an ellipsoid, and the latitude of a point P3 on the curve, this function
computes the longitude of P3.

Functions required:
[D,M,S] = DMS (DecDbeg)

[X,Y,Z2] = Geo2Cart(a,flat,lat,lon,h)
[rm, rp] = radii(a,flat,lat);
Variables:
a - semi-major axis of ellipsoid
b - semi-minor axis of ellipsoid
C,H,W,U,V - constants of curve of alignment
d2r - degree to radian conversion factor 57.29577951...
d nu - derivative of nu w.r.t latitude
e2 - eccentricity of ellipsoid squared
£ - f = 1/flat is the flattening of ellipsoid
flat - denominator of flattening of ellipsoid
f lon3 - function of longitude of P3
fdash lon3 - derivative of function of longitude of P3
hl,h2 - ellipsoidal heights of Pl and P2 (Note: hl = h2 = 0)
iter - number of iterations
lambda - longitude of P3 computed from trigonometric equation

latl, lat2,1lat3 - latitude of P1l, P1l, P3 (radians)
lonl,lon2,lon3 - longitude of P1, P2, P3 (radians)

new_lon3 - next longitude in Newton-Raphson iteration

nu - radius of curvature in prime vertical plane
P,Q,S - functions of latitude of a point on the curve of

- alignment

rho - radius of curvature in meridain plane

theta - auxiliary angle in the computation of lambda
X1,Y1,71 - Cartesian coordinates of P1

X2,Y2,722 - Cartesian coordinates of P2
Remarks:

Given the terminal points Pl and P2 of a curve of alignment on an
ellipsoid, and the latitude of a point P3 on the curve, this function
computes the longitude of P3.

References:

[1] Deakin, R.E., 2009, 'The Curve of Alignment on an Ellipsoid',
Lecture Notes, School of Mathematical and Geospatial Sciences,
RMIT University, December 2009

[2] Thomas, P.D., 1952, Conformal Projections in Geodesy and
Cartography, Special Publication No. 251, Coast and Geodetic
Survey, U.S. Department of Commerce, Washington, DC: U.S.
Government Printing Office, pp. 66-67.
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)

% Degree to radian conversion factor
d2r = 180/pi;

% Set ellipsoid parameters

a = 6378137; % GRS80
flat = 298.257222101;

oe

Compute ellipsoid constants
f = 1/flat;
e2 = f*(2-f);

% Set lat, lon and height of Pl and P2 on ellipsoid

latl = -(36 + 47/60 + 49.2232/3600) /d2r; % Spring
lonl = (148 + 11/60 + 48.3333/3600) /d2r;

lat2 = - (3 + 30/60 + 18.0674/3600) /d2r; % Wauka 1978
lon2 = (149 + 58/60 + 32.9932/3600) /d2r;

hl = 0;

h2 = 0;

% Compute Cartesian coords of Pl and P2
[X1,Y1,21] = Geo2Cart(a,flat,latl,lonl,hl);

[X2,Y2,22] = Geo2Cart(a,flat,lat2,lon2,h2);
% Compute constants of Curve of Alignment
C = e2*(Y2-Y1);

H = e2* (X2-X1);

W = X1*Y2-X2*Y1;

U = (l-e2)*(Y1*Z2-Y2*Z1);

V = (1-e2)*(X2*Z21-X1*Z2);

% Set latitude of P3
lat3 = —=(37 + 19/60 + 10.429972/3600) /d2r;

% Set constants P, Q, S that are functions of latitude only
[rho, nu] = radii(a, flat,lat3);

P = C*nu* (1l-e2) *sin(lat3) -

Q = H*nu* (l-e2)*sin(lat3)+

S = W*(l-e2)*tan(lat3);

oe

oe

o

Set starting value of lon3 = longitude of P3
lon3 = lonl;

iter = 1;

while 1
% Compute radii of curvature
f lon3 = P*cos (lon3)-Q*sin(lon3) -5
fdash lon3 = -P*sin(lon3)-Q*cos (lon3);
new_lon3 = lon3-(f lon3/fdash lon3);
if abs(new lon3 - lon3) < le-15

break;

end
lon3 = new lon3;

if iter > 100
fprintf ('Iteration for longitude failed to converge after 100 iterations');
break;

end

iter = iter + 1;

end;

theta = atan2(-Q,P);
lambda = acos (S/sqrt (P"2+Q"2))+theta;

% Print result to screen
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fprintf ('\n Y
fprintf ('\nCurve of Alignment');
fprintf ('\n Y
fprintf ('\nEllipsoid parameters');
fprintf ('"\na = %12.4f"',a);
fprintf ('‘\nf = 1/%13.9f',flat);

fprintf ("\n\nTerminal points of curve');
% Print lat and lon of P1

[D,M,S] = DMS (latl*d2r);
if D == 0 && latl < O

fprintf ('\nLatitude P1 = -0 %2d %9.06f (DM S)',M,S);
else

fprintf ('\nLatitude Pl = %4d %2d %9.6f (DM S)',D,M,S);
end

[D,M,S] = DMS(lonl*d2r);
if D == 0 && lonl < O

fprintf ('\nLongitude P1 = -0 %2d %9.6f (DM S)',M,S);
else

fprintf ('\nLongitude P1 = %4d %2d %9.6f (DM S)',D,M,S);
end
% Print lat and lon of P2

[D,M,S] = DMS (lat2*d2r);
if D == 0 && lat2 < O

fprintf ('\n\nLatitude P2 = -0 %2d %9.6f (DM S)',M,S);
else

fprintf ('\n\nLatitude P2 = %4d %2d %9.6f (D M S)',D,M,S);
end

[D,M,S] = DMS (lon2*d2r);
if D == 0 && lon2 < 0

fprintf ('\nLongitude P2 = -0 %2d %9.6f (DM S)',M,S);
else

fprintf ('\nLongitude P2 = %4d %2d %9.6f (DM S)',D,M,S);
end

Q

% Print Coordinate table

fprintf ('\n\nCartesian coordinates"');

fprintf ('\n X Y z');
fprintf ('"\nP1 %$15.6f $15.6f %$15.6f',X1,Y1,7Z1);

fprintf ('\nP2 $15.6f %15.6f %$15.6f',X2,Y2,72);

% Print lat and lon of P3
fprintf ('\n\nGiven latitude of P3');

[D,M,S] = DMS (lat3*d2r);
if D == 0 && lat3 < O

fprintf ('\nLatitude P3 = -0 %2d %9.6f (DM S)',M,S);
else

fprintf ('\nLatitude P3 = %4d %2d %9.6f (DM S)',D,M,S);
end

fprintf ('\n\nLongitude of P3 computed from Newton-Raphson iteration');

[D,M,S] = DMS (lon3*d2r);
if D == 0 && lon3 < O

fprintf ('\nLongitude P3 = -0 %2d %9.6f (DM S)',M,S);
else

fprintf ('\nLongitude P3 = %4d %2d %9.6f (DM S)',D,M,S);
end
fprintf ('\niterations = %4d',iter);

fprintf ('"\n\nLongitude of P3 computed from trigonometric equation');

[D,M,S] = DMS (lambda*d2r) ;
if D == 0 && lambda < 0

fprintf ('\nLongitude P3 = -0 %2d %9.0f (DM S)',M,S);
else

fprintf ('\nLongitude P3 = %4d %2d %9.6f (DM S)',D,M,S);
end
[D,M,S] = DMS (theta*d2r);
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if D == 0 && theta < 0
fprintf ('\ntheta P3
else
fprintf ('\ntheta P3 = %4d %2d %9.06f (DM S)',D,M,S);
end

-0 %2d %9.6f (DM S)',M,S);

fprintf ("\n\n");

MATLAB function Geo2Cart.m

function [X,Y,Z] = Geo2Cart(a,flat,lat,lon,h)

% [X,Y,Z] = Geo2Cart(a,flat,lat,lon,h)

% Function computes the Cartesian coordinates X,Y,Z of a point

% related to an ellipsoid defined by semi-major axis (a) and the

% denominator of the flattening (flat) given geographical

% coordinates latitude (lat), longitude (lon) and ellipsoidal

% height (h). Latitude and longitude are assumed to be in radians.

% Function: Geo2Cart ()

% Usage: [X,Y,Z2] = Geoz2Cart(a,flat,lat,lon,h);

% Author: R.E.Deakin,

% School of Mathematical & Geospatial Sciences, RMIT University
% GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA.

% email: rod.deakin@rmit.edu.au

% Version 1.0 6 April 2006

% Version 1.0 20 August 2007

% Functions required:
% radii ()

% Purpose:

% Function Geo2Cart () will compute Cartesian coordinates X,Y,Z
% given geographical coordinates latitude, longitude (both in
% radians) and height of a point related to an ellipsoid

% defined by semi-major axis (a) and denominator of flattening
% (flat) .

% Variables:

% a - semi-major axis of ellipsoid

% e2 - 1lst eccentricity squared

% £ - flattening of ellipsoid

% flat - denominator of flattening f = 1/flat

% h - height above ellipsoid

% lat - latitude (radians)

% lon - longitude (radians)

% P - perpendicular distance from minor axis of ellipsoid

% rm - radius of curvature of meridian section of ellipsoid

% rp - radius of curvature of prime vertical section of ellipsoid

% References:

% [1] Gerdan, G.P. & Deakin, R.E., 1999, 'Transforming Cartesian

% coordinates X,Y,Z to geogrpahical coordinates phi,lambda,h', The
% Australian Surveyor, Vol. 44, No. 1, pp. 55-63, June 1999.

% calculate flattening f and ellipsoid constant e2
f = 1/flat;
e2 = f*(2-f);

% compute radii of curvature for the latitude
[rm, rp] = radii(a,flat,lat);
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compute Cartesian coordinates X,Y,Z
= (rpth) *cos(lat);

= p*cos(lon);

p*sin(lon) ;

(rp* (1-e2) +h) *sin(lat) ;

MATLAB function radii.m

function [rm,rp] = radii(a,flat,lat)

[rm, rpl=radii (a, flat,lat) Function computes radii of curvature in

the meridian and prime vertical planes (rm and rp respectively) at a
point whose latitude (lat) is known on an ellipsoid defined by
semi-major axis (a) and denominator of flattening (flat).
Latitude must be in radians.
Example: [rm,rp] = radii(6378137,298.257222101,-0.659895044) ;

should return rm = 6359422.96233327 metres and

rp = 6386175.28947842 metres
at latitude -37 48 33.1234 (DMS) on the GRS80 ellipsoid

Function: radii (a, flat, lat)
Syntax: [rm, rp] = radii(a,flat,lat);
Author: R.E.Deakin,

School of Mathematical & Geospatial Sciences, RMIT University
GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA.

email: rod.deakin@rmit.edu.au

Version 1.0 1 August 2003

Version 2.0 6 April 2006

Version 3.0 9 February 2008

Purpose: Function radii() will compute the radii of curvature in
the meridian and prime vertical planes, rm and rp respectively
for the point whose latitude (lat) is given for an ellipsoid
defined by its semi-major axis (a) and denominator of
flattening (flat).

Return value: Function radii() returns rm and rp
Variables:

a - semi-major axis of spheroid

c - polar radius of curvature

c2 - cosine of latitude squared

ep2 - 2nd-eccentricity squared

f - flattening of ellipsoid

lat - latitude of point (radians)

rm - radius of curvature in the meridian plane

rp - radius of curvature in the prime vertical plane
\Y - latitude function defined by V-squared = sqgrt(l + ep2*c2)
V2,V3 - powers of V
Remarks:

Formulae are given in [1] (section 1.3.9, page 85) and in

[2] (Chapter 2, p. 2-10) in a slightly different form.

References:

[1] Deakin, R.E. and Hunter, M.N., 2008, GEOMETRIC GEODESY, School of
Mathematical and Geospatial Sciences, RMIT University, Melbourne,
AUSTRALIA, March 2008.

[2] THE GEOCENTRIC DATUM OF AUSTRALIA TECHNICAL MANUAL, Version 2.2,
Intergovernmental Committee on Surveying and Mapping (ICSM),
February 2002 (www.anzlic.org.au/icsm/gdatum)
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% compute flattening f eccentricity squared e2

f = 1/flat;
c = a/(1-f);
ep2 = f£*(2-£f)/((1-£f)"2);

% calculate the square of the sine of the latitude

c2 = cos(lat)"2;

% compute latitude function V
V2 = l+ep2*c2;

V = sgrt(V2);

V3 = V2*V;

% compute radii of curvature
rm c/V3;
rp c/V;

MATLAB function DMS.m

function [D,M,S] = DMS (DecDegq)

% [D,M,S] = DMS (DecDeg) This function takes an angle in decimal degrees and returns
% Degrees, Minutes and Seconds

val = abs (DecDeq) ;

D = fix(val);

M fix((val-D) *60);

S = (val-D-M/60) *3600;
(
D = -D;

end
return
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