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Abstract

Fitting a straight line through (X,Y) data is a common problem in estimation. Using a data plot and a

ruler, the problem is solved by slowly moving the ruler to a position that visually minimizes the
perpendicular distances between the data points and the ruler. A mathematical solution can be determined
using the theory of least squares that supposes the most probable ‘answer’ is one that minimizes the sum of

the weighted squares of residuals, where residuals are small corrections to the (X ,Y) data and weights are

numbers reflecting precision of measurements.

York (1966, 1968) solved this problem for uncorrelated and correlated data, but unfortunately his solution is
not well known and scientists and engineers often use inappropriate methods embedded in software products
and calculators. This paper will show, in detail, how York solved this problem of estimation.

Introduction

Fitting a straight line of best fit y = a + bx through (X,Y) data is a common problem in estimation. It is

also known as Linear Regression and its first use in what would now be called statistics is attributed to the
English scientist Sir Francis Galton (1822-1911). In its simplest form the X-values are considered error-free
and the Y-values are measurements (subject to error) with equal precision. The solution for the parameters
a (intercept on y-axis) and b = tan (gradient of line) is a relatively simple application of the theory of least
squares and can be found as a special function on many scientific calculators.

When the (X,Y) data are both considered as measurements subject to error then the problem is more

complicated. The earliest published work on this topic is by R.J. Adcock, an attorney from Monmouth
(Illinois, USA) who in three papers in The Analyst! (Adcock, 1877, 1878a, 1878b) discussed a method of
fitting a straight line to n points such that the sum of the squares of the normals is a minimum. Adcock
(1878b) gave the function to be minimized and a worked example but unfortunately there were some errors
(in theory and calculation) although he did correctly state that the line passes through the centroid of the n
points (Finney 1996, Farebrother 1999). Adcock’s errors were corrected by Kummell? (1879) who extended

Adcock’s least squares function to incorporate varying precision of (X,Y) data.

Karl Pearson (1901) adopted the approach of Adcock and Kummell of minimizing the sum of squares of the
normals from n points to a line or a plane and gave proofs that the best fitting lines or planes pass through
the centroid? of a system. In the case of n points in a plane Pearson called the line of best fit the major azis
of the correlation ellipsoid and he provided a worked example of a line of best fit through n = 10 points of
supposed equal weight which has become a standard test set (see Example 1).

Deming (1943) proposed that the line of best fit is obtained by minimizing a function S = sum of weighted
squared residuals, subject to the condition that adjusted points lie on the line y = a + bz — residuals are
small (unknown) corrections to measured values such that measurement + residual = ‘true’ value — and

I First published in Des Moines, Iowa in 1874 but ceased in 1883. It was continued from 1884 as the Annals
of Mathematics. An earlier journal of the same name was published by Dr Robert Adrian (Pennsylvania
USA) in 1808 but ceased after publication of a single volume.

2 Charles H. Kummell was a surveyor/geodesist with the U.S. Lake Survey, Detroit, Michigan.

3 Pearson’s centroid is defined as the point having mean values of the coordinates. In this paper ‘centroid’ is
taken to mean a point having weighted mean values of the coordinates



Deming used a weight W, that is a function of the (unknown) gradient b and the weights w(X i ),w(Yk) of
the measured values (Xk,Y}C) . In an example, using a simplified method of solution, Deming noted that the

solution for b was iterative, since b was contained in W, . Also, in a further example, where the ratio of
weights w(X A ) / w (Y,C ) equalled a constant, he obtained the same result for b as Kummell (1879) and
Pearson (1901).

York (1966), using the same approach as Deming, (but with a more rigorous analysis) arrives at his Least

Squares Cubic: b> — 3Ab* +3Bb— C = 0. The solution of York’s cubic can present difficulties because of
the implicit dependence of b (via the weight function W, and the centroidal coordinates U,,V, ) in the
coefficients A, B and C, and it is possible that the roots of the cubic may be complex (Reed 1989). McIntyre
et al. (1966), using a slightly different least squares technique, also arrive at York’s least squares cubic,
although there is no mention of York’s earlier paper. Both of these independent determinations of the least
squares cubic assume errors in both coordinates but no correlations between the errors.

Williamson (1968) derives York’s cubic for the uncorrelated errors case, but noting the implicit dependence
of b in the coefficients A, B and C, states that York’s choice of a cubic in b is just one of many polynomial
representations. Williamson then gives a linear equation in the gradient b.

York (1968), referring to his and McIntyre’s et al. earlier papers derives the Generalized Least Squares Cubic
for the case of correlated errors in the measured values (Xk,Yk) and following Williamson (1968) reduces the

cubic to a linear equation in b.

Since the work of York (1966, 1968), McIntyre et al (1966) and Williamson (1968) there have been many
papers on the topic of fitting straight lines to data, some offering variations on the least squares approach,
e.g. Krane and Schecter (1981), Lybanon (1984), Neri et al. (1989) and Kiryati and Bruckstein (1992) and
others offering comparisons of various published methods, e.g. Macdonald and Thompson (1992), Duer et al.
(2008) and Cantrell (2008). York et al. (2004) summarizes the earlier work of York (1966, 1968) and
provides a compact set of equations for the determination of the parameters b and a (gradient and intercept),
as well as estimates of variances of the parameters that are a simplification of those given in York (1968).

In this paper we have set out, in detail, the methods used to obtain the Generalized Least Squares Cubic in b
and the linear equation in b given in York (1968) and equations for the computation of residuals and
estimates of variances of b and the y-intercept a. Worked examples are provided that cover the general
solution as well as special cases. Two appendices are contained in this paper; the first shows an alternative
approach to minimisation of a ‘least squares’ function that leads to the least squares cubic; and the second
shows a very detailed derivation of the necessary equations for variance estimation of the parameters a and
b. The detailed analysis leading to these equations is different from York (1968) and York et al. (2004) but
confirms those published results.

Nomenclature

In this paper we have adopted the notation of York et al. (2004). Also, there is much use of the summation

n
symbol Z . For convenience and clarityEAk , ZAk and ZA all mean ZAk
k k=1

Symbol Meaning Definition
a,b y-intercept and gradient of line of best

fit y=a+ bz
S initial and successive values of the

gradient b in an iterative solution

J ok integer counters



Symbol

Meaning

Definition

Q;

integer; number of data points;
iteration number

variance matrix of measurements

correlation

least squares function

unbiased estimates of variances

unbiased estimates of standard
deviations

covariance
centroidal coordinates of P,

transpose of vector of residuals

residuals (corrections to
measurements)

weight matrix

weights of coordinates (X > Yk)

weight function

adjusted coordinates of point P,

measured coordinates of point P,

centroid

Lagrange multiplier

S(X,) s(XY,)

s(X,Y,) $°(v)
s(X,Y;)

S(Xk)s(yk)

S = VITW1V1 + V2TW2v2 + .-

S

T =

VVk:QE1
1 1
w(Xk)_ Q(X )’ w(Yk):SQ(Y)
k k
2
W, = o

1
Qy, w(Xk)w(Yk) s(Xk)s(Yk)
U bV, T
B, =W, b —k_E(hU, +V,
S e e e
> Wiy
B k

YW
k

N, =W, (a+bX, -Y,)

Note: For the special case b = 0, the weight function W, = w(Yk) and special results follow for the

centroid ()_(,}7) , centroidal coordinates (U kﬂ/k) and the factors §, and B .



The equation of a straight line

The equation of a straight line can be expressed as
y=a+bz (1)
where b = tan 6 is the gradient of the line and a is the intercept of the line on the y-axis.

YA

vy =

Figure 1. The orthogonal projection of P(Xk,Yk) onto the straight line y = a + bz

In Figure 1 P, is one of a number of points & = 1,...,n that lie on or near the straight line. (Xk,Y;C) are
measurements and z,,y, are the coordinates of P, orthogonally projected onto the straight line. We call

(mk,yk,) the adjusted coordinates of P, .

Measurements, residuals, weights, variance, covariance and correlation

Defining residuals U(Xk, ),U(Y}C) as small unknown corrections to measurements X,,Y, we write

Xk—I—U(Xk):zk U(Xk):zk—Xk 5
Yk,—l-v(Yk):yk or U(Yk,)zyk—Yk (2)

and the vector of residuals v is
vi=[o(X) o(Y) [o(X) o(Y)] (X)) o(v,)| = v vl (3)

If measurements (Xk,Yk) have associated estimates of variances s (Xk),SZ (Yk) and covariances s(XkYk)

then we define the block-diagonal variance matrix of measurements Q as



(X)) s(XY) 0 0 0 0
s(XY,) s (v) 0 0 0 0
0 0 (X)) s(XY,) 0 0 Q 0 0
Q- s(Xgle) sZ(OYQ) 0 0 |_|0 Q "l
0 0 Q,
sz(Xn) s(Xn n)
0 s(XY,) & (%)

where the 2-by-2 sub-matrices Q,,Q,,...,Q, are each symmetric. Here variances are measures of the
dispersion from mean values and covariances are measures of independence. If two random quantities are
independent then their covariance will be zero. For a finite population of N quantities X, X,,..., X the

N N
1 1 2
population mean and variance are [ = NEX]- and 0” = NZ(X o ,u) respectively. For a sample of n
j=1

_ 1<
quantities from an infinite population the unbiased estimates of the mean and variances are X = —ZX j

n j=1

1 < 2
and 8 (X ) = IZ(Xj - X ) respectively and the standard deviation S(X ) is defined to be the positive

J=1
square-root of the variance. Also, for samples (X j,Yj) each of size n an unbiased estimate of the covariance
n

s 5(XY) = —= (X, - X)(v, - 7).

J=1

The block-diagonal weight matrix of the measurements denoted by W is defined to be

W, 0
P 0 \V’2 0
w=q'=|. * . (5)

n
where the 2-by-2 sub-matrices W, = Ql_l,W2 = QQ_I,...,Wn = Q;l are symmetric.

S(X,) s(XY)

The variance matrix of the measurements at P, is Q, =
: 2
s(X,Y,) (%)

and the weight matrix at P,

is

1
(X)) (V) - s (X,7,)

W, = le =




Nll N12
N21 N22

Note here we have used a standard result for a 2-by-2 matrix inverse where if N = then

N~ =

1 \N22 _N12]
Ny iNyy — NipNy —Ny Ny

The correlation 7, between the measurements X,,Y, is defined as

s(X,Y;,)

b :S(Xk)s(yk)

then

1 1

P () (1) (%) (%)

Substituting (8) into (6) gives

1 i T,
WL | e sX)s()
g 177%2 _ "% # 1
s(Xk)s(Yk) ! 52(Yk)

Defining weights as the inverse of the unbiased estimates of variances, then

w(Xk): and w(Yk):82<Yk)

And defining

-1, Q

lw(Yk)

S
Ko

The least squares function

(10)

The least squares function S = the sum of the weighted squares of residuals. S is a scalar quantity and can

be defined as a matrix product

With (3) and (5) we may write S as

S = virwlv1 + VgWQV2 + V;WSVB + .+ vZann

(13)



and with (12)

o =gt 0 5
= )] 2 ace( o) +u(r) ()}
B! _17«? {w(Xk)(I’“ — )2 =2 0y (= X, ) = i) + w (V) (u, 4@,)2} (14)

we have a least squares function S as (York, 1968, eq. 1 with a; = w(Xk )w(Yk ))

S = Zk:llrk?{w(Xk)(Ik - X )2 —2n ak(xk *Xk)(yk - Yk) + w(Yk)(yk - Y )2} (15)

Note here that the variables in S are the adjusted measurements (xk,yk> that lie on the line y = a +b.

If the measurements (Xk,Y;C) are assumed to be independent quantities (and therefore uncorrelated) then

n. = 0 and (15) becomes (York, 1966, eq. 7)

S:;{w(Xk)(:vk—ka+w(Yk)(yk—Yk)2} (16)

Deming (1943) proposed that the “best” straight line is found by minimizing this S.

The line of best fit
Following York (1966, 1968), the line of best fit y = a + bz is that which minimizes the sum of the weighted

squares of residuals. Since we require that the adjusted values (:Ek.,yk) of the measurements (Xk.,Y;C) lie on

the straight line then the parameters a and b can be found by minimizing the expression for S in (15) subject
to the constraints that

Yy, =a+br, for k=1...,n (17)

To achieve this, York uses a mathematical optimization technique known as the method of Lagrange
multipliers (Lagrange 1788, Vol. 1, Sect IV) where the function to be minimized is the Lagrangian L

L=S+2Y")\(a+by —y,) (18)
k

where )\, are the (as yet unknown) Lagrange multipliers. The 2 is a numerical convenience and it should be

noted that a + bz, —y, =0 for k=1,...,n.

The variables in L are z,,y,,a,b and A, and it will have an optimum (minimum or maximum value) when

the partial derivatives of L equal zero, i.e.,

L = optimum when ﬁzﬁzaL_a_L_ﬁ_L_

— = = = (19)
Ox, 0y, Oda OJb O\




The partial derivatives of L equated to zero are

oL

8_: : 2{2w(Xk)(Ik*Xk)*2Tk%(yk*Yk)}wLZZ/\kb:O
Ik k 177’k p

oL 1

o 2u() (%)~ 20 (7 — X, )} 2500 = 0
Yy 3 177”19 -

oL

— =2 A\ =0

da zk:k

oL

%zzik)kxkzo

oL
a—/\k:2zk:(a+b$k—yk)20

The first four members of (20) are satisfied when

{w(Xk)(a:k —Xk)—rk ak(yk —Yk)}—i—)\k(l—r,f)b =0 for each k
{w(Yk)(y,C fYk)frkak(:rk ka)}f)\k(lfrlf) =0 for each k
SN =0

k
ZAk’Ik’ =0
k

The last member of (20) satisfies the condition that y, = a + bz,
Equations (21) and (22) can be solved for z, — X, and y, — Y, yielding

1
T, — X, = E(—bw(Yk)/\k + 1,0 /\k)
&

1
y, —Y, = —2(fbrk oy N+ w( X))

Qy

from which we obtain

A
r, = X, +a_§(7’k Q. *bw(yk))
k

Substituting (25) and (26) into (17) gives

w( X br, n bw(Y, :
Yk+>\k¥——k]—a+b X, + N | # —a+bX, +\|—
oy Q, Q. Q. Qy

and after some algebra we obtain

w(Xk) —2br, o) + wa(Yk)

2
Q.

A =a+bX, -V,




giving (York 1968)

A =W (a+bX, -V (27)

where the weight function W, is defined as

2
QA

wa(Y}f) +w(Xk) —2br,

W, = (28)

Equation (27) is a solution for the Lagrange multipliers A, and this result can be used in (23) and (24) to

give
YW, (a+bX, -Y,)=0 (29)

and
da W (a+0X, Y, )=0 (30)
Expanding (29) gives
ay W, +b0> WX, = > WY, =0

from which we obtain

_ ZWkYk B bZWka

a =
> W > W
Defining the centroid ()_(,17) as
D I/ATEEE D VLA (31)
> W, > W,
we obtain
a=Y —bX or Y =a+0bX (32)

Also we define centroidal coordinates (Uk,Vk) as

U, =X, -X, V., =Y -Y (33)
Deming (1943, Remark 2, Example 4, p. 181) calls ()_(,17) a quasi center, although in his example the data

. o 1 b2 1
are not correlated, i.e.: n, =0; W, = : ;and — =

Using (33) and (32) we may write

a+bX, -Y, =a+b(U, +X)—(V, +7)
=a+bU, +bX -V, -V
=bU, —V, (34)

and using this result (27) and (29) become



A, = Wk(bUk _Vk) (35)

ZWk(bUk_Vk)zo (36)

[Note that (36) could be expressed as bz WU = ZWV implying a solution for . But this leads to a

division by zero, since by definition of U and V, ZWU = ZWV = 0. Thus (36) is only used as a means
of simplifying the left-hand-side of (30) as shown below.]

Now, using (25), (34) (35) and (36) in the left-hand-side of (30) gives

kaWk(a—i—ka —Yk) =>
7, b

_Z{)‘(+Uk+wk(wkvk) a_iw(X)

= XD W, (bU, =V ) + X WU, (bU, =V, )+ D W7 (bU, =V, )2[7”—"%)()

A
X, + —Z(Tkak — bw(Yk ))
&

Wk(bUk —Vk)

}Wk(bUk -V)

a
= bU, — 2(pU, — 2% b
D WUy (bU = Vi) + 3 W (b0, = V) o w(X,)
and (30) becomes
WU (b0, —V )+ S22 (b, —v P - w2 —C_(pu — v =0 (37)
k™ k k k k k k k k k
ay, w(X,C)

Expanding the terms within the summations then gathering coefficients of b and powers of b we have York’s
Generalized Least Squares Cubic (York, 1968, eq. 3; York et al., 2004, eq. B1)

T 2
b3 271)2 2 k
> ( )U S W akUkJr—w(Xk)Vk U,
W,
oy, | v - Wy A ) 2 SSw v, -y v =0 (38)
Qy, k

Equation (38) is not really a cubic equation in b because of the implicit dependence of the coefficients on the
gradient b via the weight function W, and the centroidal coordinates U,,V, (Reed 1989). And the solution

for b is iterative and requires special techniques. A far simpler solution is obtained from the following
reductions

Reductions of the Generalized Least Squares Cubic

York (1968) and York et al. (2004) show the Generalized Least Squares Cubic (38) reduced to quadratic and
linear forms. This reduction process is set out below.

Rewrite (38) as

bSZ U2 _ bZZwZ r'Uk i .
( ) @ “’(Xk)
Uz orU,V, 2 Vi
. 2 _/c_ YRR k 2| YE _
by W o o (X + > W | 0 (39)

and using (28) gives

10



WEU?

Py 1
—by W

2V,
“’(Xk)

Uy

2rn,UV, B V,f
Q. w(Xk)

k( ( )+w(X) Qbrkak)—

vV
+2Wk2[—’;(b2w(yk)+w(Xk)—zbrk o) - (Al V,=0
a;, A
This simplifies to York (1968, eq 4) and York et al. (2004, eq B2)
ESWE| ——v, - Ly, v, +ow vz - Ly
' w(X,) TR ' w(Y,) ' w(X;) ' (40)
1 7
>N W2 ——U, — LV |V, =0
Z k w(Yk) k o k] k
A linear equation can be obtained by rewriting (40) as
bV,  bnUyp nV,
by W | ——+ +b W2[ w7 Vi =Y W= - 22V, =0
I e SR (R oy (B M e LR M P e
Gathering terms gives the linear equation (York et al., 2004, eq B3)
1 b b 1 b T
by W2 U V. ——U U, =Y W2 | ——U, +————V, —EV, |V, =0 (4
zk:k[w(yk)k_"w(Xk)k o F|7E zk:kw(yk)k"‘w(Xk)k o F| (41)
Solving for the leading coefficient gives York (1968, eq 6) and York et al. (2004, eq B4)
bV, r.V,
Zw2 k + Y k]v
g e e ) "
U bV, bnU,
W2 k 4 k.
A Te
Equation (41) may be rewritten as
U bV, br.U, U bV, nV,
DINAYYA k+’“kaUW[] WV W, | —2— +—-2 L
TR AR o S v R SLCC iy R s
b WLULW, [Tkv’f ]
o
that simplifies to
U bV, U bV,
b WU W, | —E~+ —2 bU, +V, UAALY b —h - E(hU, 4V,
S e e IR PR Py BT e oy R
Defining
U bV,
8, =W bk Tk (py, 4V (43)
k kw(Yk) w(Xk) ak( k )

11



gives (York et al., 2004, eq B6)

b — ZWkﬁka (44)

b WU, = w3V, =
Z WUy Z WO Ve or ZWkﬂkUk

This linear equation (44) is easiest to solve for b iteratively, as opposed to the quadratic equation (40) or the
Generalized Last Squares Cubic (38) which require special techniques, especially (38) which requires a
Newton-Raphson iterative scheme involving complicated derivatives whereas (40) requires the quadratic
formula which contains a choice of +.

Iterative solutions for b using the linear equation (44) require an initial value b, which can be obtained from

the special cases below, or more easily from estimating the gradient of a straight line from the extremities of
the data set, disregarding any weights. Example 3 below shows the iterative sequence.

y-intercept a, adjusted values z,,y, and residuals v(Xk ), v(Yk)

The y-intercept a is obtained from (32) as

where the centroid ()_(,?) is given by (31).

The adjusted values ,,y, are the coordinates of the orthogonal projection of P, (Xk7Yk) onto the straight
line y = a + bz (see Figure 1).

Using (25), (26) and (27) the adjusted values z,,y, can be written as

7, =X, + W, (a+0bX, —Y,)

el

1 b
y, =Y, + W, (a+bX, -V, w(y);k_
k k
and substituting for the y-intercept a using (45) gives
= = , b
= X, + W, (b(X, - X)— (v, —Y))[;—k— olx )]
k k
_ — 1 b
y =Y, + W (b(X, -~ X) (Y, - Y)) w(Y);L
k k
but, U, = X, — X, V, =Y, - Y giving
- T, b
z, = X + U, + W, (bU, Vk)[a—m]
k k
_ 1 b
y =Y +V, +W, (00, —V,) w(y)—;k—]
k &

and after some algebra

12




- b2U bV, U
5 = X +W,| (b0, —V,) ; B4k
a, w(Xk) w(Xk) W, (46)
— bU v, 7.b
y, =Y +W, E_ kA (py, -V, )+ L
w(Yk) w(Y ) ay fi
With the aid of (28)
U, _ U, L/ /A bV, LY 2 (47)
W, “’(Xk) “’(Yk) @ W, “’(Xk) w(Yk) @
and substituting (47) into (46) and simplifying gives
= U bV,
5= X +W,|—i+ — D (bu, 1 v,)
w(Y)  w(X,) o
_ U bV, 7
y =Y + oW, | —E-+ —E - — (U, + V)
w(Yk) w(Xk) ay
And finally, using (43) gives
=X+ 0 (48)
y, =Y + 05,
The residuals U(X L ),v(Yk) are given by
U(Xk):l’k*Xk:)_?Jrﬁk*Xk:@*Uk (49)
v(Yy) =y, — Y, =Y 405, - Y, =06, —V,
Estimates of the Variances of the gradient b and y-intercept «a
To derive expressions for estimates of variance it is useful to consider the matrix form of the Law of
Propagation of Variances (Mikhail 1976) expressed symbolically as:
T T
Ify = [?/1 Yy 0 Y| X = [xl T, - x,| andy = y(x) then ny = JWQMJ;C (50)

where

y is an n by 1 vector of computed quantities, x is an m by 1 vector of variables (having estimates of
variances and covariances). The superscript 7 denotes transpose.

y(x) represents a vector of linear functions of the variables x.

nyan are square variance matrices of orders n and m respectively

Sn) slww) o s(ww,) (2)  s(mzy) - s(uz,)
Q, - s(y?yl) $2 (:y2) s(y?yn) Q. s(x?xl) 52(:12) S(IZIm)
s(vatn) s(wata) = 5 (w) s(wm) s(z,m) - 5 ()

and Jyz is the Jacobian matrix of partial derivatives of order n by m

13



8y1/8:£1 8yl/8:1:2 8yl/8xm
_ 83/2/3:1:1 8y2/8x2 5‘y2/8xm

yr

8yn/8x1 8yn/3x2 8yn/3xm

In the case of the gradient b computed from the set of coordinates {Xk,Yk} for k =1,2,...,n we may write

y=[bland x=[X, ¥, X, V¥, - X, YH]T with Q,, = Q, =|*(b)], Q,, = Q given in (4) and
o ab 9 b 9b b
woolax, 9y, 09X, dY, ox, 9y, |

Performing the matrix multiplications in (50) gives the estimate of the variance of the gradient b as

2 2
b ob 9b 0b
s2(b) = (X ) =—| +2———5(X Y, )+ (V. )| —
Using the relationships given in (7), (10) and (11), (51) can be written as

()=

L (o) o0 b 1 (ab)
w( X, )| 09X, 0X, 0Y, o  w(Y, )0V,

Similarly, the estimate of the variance of the y-intercept a is
1 (0a ) . 0a da T 1 (0a)
$(a) =3 Ll pe Sy .
w( X, )| 0X, 0X, 0Y, o  w(Y, )0V,

The partial derivatives in (52) and (53) are:

b :Wk{vk_2b(ﬂk’_ﬁ)} db :Wk{2(ﬁk_a)_Uk}

b

0X, D oY, D
da b , = —. bW da ob , — - W,
—_ = ——— (2 X)) — k , — 2 X k
ox, ~ ax TS Gy T ey T Y sy

LA A AN O STATS AR TR
k.

where D = o2 V2 B
St 00| oy " wag) B A U6 - 8) =0
ZLV];/@ ifb=0
and B8 = Z g
2ulM)o
2 u(¥,)

(56)

(57)

Note: In (56) and (57) for the special case b = 0, the weight functions W, = w(Y;) and special results

follow for the centroid ()_( 7)7) , centroidal coordinates (U kﬂ/k) and factors 8, = U, — V7,
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Substituting the partial derivatives into (52) and (53) and simplifying gives [York et al. 2004, eq’s (5) and
(11) respectively]

1 U? V2
— W,f[ UV+ } if b =0

2(b) = D? (y)2 a, (Xk)2 (58)
L k 2 gy, Lk ] if b =0
D? % w(Xk)
- S 1 .
(2ﬁ+X)252(b)+—(2ﬁ+X)ﬁ+ZWk if b =0

O N &
(28 + X)s (b)+5(26+X)ﬁ+Zw—(Yk) ifb=0

Note: In (58) and (59) for the special case b = 0, the weight function W, = w(Yk) and special results
follow for the centroid ()_( ,17) , the centroidal coordinates (U o Vi ), D and the factors g3, .

ob 0b Oa Oa

The derivations of the partial derivatives , , ,
0X, 0Y, 0X, 0Y,

, the equation for D and the simplified

expressions for the variances s°(a),s?(b) are given in detail in Appendix B.

Special Cases

[1] Suppose the measurements X,,Y, are independent quantities of unit weight; i.e.,r, =0,

1 1
5 and B, = 1—|-—l)2<Uk +bV, ) . Substituting these results into (44)

w(X,) =w(¥,) =1, W, =
and simplifying gives

YUY, + 0 (UF =V )=S0V, =0

Using the standard solution for a quadratic equation gives (York 1966)

S —02) £ ({2 - 02 )V + (S un )
20,

b =

(60)

See Example 1.

(2] Suppose the measurements X,,Y, are independent, i.e., 7, = 0 and

b:ZWkﬂka

ZI/VkﬁkUk
a? U by,
where W, = k , B, =W, k4 k
C Ry ru(x) () " w(x,)

Solution for b is iterative and requires a starting value. See Example 2.

(3] Suppose the measurements X,,Y, are independent quantities, but the measurements X, are regarded

as error-free, ie., 1, = 0, w(Xk) = oo giving W, = w(Yk) and 8, = U, and
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b — >_w(Y ) U, (61)

Zw(Yk)U,f

[4] Suppose the measurements X,,Y, are independent quantities, but the measurements Y, are regarded

w( X, 174
as error-free, ie., 7, = 0, w(Yk) = 00 giving W, = (Qk) and 3, = Tk and
b

_ 2w(X)W
- >_uw( X, ) Uy o

Example 1

Find the best fitting straight line to the following system of points supposed of equal weights (Pearson 1901,
p. 569)

Px w(%) v (%)
1 0.0 1 5.9 1
2 0.9 1 5.4 1
3 1.8 1 4.4 1
4 2.6 1 4.6 1
5 3.3 1 3.5 1
6 4.4 1 3.7 1
7 5.2 1 2.8 1
8 6.1 1 2.8 1
9 6.5 1 2.4 1
10 7.4 1 1.5 1

Table 1. Pearson's data (uncorrelated, unit weights)

In this example measurements are uncorrelated with weights equal to unity, i.e., n, =0,

1 1
—52’ B, —(Uk, + ka) and the result from Special Cases [1] can be
1+

14
used to determine b directly from (60) noting the possibility of two solutions.

S (v - v) = {2 (8 - 02)) + T un)

w(X,)=w(Y,)=1, W, =

b =
2 UV,
_ _ _ 1 n _ 1 n
where U, =X, - X,V =Y, Y, X==-> X, Y ==->7,
=1 M g=1
. . .. | 382 = 370 .
Using the data in Table 1, the centroid is | X = W =382, Y = 1—0 = 3.70 | and the centroidal

coordinates U,V (and their squares and products) and the factors §, are shown in Table 2

16



k U, Vv, Ui V2 UV, By

1 -3.82 2.20 14.5924  4.8400 -8.4040 -3.868751
2 -2.92 1.70 8.5264 2.8900 -4.9640 -2.964969
3 -2.02 0.70 4.0804 0.4900 -1.4140 -1.850974
4 -1.22 0.90 1.4884 0.8100 -1.0980 -1.318554
5 -0.52  -0.20 0.2704 0.0400 0.1040 -0.316643
6 0.58 0.00 0.3364 0.0000 0.0000 0.446966
7 1.38 -0.90 1.9044 0.8100 -1.2420 1.441856
8 2.28 -0.90 5.1984 0.8100 -2.0520 2.135424
9 2.68 -1.30 7.1824 1.6900 -3.4840 2.611847
10 3.58 2220 12.8164  4.8400 -7.8760 3.683800

Sums  0.00 0.00  56.3960  17.2200 -30.4300

Table 2. A test data set: Pearson's data (unit weights) and centroidal coordinates U,V

Z(V,f - U;j?) =YV = > U} =17.2200 — 56.3960 = —39.1760
> ULV, = —30.4300

301760 = 1 {~39.1760)° + 4{~30.4300)’
b= — —0.545561 or 1.832975
2(—30.4300)

Choosing the negative gradient which is supported by the scatter plot of Figure 2,
a=Y —bX =3.70 — (—0.545561)(3.82) = 5.7840

The residuals [using (49)] squared residuals and the least squares function S [sum of the squared residuals,

see (16) with w(Xk) = w(Yk) = 1] are shown in Table 3

Residuals
k v ( X ) v ( Y ) squared residuals
1 -0.048751 -0.089360 0.010362
2 -0.044969 -0.082428 0.008817
3 0.169026 0.309820 0.124558
4 -0.098554 -0.180648 0.042347
5 0.203357 0.372748 0.180295
6 -0.133034 -0.243847 0.077160
7 0.061856 0.113380 0.016681
8 -0.144576 -0.265004 0.091130
9 -0.068153 -0.124922 0.020250
10 0.103800 0.190262 0.046974

S = 0.618573

Table 3. Residuals and least squares function S

The estimates of variances of gradient b and y-intercept a

Using (57) and (56) 8 = 0, D = 42.983881; and from (58) and (59) the variances of the gradient b and y-

intercept a are

s (b) = 0.023662, s”(a) = 0.475052

17



Pearson’s Data: Line of Best Fit

6%

IS

y coordinate
>
*

*
* %

0 2 4 6
x coordinate

Figure 2. Line of Best Fit for Pearson’s data (unit weights). Centroid shown thus O

Example 2

Find the best fitting straight line to the following system of points of varying weights. Pearson’s data with
York’s weights (Pearson 1901, p. 569, York 1966, Table II, p. 1086). The coordinate values are assumed to

be independent, hence the covariance S(XkYk) =0and n, =0

k X, w(X,) Y, w(Y;) rk
1 0 1000.0 5.9 1.0 0
2 0.9 1000.0 5.4 1.8 0
3 1.8 500.0 4.4 4.0 0
4 2.6 800.0 4.6 8.0 0
5 3.3 200.0 3.5 20.0 0
6 4.4 80.0 3.7 20.0 0
7 5.2 60.0 2.8 70.0 0
8 6.1 20.0 2.8 70.0 0
9 6.5 1.8 2.4 100.0 0
10 7.4 1.0 1.5 500.0 0

Table 4. A test data set: Pearson's data with York’s weights and correlation 7, = 0

1. Solve for b using (44) and in the following iterative sequence:
(i) Choose an appropriate starting value of b (for instance, assume the measurements are
uncorrelated and of unit weight as in Exercise 1 and b, = —0.545561).
(ii)  First determine the weight functions W, and weighted measurements W, X, , W,Y, for each of
the 10 points. Second, calculate the centroid ()_(,17) and finally, for each of the 10 points,

calculate the centroidal values U,,V, and the factors §, .
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2.

k W, W, X, W,Y, U, v, 8,
1 0.999702 0.000000 5.808244  -4.839249 2.747178 -4.839307
2 1.799036 1.619133 9.714795  -3.939249 2.247178 -3.939345
3 3.990498 7.182897 17.558192  -3.039249 1.247178 -3.037460
4 7.976260 20.738275 36.690795  -2.239249 1.447178 -2.240476
5 19.421932 64.092375 67.976761  -1.539249 0.347178 -1.513153
6 18.614882 81.905479 68.875062  -0.439249 0.547178 -0.478290
7 51.957964  270.181412 145482299  0.360751 -0.352822 0.434456
8 34.284671  209.136491 95.997078  1.260751 -0.352822 0.947458
9 5.702757 37.067921 13.686617  1.660751 -0.752822 1.395921
10 3.337374 24.696566 5.006061  2.560751 -1.652822 3.026453

Table 5. W, WX, , W.Y,, U,, V, and (3, for the 1st iteration

(iii) Use W,,U,,V, and (3, in (44) to calculate an improved estimate of b.

(iv)  Use the improved estimate of b and repeat steps (ii) and (iii) until the difference between

successive estimates b, , and b, reach an acceptably small value.

Table 6 shows successive values of b starting at b, = —0.545561 and converging to

b=b, = —0.480533

Iteration n

b

b

n n+1

0 -0.545561 -0.479758

1 -0.479758 -0.480557

2 -0.480557 -0.480533

3 -0.480533 -0.480533
Table 6.

Using the final value of b, first compute the weight functions W, and weighted measurements

W, X,, W.Y, for each of the 10 points. Then calculate the centroid ()_(,17) ; the centroidal values

U,,V, and the factors g, .

k W, W, X, WY, U, V. B,

1 0.999769 0.000000 5.898638 -4.910970 2.779975 2.779975
2 1.799252 1.619327 9.715962 -4.010970 2.279975 2.279975
3 3.992624 7.186724 17.567548 -3.110970 1.279975 1.279975
4 7.981570 20.752081 36.715220 -2.310970 1.479975 1.479975
5 19.548599 64.510378 68.420098 -1.610970 0.379975 0.379975
6 18.908453 83.197193 69.961276 -0.510970 0.579975 0.579975
7 55.144280 286.750257 154.403985 0.289030 -0.320025 -0.320025
8 38.712706 236.147505 108.395576 1.189030 -0.320025 -0.320025
9 7.231472 47.004571 17.355534 1.589030 -0.720025 -0.720025
10 4.293468 31.771661 6.440202 2.489030 -1.620025 -1.620025
Sums 158.612194 778.939698 494.874038

Table 7. W,, W,X,, W,Y,,
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5 Y WX, 778.939698 Y WY, 494.874038

= = 4.910970, Y = = = 3.120025
W,  158.612194 W,  158.612194
Calculate the intercept a from (45).
a =Y —bX = 3.120025 — (—0.480533)(4.910970 ) = 5.479908
Calculate the residuals using (49) and the least squares function S using (16).
Residuals

k U(Xk-) U(Y;c) weighted squared residuals

1 -0.000202 -0.419995 0.176436

2 -0.000305 -0.352425 0.223659

3 0.000825 0.214552 0.184471

4 -0.001771 -0.368626 1.089593

5 0.018513 0.385253 3.036947

6 -0.037984 -0.316184 2.114874

7 0.079998 0.142695 1.809310

8 -0.233783 -0.139002 2.445611

9 -0.084087 -0.003150 0.013719

10 0.874703 0.003641 0.771732

S = 11.866353

Table 8. Residuals and least squares function S

Calculate the estimates of variances for gradient b and y-intercept a.
Using (57) and (56) 6 = —0.011723 , D = 301.704504; and from (58) and (59) the variances of the

gradient b and y-intercept a are

s”(b) = 0.003320
s*(a) = 0.085225

Pearson’s Data with York’s weights: Line of Best Fit

y coordinate
IS
*

©

0 2 4 6
x coordinate

Figure 3. Line of Best Fit for Pearson’s data with York’s weights. Centroid shown thus O
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Example 3

Find the best fitting straight line to the following system of points of varying weights and correlations.
(Pearson’s data with York’s weights and randomly assigned correlations)

EOX w(X) Y w(l) n

1 0 1000.0 5.9 1.0 0.989
2 0.9 1000.0 5.4 1.8 -0.870
3 1.8 500.0 4.4 4.0 -0.223
4 2.6 800.0 4.6 8.0 0.099
) 3.3 200.0 3.5 20.0 -0.057
6 4.4 80.0 3.7 20.0 -0.660
7 5.2 60.0 2.8 70.0 0.022
8 6.1 20.0 2.8 70.0 0.741
9 6.5 1.8 24 100.0 -0.335
10 7.4 1.0 1.5 500.0 -0.001

Table 9. Pearson's data with York’s weights and randomly assigned correlations

1. Solve for b using (44) in the following iterative sequence:
(i) Choose an appropriate starting value of b (for instance, assume the measurements are
uncorrelated and of unit weight as in Exercise 1 and b, = —0.545561 ).
(ii)  Determine the weight functions W, and weighted measurements W, X,, W,Y, for each of the 10

points. Second, calculate the centroid ()?,37) and for each of the 10 points, calculate the

centroidal values U,,V, . Finally calculate the factors g, .

k W, WX, WY, U, V. B,

1 0.966723 0.000000 5.703666 -4.686321 2.677183 -4.690028
2 1.874490 1.687041 10.122244 -3.786321 2.177183 -3.782149
3 4.079061 7.342310 17.947868 -2.886321 1.177183 -2.892637
4 7.891270 20.517303 36.299843 -2.086321 1.377183 -2.089941
5 19.800094 65.340310 69.300328 -1.386321 0.277183 -1.368993
6 27.997914 123.190820 103.592281 -0.286321 0.477183 -0.199326
7 50.976901 265.079885 142.735323 0.513679 -0.422817 0.582231
8 19.694267 120.135029 55.143948 1.413679 -0.422817 1.090597
9 6.751780 43.886570 16.204272 1.813679 -0.822817 1.500733
10 3.337917 24.700588 5.006876 2.713679 -1.722817 3.154953

Table 10. W, W, X, , WY, , U, V, and B, for the Ist iteration

(iii) Use W,,U,,V, and (3, in (44) to calculate an improved estimate of b.

(iv)  Use the improved estimate of b and repeat steps (ii) and (iii) until the difference between

successive estimates b, and b, reach an acceptably small value.
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Table 11 shows successive values of b starting at b, = —0.545561 and converging to

b=b, = —0.494346

Iteration n

b

b

n n+1

0 -0.545561 -0.493216

1 -0.493216 -0.494378

2 -0.494378 -0.494345

3 -0.494345 -0.494346

4 -0.494346 -0.494346
Table 11.

Using the final value of b, first compute the weight functions W, and weighted measurements

W, X,, W.Y, for each of the 10 points. Then calculate the centroid ()_( 717) ; the centroidal values

U.,V, and the factors §, .

k W, WX, w.Y, U, Vi By,

1 0.969776 0.000000 5.721680 -4.746251 2.708954 -4.757425
2 1.867324 1.680592 10.083549 -3.846251 2.208954 -3.834758
3 4.072346 7.330223 17.918322 -2.946251 1.208954 -2.950281
4 7.903328 20.548652 36.355308 -2.146251 1.408954 -2.151354
5 19.868537 65.566172 69.539880 -1.446251 0.308954 -1.433583
6 27.217323 119.756220 100.704094 -0.346251 0.508954 -0.251367
7 53.492215 278.159518 149.778202 0.453749 -0.391046 0.530262
8 21.699163 132.364896 60.757657 1.353749 -0.391046 1.085011
9 8.259107 53.684195 19.821857 1.753749 -0.791046 1.597214
10 4.059533 30.040544 6.089300 2.653749 -1.691046 3.414615
Sums 149.408652 709.131012 476.769848

Table 12. W, W, X, , WY, U_, V, and B, for the last iteration
T ZWka _709.131012 4746951, T — ZWkYk _ 476.769848 3191046

SoW,  149.408652

Calculate the intercept a from (45).

SOW,  149.408652

a =Y —bX = 3.191046 — (—0.494346 ) (4.746251 ) = 5.537336

22



4. Calculate the residuals using (49) and the least squares function S using (15).

Residuals weighted squared residuals
k U(Xk ) U(Yk ) with correlation
1 -0.011173 -0.357140 0.127550
2 0.011494 -0.313257 0.176654
3 -0.004030 0.249505 0.249484
4 -0.005103 -0.345441 0.956924
) 0.012668 0.399732 3.274959
6 0.094885 -0.384692 3.105485
7 0.076513 0.128913 1.487148
8 -0.268738 -0.145325 1.679104
9 -0.156534 0.001469 0.047595
10 0.760866 0.003045 0.583656
S = 11.688557
Table 13. Residuals and least squares function S
5. Calculate the estimates of variances for gradient b and y-intercept a.

Using (57) and (56) 8 = 0.019045; D = 277.150131; and from (58) and (59) the variances of the

gradient b and y-intercept a are

s*(b) = 0.003586
s”(a) = 0.089426

Pearson’s Data, York’s weights with correlations: Line of Best Fit

IS

y coordinate
*

w

0 2 4 6
x coordinate

Figure 4. Line of Best Fit for Pearson’s data with York’s weights and correlations.
Centroid shown thus O
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APPENDIX A: Alternative Derivation of York’s Generalized Least Squares Cubic

In York’s 1968 paper: Least Squares Fitting of a Straight Line with Correlated Errors, he suggests two
methods of development of the Generalized Least Squares Cubic — first developed for the uncorrelated case in
York (1966). A copy of part of the first page is shown below.

Two equivalent approaches may be adopted, corresponding to the two different points adopted in the
uncorrelated-errors case by York [1] and McIntyre et al. [2]. Firstly one may begin by minimizing the expression

5 = S w(x) (5~ X ) 2wl K () (5~ X,) (s, ~ ¥) + (%)~ ¥ s 1)

i I—r

subject to the requirement

yj:a+bxi’ Z'Zl,...,n.

X.,,Y. are the observations, z,,y, are the adjusted values of these, w(Xi),w(Yi) are the weights of the various ob-

servations, and the r, are the correlations between the x and y errors. Alternatively one may start by minimizing

the expression
S =3"7,(Y, ~bX, —a) (2)
where

w(XZ-)w(Y.)

1

bQM(Y ) + w(X ) —2bri\/w(Xi)w(Y.)

7 7 7

i

Pursuing the analysis we find the following generalized versions, for the case of correlated x and y errors, of the
least squares cubic and quadratic equations, either of which may be solved for b to yield the best slope:

We have shown how York’s equation (1) is derived and have then provided a detailed derivation of the
Generalized Least Squares Cubic following York’s first alternative: minimizing his equation (1) with the

conditions that y, = a + bz, . [Note that York’s equation (1) above is our equation (15) with a slight

change of notation].

We now show how York’s equation (2) is obtained and how this function may be minimized to obtain the

Generalized Least Squares Cubic. [Note that we have used W, rather than Z, |.

Y A

\ S

Figure Al. The orthogonal projection of P(X,Y) onto the straight line y = a + bz
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In Figure A1, X,Y are the measured coordinates of P, x,y are the adjusted coordinates, d is the length of the
normal to the straight line y = a + bz and U(X ),U(Y) are residuals such that X + v(X ) =12 and

Y + v(Y) =y.
From the diagram

U(X):—U(Y)taHGZ—bv(Y) (A1)

and y = a + bz can be written as Y + v(Y) =a+ b(X + v(X)) . Using (A1) and simplifying gives

v)_ @ +b0X -Y A2
) == (A2)
Now, from Figure Al, d? = <v(X))2 + (’I)(Y))2 and using (Al) and (A2) and simplifying gives
polorX ) (49
1+ b

If measurements X, Y have estimates of variances s (X ),52 (Y) and covariances S(X Y) then the computed

quantity d will have variance s (d) obtained from the matrix form of the Law of Propagation of Variances

(Mikhail 1976) expressed symbolically as equation (50)

In the case of the computed distance d, where d is a function of the variables X and Y, then y = [d],

2
B T B I |8 (X) S(X,Y) 1 w(Y) ro B ﬁ ﬁ
=[x ¥[ Q= Q| (4)] . = s(X,Y) (V)| o re w(X) ad e =1ox oy
The partial derivatives are
od _Ma+tX-Y) od _—[a+pX-V)
0X  a(1+¥) oY d(1+1?)
And using these results in (50) and simplifying gives
2 —
Qdd:bw(Y)+w(X) 2bra (Ad)

a2(1—|—b2)

Now Q,, = [52 (d)] and since W, = [w(d)} = Qd’d1 we may write the weight of an orthogonal distance d as

a2(1 + b2)
wa(Y) + w(X) — 2bra

w(d) =

(A5)

The least squares function S is the sum of the weighted squared distances, i.e.,

n n af (1+0%) (a+bx, -V, )

S = Zw(dk)dlg =

k=1 i || 0 () + w(X, ) - 2bra, 1+ 0
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giving York [1968, eq. (2)]

S =W, (a+bX, -V, ) (A6)

where

2
Q

W, =
C () + w(X,) - 2bra,

Alternatively, (A6) may be obtained by incorporating the constraints y = a + bz in (1) and writing

§ = Z {w(Xk)(Ilc - Xk)2 - 2n, w(ch)w(Yk)(Ik - X/c)(y/c - Yk) + w(Yk)(ylc _Yk)2}

-3 { (X)(z = X) = 2ra(o = X)(a + b2~ V) + w(¥)(a+ b - V)]

1—7"k

then partial differentiation of both sides with respect to z gives (noting that S is a scalar and 65/ Oz = 0 for

optimum)

0:Z%fﬂ{@—Xde%wMa+%x—Y—Mﬂ+Ma+M—YﬁMY”

2
_21—7“2

{[wa(Y) + w(X) — 27“ozb}x — [w(X) — rab}X — [roz — bw(Y)](Y — a)}

This equation will be satisfied when

[P (Y) + w(X) = 2rab|e = [w(X) = rab| X — [ra —buw(Y)](Y - a)

and we may simplify this equation by letting

w(X)fbroz and C:ra—bw(Y)

=
Il
Il

7%
Il

giving
= u[eX = ¢(¥ —a)]

Using this result for z, and noting that u§ — bl = 1, then

w(X)(I — X)2 —27’04(1 — X)(y — Y) +w(Y)(y — Y)2

= {(ne=1)X —u¢(¥Y —a)} w(X)
—2ra{(pé —1)X — p¢(Y —a) H{ubeX — (ub¢ +1)(Y —a)}
H{ubeX — (ub¢ +1)(Y —a)} w(Y)
= 12X — (Y = a)[ w(X) - 2rap2e¢[bX — (Y — a)][bX — (Y —a)]
[0~ (¥~ a)f u(Y)
= a,erX Y)Q;L?[a?{wa(Y 727"0417}—7"04 {b2 (Y)+w(X)72rozb}]
= pa?(a + X — Y)2(1 )
=W(a+bX —Y)(1-1?)

giving the alternate form of (1) as (A6)
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S =S W, (a+bX, Y, ) (A6)

This demonstrates that S in this form can be obtained without recourse to summing weighted squared
distances d.

As York (1968) suggests, the equation of the line of best fit may be obtained by minimizing (A6).

Now the variables in S are a and b and S will be an optimum when the partial derivatives @ and% are

a
equated to zero, and
a8 0 2 2 0
o0 Z{Wka(a+ka -Y,) +(a+bX, —Y,) %Wk}
a8 0 2 2 0
Py Z«[Wk%(a—i-b)(k -Y,) +(a+0bX, —Y,) %Wk}
with partial derivatives
0 2
a(a—i—ka —Y, ) =2(a+bX, -Y,),
%(a +0X, —Y, ) =2X, (a+bX, -V, ),
0
%W’“ =0,
9 —2Wk2(b2w(Yk)+w(Xk)—Qkaak)
ab o?
After some algebra we obtain
a8
%:22Wk(a+ka -Y,)
oS 7 b
=2 WX, (00X, -, )+ 22Wk2a—’;(a +0X, — Y, ) - QZW;m(a +0X, — Y, )
and setting the partial derivatives Z—S and z—i equal to zero
a
S W (a+bX, -Y,)=0 (A7)
STWX, (a +bX, — Y, ) + ZWk?;i(a +bX, — Y, ) - ZWfﬁ(a +0X, — Y, ) =0 (A8)
k k
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Now with (33) and (34) we have a +bX, — Y, = bU, —V, and X, = U, + X , and using these results in
(A7) and (A8) gives

D W (bU, —V, ) =0 (A9)
YW (U + X)(bU, =V, ) + ZWk?T_k(bUk -V )2 - W b (bU, =V, )2 =0 (A10)
a w(Xk)
The first term of (A10) can be expanded as ZWkUk (bUk — Vk) + )_(ZWk (bUk — Vk) and by virtue of
(A9) becomes ZWkUk (bUk -V, ) . Substituting this result into (A10) gives

ZWkUk(bUk - Vk) + szQT_k(bUk -V )2 N ZWkQL(bUk Vi )2 =0 (A11)
ay, w(Xk)

(A11) is our (37) and from this we have demonstrated that the Generalized Least Squares Cubic for b can be
obtained.
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APPENDIX B: Derivation of the Variances of gradient b and y-intercept a.

York (1968) and York et al. (2004) give expressions for the variances of the gradient b and y-intercept a that

are obtained from the equations
de| *)
0b

2 (1) = [z

8@21_’_8@21_’_@8@87@
0X, ) w(X,) oY, ) w(Y,) o, 0X,0Y,

where ¢ is the left-hand-side of (40) — that is the quadratic equation for b — and

2 2
1 da 1 da 2r, Oa Oa
SQ(Q):Z [ ] + [ ] 4+ 2 72 77 (*%)
w( X, )| 0X, w(Y, )| 0Y, o, 0X, 0Y,
(**) is equivalent to our (53) but (*) is only equivalent to our (52) provided that
0b 0
ob = ¢ ﬁ = Op [0¢ and ﬂ = %ﬁ = e % But, in general, — =1 kad unless the
0X, 0X,0p 0X,/ 0b oY, 0Y, 0p 0Y, ] Ob Oy
same variables are being held fixed in the partial derivatives. Because of this observation the following
analysis is different from York’s presentation.
Partial derivatives , ﬁ
0X, 0Y,
To obtain an expression for the partial derivative ﬁ we differentiate (40) with respect to X, keeping
k
Y=[Y, ¥, - Y,]and X for j =k fixed, giving
|7 U.r, ow. V. U.r
2bﬂZW7? - LU+ 27y W, | = - U,
0X T w(X;) ey ) 7 oxX w(X;)
+b22W.2 1 U.avj +V.6Uj _QUJ.Q,GUJ
7 w(x)| Tox, TaX ) o, 09X,
U? %6 ow.| U? V2
+ ob ZVVJQ J o J +2bZVV] J J J
0X, 5 w(y;) w(X;) 70X w(Y) w(X)
+ 23 W2 U; oU; Vi OVi) QZW.—aWj O hmy,
J j J
i w(;)0X,  w(X;)0X, 7l ox w(Y)
oV, oU. 2V.r. OV,
; w(Y,)| 70X, oX,| a; 90X,
b L
Differentiating (28) and defining P, = — L gives
Tow (X. ) a,
J J
ow. a? w2
L= - f (o) 2 - 2res | = 2 (b, - )
0X, [b2w(Y7. ) + w(Xj) — 2b7“7.oz7.} 0X, 0X; @ 0Xy
r.
— _2[/1/]2 b _ L ﬂ S W]-ijﬁ (B2)
w(X;) «a)0X, 0X,
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So, remembering that U, = X, — X = X, —

2 WX,

> W
ouU W, EUJ’Z)M(G W, d
R R S 00 T | k. -k 2 b S werpy
ox, Voywo Yw ZWﬁEWkan; Y
) 0if k= j
where % is the Kronecker delta = ; )
lifk =7y
and similarly
I
ov, T ToX, 2 9 )
- - - WY,
09X, ZWk EWk 09X, 5
And so (B1) with (B2), (B3) and (B4) becomes
vV, 20U, 26U, V. w,
7_2 iy i 5. k ]
Al ) I i e ] T 91T
where
V r.U.
=20y W U, —40*y WP, —-=U,
Z [ Z w(XJ) a |’
V.
WPV, Wi ——=> WiPU
z / < »? S S S
U? V2
ZW?P.U +ZW2 -
ZW7 () Y w(y;)  w(X;)
U? v2 U.
—4by WPP, | —~ dSowP—L-"W?PU
7 (Yy) “’( ) ZWM Jw(Yj)j r
4b V. U. V.
=y W ZW?P.V-+4ZW.3P.[ 4
> W5 Jw(Xj)]. Y ;o w(yj) a; |’
2 U. 2 V.
% N“w2__J WPV, — ———> w2 wWipU
ZWk; Jw(yj)zjj JJ) sz; Jw(yj)zjj J 7

W2 ” WZPV
ZWkZ o) 2

J JoJ

Now (B5) can be written as

where
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N(X, )=-> WQ.|6, — (B8)
( k) ; 3|k Zk:Wk
and
o0 vV, 20U, 20U, v, (B9)
owe(X) e w(Y) w(Y)
The right-hand-side of (B8) is equal to
—Iw,fczk[l— i +EW?Q7~[0— ut H=—Wk{Wka —#EWJVW]
W)= W W T
while (B9) may be simplified as follows
o - bV, 72b2Ujrj N BU;,
w(X;) @ w(Y;) w(Y;)
U, bV, , 2 2br,
_Qb[ ;f + X{ fr—”(bU].JrV].) -V, b—X——Tf— 1Y
;’( i) w(X) w(X;) e w(Y))
) V.
= 2bW; —a—z[wa(Yj) —2br,a; + w(X/)]
0T
W,
so that
WQ; = 2b8; -V,
Using these results and noting that ZVI/].V]. = 0 we may write (B8) as
1 _
N(X,)=-W, 1268, =V, YA W, (208; =V, )1 = Wi {V, —26(5, — 5)} (B10)
ko
where
= _ 2 Wb
B = (B11)
2
Similarly
b N(Y) (B12)
Y, D
where
N(Y) = {2(8, -5) -V} (B13)
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The variance of the gradient b

Substituting (B7) and (B12) into (52) gives the estimate of the variance of b as

2

£(b)=3" 1 N(Xk)2 2N(Xk) N(Y )| n 1 (N(Y)
w(X, )| D D D Ja, w(Y) D
and substituting (B10) and (B13) and re-arranging gives
sy Lyl U oty W
$ (b)_DQZVVk w(n) zakUka+w(X/g)I
1 —\ _
42 (8, —B) —4b(B, — BV,
| T 4 (0 = B — (s, = BV -
+ o W |+ |06, = B)U — 8b(5 — B + (5, - B)u [ -
1 =12 -
+w(Yk)[4(ﬁk_ﬁ) _4(5k_ﬁ)Uk
Part of (B14) may be simplified as follows
1 9 - 3
w(X)[sz (8-B) - w(s-5)V|
1 _ _ _
ST +|a(8-B)U —sb(8 - B) +4(8-B)v |
1 _
+m[4(ﬂﬂ)24(ﬂﬂ)lf]
= b? 1 2br
4(8-5) + s -
S B
—4(5—5)M+M(X)—E(w+v)
_ b 2 A N TR A
- LW (s B |- a0 - 7| 2]
1 _ _
- w{a(s-5) - 1(5-5)s}
1 _ _
= YW H4(s - B) —4(5 - 7))
1 _ _
:E_ AW (B-8)(8-5-28)
:*4€ZWk(ﬂk*ﬂ):O
D* 7,
since ZWk (ﬁk -8 ) = 0 by the definition of § and (B14) becomes
1 U? n V?
— WQ[—kQ—’“UV,+—k} if b =0
s (b) = [122 ’ w(Yk)UQ a M w(sz/Q (B15)
LI Yk 9Tk LI G
DQZw (Y’“)[w(yk) QQkU’“V’“+w(Xk) ifb=0

noting in (B15) for the special case b = 0, the weight function W, = w(Yk) and special results follow for

the centroid ()_( ,37) , the centroidal coordinates (U k7Vk) and D.

(B15) is our (58) that is the estimate of the variance of the gradient b.
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da Oa

Partial derivatives ——, —
0X, 0Y,

Expanding (29) and re-arranging gives
W, = WY, W,

and differentiating with respect to X, keeping Y = [Y1 Y, - Yn] and X f for j = k fixed, gives

94 oW, oW, ob oW,
i i_ ly _ WX —b LX. - bW,

J
that can be re-arranged as

W. = — bX. —Y. J - X. —bW,
anZ j Z(a—i— j J)an 0X, = i k

¢ J J

Now using (34) and (B2) gives

da 0b 0b
—> W. :75 bU. — V. [QW.ZP.—]—E WX —bW,
8Xk ; J j( J J) J ]8Xk an 7 77

0b
T ox, —2 WPV, —bU; ) = 3 WX, £ = bW, (B16)

The term ZWJQP] (VJ - ij) in (B16) can be simplified with the aid of the definition of P, and (11), (28)
J

and (36)
_ by
SWEP(V —bU)= Y W? w—X) - (Vv —bU)
I L
=3 X |Pru(Y) + w(X) = 2bra+ bra - w(X)|(v - 0)
zézf—j %2+bra—w(X) (v —b0)
W2
:%ZW(V—bU)+%Z?[bm—w(X)](V—bU)
:% K?[bm—w(X)](V—bU) since > W (V —bU) =0
1 1 br
ZZZWQ W) (bU —V)
gl V. U Y
Z w(Y) bw(Y) « «a
U bV r v rV bV
=Y w? + ——(bU +V) - +2— - ——
Z w(Y) w(X) a( ) bw(Y) « w(X)
Now, from (43) % = w(UY) + wb(I)/() fé(bU + V) and from (B11) BZVVk = ZWkﬂk so we may write
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STWRP(V - bU) = Zw?[ﬁ$+2%%

— S wg - ZW[w(X) ﬁlf)% v
_5ZW Z bw( ) @27"@1/
-3y w _ZZ%(NM(Y) +w(X) = 2bra)V
:BZW—%ZWV

Now since ZWV = 0 and provided that b = 0 we may write ZWZP(V - bU) = BZW and (B16)

becomes
Oa W, = ob {—ZBZW —ZWX }—bW
0xX, j T LT
b
ax[ QBZW XZWlbW
8—Xk[{26+X}%:W].lka

Therefore, providing that ZW =0

bW,

da bW,

Wi _ Lk
ox, | B+X}ax SRR A A 377 o
Likewise, from (29) under the same condition that ZW =0
Oda ob w,
oy = {28+ X}— oY, +ZW f{26+X}—{U -2(8, )}+ZW (B18)
The variance of the y-intercept a
Substituting (B17) and (B18) into (53) gives the estimate of the variance of a as
2
1 _ W _ bW,
s(a)=> 1 ——={28+X}2{w(8, -8)-V,} - ==
Rt/ | / LA
= l{mx} (5, - 5) ) - oo | (27 + XY e, 2( - )} +
2
1 [ 4 — w,
+ 28 + X}=2{u, —2(8, —B)} + ’“]
=> {4, + B, +0} (B19)

where
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bW W W2
( )(ZW) O‘k(ZWk)Z w(Yk)(ZWk)Z
W2 b? N 1 2bn

(me w(X)  w(Y) o

(>w, )
and so
1
C, = i
>-G S (i)
Further
26 + X )oW? _ 28 + X )W
= - I (- 7)-w) + 2 (5, - 7))
2rk(25+x) f Qrk(2B+X)ka2
{26(5, )ka}f {U, —2(8, - 5)}
a,DY "W, o, DY "W,
= 2<2B+)_{)Wk2 (ﬁ B) ﬁk
(a,’f_DZ_V)Vk Wk W,
2028 + X)W, , _
Sy,
so that
SB, = —2(%; %) 8 (ii)
Finally
(28 + X)W N (28 + X ) w? - Y
kT w(Xk)D2 { (ﬁk ﬁ) Vk} (Yk) {Uk 2(@@ ﬁ)}
o (23 + X ) W2
BT (o5, - ) v Mot - 2(5, - )
7(25+X)2Wk2 Ul? VkQ 72TkUka
N D? w(Y}g) w(Xk) a,
2| b2 1 2br,
=12 0 | 4By -k
+(2ﬁ+X)W (6. ~5) (Xk)+w(Yk) o
DY s, - B) w&ﬁwi%) 20, + i)
and so
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S A = (27 + )?)QLZWQ{JY) 4 JX) - QTZV}

variance of b

(2B X)W 4557 WE)X)JFﬁ_%
b 4(p - B) wfymb&) Z(b0 + V)

=0, see reduction of (B14)

In this equation, one part is the variance of the gradient b and another has shown to be equal to zero (see
the reduction of (B14), hence

S2A, = (28 + X) 5 (b) (iii)
Therefore, substituting (i), (ii) and (iii) into (B19) gives
" (2B+)?)252(b)+%(25+)?)5+lek b= 0
sla)=1 5 ) (B20)
26 + XV s2(b)+=(28 + X)B + ith=0
(7 X (0)+ 27+ F)+ b

noting in (B20) for the special case b = 0, the weight function W, = w(Yk) and special results follow for
the centroid ()_(,37) , the variance s (b) ,Dand (.

(B20) is our (59) that is the estimate of the variance of the y-intercept a

Simplification of the denominator D

D from (B6) can be written as

D=A +A ++A, +A4, (B21)
Now if b = 0,
A+ A =20y WP w(VX)ﬂ U+y w? w[(];)w‘(/;)]
2
:%z\_zr(w—vf WUV (B22)
This is because
2 2
e e el
2772
_W2{ w(vx)+ bwzy)%ﬁ v (bUVHIi(Z() WEY) ij]UV}
WTZ[%Y) wb(z()g(wvﬂi(vw)wbzg) (bU V)
W22 e L2y
w(X) bw(Y) «a
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WS vy pp) = 20 Ny - vy W00 | L 2y
b W  a w(X) w(X) bw(Y) a
WB o oy Wi el b 1 2

= (bU -V) ” (bU-V) +Ww w(X)erw(Y) —|vv

= Y5y —v)- WQr(bU v+ Loy
b bo b

provided b = 0, and so, noting that ZWﬁ(bU — V) =0 from (44)

2 vV ru U? B V? 1 7W2r 2
>w [25 o) a U+w(y) w(X)]bZ " (bU-V) + WUV
Further
— _4}? 3 14 _ﬂ _ 3 U* _ v
A+ A+ A = 4bZWPw(X) i 4bZWPw<Y) o)
sp| U™V
+42k:WP[wY |
=45 WB(B-U) (B23)
This is because
pewep| UV T yep| U VR || UV V2
w(X) e w(Y) w(X) w(Y) o)
_pepl UV BUE L BVE WUV 1 T
B wY) w(Y) w(X) w(X) o o)

U bV
:W3P{w—y)(v—bU)+m(V—bU)—£(bU+V)(V—bU)}
:W3Pﬁ(V—bU)

1
R b T _
_Wﬁw<X) a(v bU)
gl BV VU
_WﬁwX) w(X) a<v bU)
e U BV U VU r
_Wﬂwy)+w(X) a(bUJrV) o) w(x) Oé[(v bU) — (bU + V)]
gl U bV 1 B 1 oo
=Wl —rx Y)+w(X) a(bUJrV) Uw(Y)+w(X) 2ba]
:W2ﬂ ﬁg]

wow
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Finally
A3+A4+A5+A8 +A9 +A11+A12+A13
= (4 + Ay 4+ A+ (A Ay + A+ A

U,
DW= 2 WIRY,

202 U, 2
w2 —- WPV, — :
BDIRAETEAL RS TR U AR
V. 4 Vor.
W2 J W?PV W2 2LIN"w2py.
ST R S T
V. 2 V.
W? J W? J W?
SRS b
U. U.r.
W2 w2 JJ W?2PU,
S S TS s~ S M S S
This is because
(Ay + Ay + 4y + Ay )+ (4 + Ay + 4+ 4)
2y weery || Ly | by
ZW w(X) w(Y) w(X) le’
2 2 2 b? o1 L
+—ZWZW PUY W Eq) w(y)]v+2b o(V] a U
G L1 2 __b r NN SRS
Now with W w(X)+w(Y) - and P = w(X) . we may write w(X) w(Y) = 2bP - and

;—b—rzi—bP,and

w(Y) « w
(A + A4 + 4 +A13)+(A4 + Ay + 4 +A5)
= LZW@VZW?[%PU %2131/]

=S
2 2 2 vV U 2
te=—> W?PUY W [2bPV —w HbW —2b PU]

Sw
= _ZQWZWPVZW? (2bPU — 2PV ) + ﬁZWQPUZWQ (26PV - 20?PU )
2 9 2 2 _4b 2
ZWZW PV WU ZWZW PUY WV + ZWZW PUY WU

Noting that ZWU = ZWV = 0 we have
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(4 FhtA A 3 ) (Ay + Ay + 4 +A5)
= SWEPVY W (20PU — 2PV) + —ZW?PUZW2 (2PV —26?PU )

2w

SOWIPVY W (bPU — PV )+ S W2PUY W2 (bPV = b2PU )}

{
lZW2PVZW2PbU S W2PVY W2PV ]

+Y WEPUY WPV = Y W2PUY W?PbbU
{(ZW?PbU) — O WP US WPV + (ZW2PV)2}
{ZW?PbU Sweev)

{ S WP (bU — V}

- ZW{ZWQ[%‘W”
- ZW{ZW Swuy

= ZW{Z 6}
=—43*>" W

Z—
Z—
Z—

w

”\ M\ M\ M\

(bU—V)]2

D in (B21) is the summation of the three parts above, (B22), (B23) and (B24)

D=A + 4+ + 4, + 4,

= (4 + 45) + (A + 4+ A )+ [(A + Ay + Ay + Ay ) + (4 + Ay + 4+ 4 )]
_ %Zl_W%’(w—vf +WUV]+4ZW5(5—U) — 4B W

(07

The last two terms (B23) and (B24) can be simplified as follows

AN WB(B-U)—482> W = 4[ZWB(B ~-U)- BZWB]
= 4{>wp* - > wpu - > W}
=4y W(8” — 6U 55
=43 W(s-U)(B-5)

since ZWU = 0 and D can be written as

2
Wen,

Q.

D:%Z

(bU 7V) + WUV, +4ZW;€(5;€*U;€)(@*B) itb=0 (B25a)

(B25a) is the first member of (56) given in York et. al (2004, eq. 6)
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Now if b = 0, the terms A,,A4,,4;,A,, A, A, A, and Aj in (B21) are all equal to zero [see also (B6)| and
D= A, + A, + A, +A, + A,. Inspection of the derivation of (B25a) above leads to

Ui WV
() w(X,)

D=3 W + 4> W, (8 = U, )(8, = B)

and

U2 15

w(Y,)  w(X,)

D=>% w(Y) + 4 w(Y, ) (8, —U ) (B, —B) ifb=0 (B25b)

noting in (B25b) for the special case b = 0, the weight function W, = w(Yk) and special results follow for

the centroid ()_(,17) , centroidal coordinates (U,C,V,C) and the factors 3, = U, — V,n,

= Zw(Yk)ﬁk '
Z“’(Yk)

(B25b) is the second member of (56).
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