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FLUID THEORY RELATING TO WATER 
 
 
DEFINITION OF A FLUID 
 
Fluids are substances which are capable of flowing and which under suitable temperature conditions, conform to 
the shape of containing vessels.  When in equilibrium, fluids cannot sustain tangential or shearing forces.  All 
fluids have some degree of compressibility and offer little resistance to change of form. 
 
Fluids can be roughly divided into liquids and gasses.  The main differences between them are: 
 (i) liquids are practically incompressible whereas gasses are compressible and 
 (ii) liquids occupy definite volumes and have free surfaces under the action of the Earth's gravity field 

whereas a given mass of gas expands until it occupies all portions of any containing vessel. 
 
Plastics are different from liquids and gasses in that they possess a yield stress, which must be exceeded before 
flow commences.  Substances such as tomato sauce, butter and many other organic substances are such fluids.  
Blood, which has a very low yield stress, is also regarded as a plastic. 
 
INTERNATIONAL SYSTEM OF UNITS (SI) 
 
The International System of Units (SI) is a coherent set of units, one for each physical quantity.  In this system 
the fundamental mechanical dimensions are length (the metre) mass (the kilogram) and time (the second).  SI 
units have been used in Australia since 1970 (superseding the British Engineering system) and unless otherwise 
indicated, are used throughout these notes. 
 

Physical quantity Name Symbol 
 

length metre m 
mass kilogram kg 
time interval second s 
electric current ampere A 
thermodynamic temperature kelvin K 
amount of substance mole mol 
luminous intensity candela cd 

 
 SI derived units with special names (italics) and compound names relevant to hydraulics 
 

Physical quantity Name Symbol 
 
force, weight1 newton N (kg m/s2) 
pressure, stress pascal Pa (N/m2) 
energy, work, quantity of heat joule J (Nm) 
 
area square metre m2

volume cubic metre m3

volumetric flow rate cubic metre per second m3/s 
velocity (linear) metre per second m/s 
density (mass density) kilogram per cubic metre kg/m3

 
Table 1 

 
 
BRITISH ENGINEERING SYSTEM OF UNITS 
 
In this system of units (still in wide use around the world) the fundamental mechanical dimensions are length 
(the foot) force (the pound or pound weight) and time (the second).  The unit of mass in this system is the slug 
and is defined in the following manner using Newton's second law: 
                                                           
1 The mass of an object is the quantity of matter it contains; this is constant and expressed in units related to the kilogram.  
The mass of an object differs from its weight, which is the measure of the force of gravity acting on the object; this is 
measured in newtons. 
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  2force (pounds) = mass (slugs)  acceleration (ft/sec )×

Then 

  2weight (pounds) = mass (slugs)   (ft/sec )g×

or 2
weight  (pounds)mass  (slugs) = 

 (ft/sec )
WM

g
 

By this equation, the units of mass (slugs) in this system are lb-sec2/ft.   
 
Some British Engineering system quantities are set out below 
 

Physical quantity Name Symbol 
 

length foot ft 
mass slug lb-sec2/ft 
time interval second s 
temperature fahrenheit F 
force, weight pound (or pound force) lb (or lbf) 
pressure, stress pound per square inch psi 
energy, work foot-pound-force ft-lbf 
 
area square foot ft2

volume cubic foot ft3

volumetric flow rate cubic feet per second ft3/s 
velocity (linear) feet per second ft/s 
density (mass density) slug per cubic foot slug/ft3

 
Table 2 

 
 
CONVERSION FACTORS and USEFUL RELATIONSHIPS 
 
The following relationships can be used to determine conversion factors between quantities in both systems 
 
Conversion Factors (exact relationships, Mechtly,1973) 

  
1 foot = 0.3048 metres

1 pound = 0.45359237 kilograms

Useful Relationships 
 
Force 
 
Using the conversion factors above and the internationally accepted values of the acceleration due to gravity (see 
National Institute of Standards and Technology Reference on Constants, Units and Uncertainty, 
http://physics.nist.gov/cuu/index.html) 

  2 29.80665 m/s 32.17405 ft/sg = =

the following relationships for force (weight), mass and density are 

  
3 3

1 lb = 4.44822 N
1 slug = 14.59390 kg

1 slug/ft  = 515.37884 kg/m
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Pressure 
 

  

1 millibar (mb) = 100 pascal (Pa)

1 mm of Hg (0 C) = 133.3224 Pa

1 in of Hg (32 F) = 3386.389 Pa
1 mb = 0.750062 mm of Hg

= 0.029530 in of Hg
1 std. atmosphere = 1013.25 mb (exactly)

= 760.0003 mm of Hg
= 29.9213 in of Hg

1 psi = 6894.7573 Pa
= 6.8948 KPa

 
Temperature 
 
The relationships (exact) between degrees Fahrenheit (ºF) and degrees Celsius (ºC) are 

 
( ) ( )
( )

C = 5/9 F 32

F = 9/5 C 32

−

+
 

 
 
DIMENSIONAL ANALYSIS 
 
Dimensional analysis is the mathematics of dimensions of quantities and is a useful tool for modern fluid 
mechanics.  In any equation expressing a physical relationship between quantities, absolute numerical and 
dimensional equality must exist.  In general all such physical relationships can be reduced to the fundamental 
quantities of force F, length L and time T (or mass M, length L and time T).  Dimensional analysis is useful in 
converting one system of units to another.  The following table shows dimensions of various quantities 
 (a) in terms of force F, length L and time T and 
 (b) in terms of mass M, length L and time T. 
 
 (a) (b) 

Quantity Symbol F-L-T M-L-T 
 

Area A in m2 A   2L 2L
Volume v in m3 v   3L 3L
Velocity V or v V or v 1LT −   1LT −

Acceleration a or g in m/s2 a or g 2LT −   2LT −

Force F (  in N F F )mass  acceleration× 2M LT −  

Mass M in kg M 2 1F T L−  M 

Density ρ  in kg/m3 ρ  2 4F T L−  3M L−  

Pressure p in N/m2 or Pa p 2FL−  1 2M L T− −  

Absolute viscosity μ  in Pa s μ  2F T L−  1 1M L T− −  

Rate of discharge Q in m3/s Q 3 1L T −   3 1L T −

Shearing stress τ  in N/m2 or Pa τ  2FL−  1 2M L T− −  

Weight W in N W F 2M LT −  
 

Table 3 
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MASS DENSITY OF A SUBSTANCE ρ  (rho) 
 
The density of a substance is its mass per unit volume. 

 dm
dv

ρ =  (1) 

where dm is an element of mass 
 dv is an element of volume 
 
The density of water is 1000 kg/m3 at 4°C (Giles 1976) and may be regarded as constant for practical changes in 
pressure.  In the British Engineering system, the relative density of water is taken as 1.94 slug/ft3 at 40°F 
 
When dealing with liquids the variable γ  (gamma) is used where 

 gγ ρ=  (2) 

and g is the gravitational acceleration; often taken as having an average value of 9.81 m/s2. 
 

In the British Engineering system γ  is known as the specific weight although in the SI 
system, the use of the term specific is confined to descriptions of properties per unit 
mass.  The term specific weight is still widely used in hydraulics although it is not 
defined in the SI system. 

 
 
RELATIVE DENSITY OF A BODY 
 
The relative density of a body is the dimensionless number denoting the ratio of the mass of the body to the mass 
of an equal volume of a substance taken as a standard.  Relative densities of liquids are referred to water at 4°C 
as a standard. 

 

mass of the substancerelative density of a substance = 
mass of an equal volume of water
density of substance= 

density of water

 (3) 

The relative density of water is 1.00 and of mercury is 13.57.  Relative density is commonly known as specific 
gravity but for the reasons mentioned above the term specific is not used in the SI system. 
 
 
VISCOSITY OF A FLUID 
 
It is well known that fluids such as olive oil or 
sauce flow more slowly through a given tube than 
would water or petrol.  This difference is ascribed 
to the presence of an internal fluid friction known 
as viscosity; olive oil being more viscous than 
water. Viscosity of a fluid is the amount of 
resistance to a shearing force and is due primarily 
to interaction between fluid molecules. 
 
Referring to Figure 1, consider two large parallel 
plates at a small distance y apart, the space 
between the plates filled with a fluid.  The bottom 
plate is fixed and the upper plate is moving with a constant velocity U due to a constant force F.  Experiments 
have shown that whenever a fluid flows in a channel the layer of fluid at the channel wall actually adheres to it 
and is stationary, ie, there is no slip.  So the fluid in contact with the upper plate will adhere to it and will move 
at a velocity U.  The fluid in contact with the lower plate will have a velocity of zero.  If distance y and velocity 
U are not to great, the velocity variation (or gradient) will be a straight line. 

V

dy
dV

U

y

F
Moving Plate

Fixed Plate

Figure 1
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It is known (from experiments) that the force F varies with the area of the plate, with velocity U, and inversely 
with distance y.  Since, by similar triangles, U y dV dy=  then 

    or   AU F dF
y A

∝ ∝
V

dy
 

The ratio F A  is known as the shear stress and is denoted by the symbol τ  (tau).  The units of shear stress (τ ) 
are Newtons per square metre (N/m2) or Pascals (Pa).  If a constant of proportionality  (mu)μ , called the 
absolute viscosity (or dynamic viscosity) is introduced into the equation above, then 

 dV
dy

τ μ=  (4) 

The units of absolute viscosity ( )μ  are Pascal-second (Pa s). 
 
Equation (4) is Newton's law of viscosity, and fluids according with this equation are known as Newtonian fluids.  
In the second book of his famous Principia (Philosophiae naturalis principia mathematica – The Mathematical 
Principles of Natural Philosophy – published in 1687), Newton considered the circular motion of fluids as part of 
his studies of the planets and wrote 
 

hupothesis 
 
The resistance arising from the want of lubricity in the parts of a fluid, is, other things being equal, 
proportional to the velocity with which the parts of a fluid are separated from one another. 

 
(Streeter 1971) 
 
Viscosities of liquids decrease with temperature, but are not appreciably affected by pressure. 
 
 
PRESSURE  p 
 
A fluid under pressure exerts a force on any surface in contact with it.  Fluid pressure is transmitted with equal 
intensity in all directions and acts normal to any plane.  In the same horizontal plane, the pressure intensities in a 
liquid are equal. 
 
Consider an element of area AΔ  of a surface on which a force FΔ  is exerted, the pressure p is 

 
0

lim
A

F dFp
A dA→

Δ
= =

Δ
 (5) 

For conditions where the force F is uniformly distributed over an area A then 

 Fp
A

=  (6) 

The units of pressure are newtons per square metre (N/m2) or pascals2 (Pa). 

                                                           
2 A unit of pressure in the SI system named in honour of Blaise Pascal (1623–1662) a French mathematician, physicist, 
religious philosopher, and master of French prose.  Pascal laid the foundation for the modern theory of probabilities, 
formulated what came to be known as Pascal's law of pressure, and propagated a religious doctrine that taught the experience 
of God through the heart rather than through reason.  Pascal tested the theories of Galileo and Evangelista Torricelli (an 
Italian physicist who discovered the principle of the barometer).  To do so, he reproduced and amplified experiments on 
atmospheric pressure by constructing mercury barometers and measuring air pressure, both in Paris and on the top of a 
mountain overlooking Clermont-Ferrand.  These tests paved the way for further studies in hydrodynamics and hydrostatics.  
Pascal invented the syringe and created the hydraulic press, an instrument based upon the principle that became known as 
Pascal's Law: pressure applied to a confined liquid is transmitted undiminished through the liquid in all directions regardless 
of the area to which the pressure is applied.  His publications on the problem of the vacuum (1647-48) added to his 
reputation (Encyclopaedia Britannica 1999). 
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VARIATION OF PRESSURE WITH DEPTH 
 
Consider Figure 2 which shows a small (horizontal) element 
of fluid mass dm at rest, submerged within a fluid body. 
 
The weight (force = mass ×  acceleration) of the element is 
dW g dm g dvρ= =  where  is the elemental 
volume.  Hence 

dv dAdh=

 dW g dAdhρ=  (7) 

= p dA

 = (p + dp) dA

dF

dF

1

2dW

h

dh

surface

area dA

The forces acting on or by the fluid element must be in 
equilibrium, so 

  (8) 1dF dW dF+ = 2

 Figure 2 
 
Substituting (7) into (8) and using (5) gives 

 ( )p dA g dAdh p dp dAρ+ = +  

Cancelling terms and rearranging gives 

 dp g dhρ=  (9) 

Assuming that g and ρ  are constant, integrating (9) gives 

 
2 2

1 1

p h

p h
dp g dhρ=∫ ∫  

Thus, the difference in pressure between any two points at different levels in a liquid is given by 

 ( )2 1 2 1p p g h hρ− = −  (10) 

If point 1 is on the free surface of the liquid and h is positive downward (10) becomes 

 p ghρ=  (11) 

where p (in Pa) is known as gauge pressure.  Gauge pressures are often expressed in bar where 1  
or millibar (mb) where 1 .  In the British Engineering system, the units of pressure are 
pounds per square inch (psi). 

5 bar = 10  Pa
 mb = 100 Pa = 1 hPa

 
 
ABSOLUTE AND GAUGE PRESSURE 
 
If pressure is measured above absolute zero, it is known as absolute pressure.  If pressure is measured either 
above or below or below atmospheric pressure as a base, it is called a gauge pressure.  This is because 
practically all pressure gauges read zero when open to the atmosphere and measure only the difference between 
the pressure of the fluid to which they are connected and that of the surrounding air (Daugherty & Ingersoll 
1954). 
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Figure 3 
 
If the pressure is below that of the atmosphere, it is designated as a vacuum and its gauge value is negative.  All 
values of absolute pressure for fluids are positive and atmospheric pressure is that measured by a barometer 
(barometric pressure).  Atmospheric pressure varies with altitude, and for a fixed location, varies slightly from 
time to time (high- and low-pressure weather systems).  For reference purposes, a standard atmosphere has a 
value of 1013.25 mb.  Figure 3 shows the relationship between different types of pressure. 
 
Example: At a depth of 60 metres below a free water surface, what will be the water pressure (gauge pressure)? 
 (use density of water ρ  = 1000 kg/m3 and acceleration due to gravity g = 9.81 m/s2) 

 ( ) ( ) (1000 9.81 60
588,600 Pa
588.6 KPa

p g h
)

ρ=
=
=
=

 

 
 
PRESSURE HEAD h 
 
Pressure head h represents the height of a column of homogeneous fluid of density ρ  that will produce a given 
intensity of pressure.  Then 

 ph
gρ

=  (12) 

 
Example: What depth of oil (relative density 0.750) will produce a pressure of 2.75 bar?  What depth of water? 
 (use average value of 9810 N/m3 for gρ  of water) 
 
 Solution: 

 
52.75 10 37.4 m

0.750 9810oil
oil

ph
gρ

×
= = =

×
 

 
52.75 10 28 m

9810water
water

ph
gρ

×
= = =  
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THE FLOW OF FLUIDS 
 
Fluid flow is complex and not always subject to exact mathematical analysis.  A fluid in flow experiences, in 
addition to gravity, pressure forces, viscous and turbulent shear resistances, boundary resistance, and forces due 
to surface tension and compressibility effects of the fluid.  The presence of such a complex system of forces in 
real fluid flow makes the analysis very complicated.  However, a simplifying approach to problems may be made 
by assuming the fluid to be ideal or perfect.  Ideal fluids are non-viscous (frictionless) and incompressible.  
Water has a relatively low viscosity and is practically incompressible, and is found to behave like an ideal fluid.  
Therefore, simplifications can be made in the development of formulae and the application of those formulae to 
practical hydraulic problems.  Some definitions and terminology are given below. 
 
Laminar and Turbulent Flow – Reynolds' Experiment 
 
In 1883, the British engineer Osborne Reynolds (see citation below) demonstrated that there were two distinctly 
different types of fluid flow.  He injected a fine, threadlike stream of coloured liquid at the entrance of a large 
glass tube through which water was flowing from a tank.  A valve at the discharge end permitted him to vary the 
flow.  When the velocity in the tube was small, the coloured liquid was visible as a straight line or streamline 
throughout the length of the glass tube, demonstrating that the particles of water moved in parallel straight lines.  
As the velocity of the water increased (by opening the valve) there was a point at which the flow changed.  The 
line would first become wavy, and then at a short distance from the entrance would break into numerous vortices 
beyond which the colour would be uniformly diffused so that no streamlines could be distinguished.  With 
closure of the valve, the process was reversed.  The first type of flow (the coloured dye as a streamline) is known 
as laminar or streamline flow.  These terms arise from (i) the fluid appears to move by the sliding of laminations 
of infinitesimal thickness relative to adjacent layers and (ii) individual particles of water appear to move in 
definite paths, which combined, form streamlines.  The second type of flow (the coloured dye dispersed) is 
known as turbulent flow and is characterised by irregular velocities of individual particles. 
 
Reynolds also found that the nature of flow depends on the ratio of the forces of inertia and fluid friction due to 
viscosity.  For an incompressible fluid of density ρ  and viscosity μ  flowing through a pipe of diameter D at an 
average velocity V, the ratio of these forces is a dimensionless number known as the Reynolds number  RN

Reynolds number R
DVN ρ
μ

=  (13) 

Reynolds established from the experiment that the transition from laminar to turbulent flow occurs when 
 (Streeter 1971). 2000RN ≈

 
Reynolds, Osborne (b. Aug. 23, 1842, Belfast, Ire.–d. Feb. 21, 1912, Watchet, Somerset, Eng.), 
British engineer, physicist, and educator best known for his work in hydraulics and 
hydrodynamics.  Reynolds was born into a family of Anglican clerics.  He gained early workshop 
experience by apprenticing with a mechanical engineer, and he graduated at Queens' College, 
Cambridge, in mathematics in 1867.  In 1868, he became the first professor of engineering at 
Owens College, Manchester, a position he held until his retirement in 1905.  He became a fellow 
of the Royal Society in 1877 and received a Royal Medal in 1888.  Though his earliest 
professional research dealt with such properties as magnetism, electricity, and heavenly bodies, 
Reynolds soon began to concentrate on fluid mechanics.  In this area he made a number of 
significant contributions.  His studies of condensation and heat transfer between solids and fluids 
brought radical revision in boiler and condenser design, while his work on turbine pumps 
permitted their rapid development.  He formulated the theory of lubrication (1886) and in 1889 
developed the standard mathematical framework used in turbulence work.  He also studied wave 
engineering and tidal motions in rivers and made pioneering contributions to the concept of group 
velocity.  Among his other contributions were the explanation of the radiometer and an early 
absolute determination of the mechanical equivalent of heat.  His paper on the law of resistance in 
parallel channels (1883) is a classic.  The "Reynolds stress" in fluids with turbulent motion and the 
"Reynolds number" used for modelling in fluid flow experiments are named for him. 
Copyright 1994-1999 Encyclopædia Britannica 
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Steady and unsteady flow 
 
Flow parameters such as velocity V, pressure p and density ρ  of a fluid flow are independent of time in a steady 
flow.  For unsteady flow, V, p and ρ , all or singly, vary with time.  For example 

 
0  for steady flow

0  for unsteady flow

dV
dt
dV
dt

=

≠
 

In reality, these parameters are generally time dependent but often remain constant, on average, over a 
reasonable time period.  In the solution of many practical hydraulic problems, fluid flow is assumed to be steady.   
 
In steady flow the streamline has a fixed direction at every point; and is therefore fixed in space.  A particle 
always moves tangentially to the streamline, hence in steady flow, the path of a particle is a streamline. 
 
Uniform and non-uniform flow 
 
Flow is uniform if its characteristics at any given instant remain the same at different points in the direction of 
flow; otherwise the flow is non-uniform.  If s is a distance measured along the flow, uniform and non-uniform 
flow is expressed mathematically as 

 
0  for uniform flow

0  for non-uniform flow

dV
ds
dV
ds

=

≠
 

The flow of water through a long uniform pipe at a constant rate is steady uniform flow.  If the flow rate is 
changing then it is unsteady uniform flow. 
 
The flow of water through a non-uniform pipe (eg, changing diameter) at a constant rate is steady non-uniform.  
If the flow rate varies, then the flow is unsteady non-uniform flow. 
 
Streamlines and Streamtubes 
 
Streamlines are imaginary curves drawn through a fluid to indicate the direction of motion of individual 
particles.  A tangent to a streamline represents the instantaneous velocity of the fluid particles at that point.  
Streamrubes represent elementary portions of a flowing fluid bounded by a group of streamlines which confine 
the flow.  If the cross-sectional area of the streamtube is sufficiently small, the velocity of the midpoint may be 
taken as the mean velocity for the section as a whole.  The streamtube is used to derive the equation of 
continuity. 
 
 
EQUATION OF CONTINUITY 
 
The equation of continuity results from the principle of conservation of mass.  For steady flow, the mass of fluid 
passing all sections in a stream of fluid (a streamtube), per unit mass of time is the same. 
 
 

A1

A2

dA1
dA2

V2

V1

 
 

Figure 4 
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Considering Figure 4, which shows a streamtube, we may write 

 mass entering stream tube mass leaving stream tube at section 1 =  at section 2
second second

 

Since density = mass / volume, volume = area ×  length and velocity = length / time then the equation of 
continuity can be written as 

 1 1 1 2 2 2 constantV A V Aρ ρ= =  (14) 

For incompressible fluids and where the density is constant ( 1 2ρ ρ= ), then for all practical purposes the 
equation of continuity (14) can be expressed as 

 1 1 2 2 constantQ A V A V= = =  (15) 

where 
 Q is the discharge in cubic metres per second m3/s 
 A is the cross-sectional area in m2  
 V is the mean velocity of the section in m/s 
 
 
ENERGY EQUATION 
 
The energy equation results from application of the principle of conservation of energy to fluid flow.  In 
scientific usage, a body is said to possess energy if it is capable of doing work and the amount of work it can do 
is a measure of its energy.  The energy possessed by a flowing liquid consists of internal energy and energies due 
to pressure, velocity and position.  In the direction of flow, the energy principle is summarised in the following 
equation 

  
Energy at Energy Energy Energy Energy at
Section 1 Added Lost Exctacted Section 2

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡+ − − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣
⎤
⎥⎦

Energy Added to fluid flow is generally from mechanical devices such as pumps, Energy Lost is usually due to 
friction forces and Energy Extracted from the flow is usually extracted by mechanical devices such as turbines. 
 
For steady flow of incompressible fluids in which the change in internal energy is negligible, this equation 
simplifies to 

Bernoulli's theorem 
2 2

1 1 2 2
12 A L E

p V p Vz H H H z
g g g gρ

⎛ ⎞ ⎛
+ + + − − = + +⎜ ⎟ ⎜⎝ ⎠ ⎝ 22ρ

⎞
⎟⎠

 (16) 

In Bernoulli's theorem, all the terms are in units of length and are expressed as either "heads" or heights above a 

datum.  The term p
gρ

 is the pressure head and the term 
2

2
V

g
 is the velocity head.  LH  is known as lost head. 

 
A proof of Bernoulli's theorem is set out below, and follows the derivation given by Giles (1976). 
 
 
DERIVATION OF BERNOULLI'S THEOREM 
 
Consider Figure 5(a) showing, as a free body, an elementary mass of fluid dm, contained within a cylinder of 
length dl and end-area dA.  The fluid is flowing in the pipe at a steady rate and the direction of motion is the x-
axis.  Figure 5(b) shows a sectional view of the fluid element; the x-axis in the plane of the paper and inclined to 
the horizontal at an angle θ .  The forces acting in the x-direction are due to (i) the pressure acting on the end 
areas, (ii) the component of the weight and (iii) the shearing forces  exerted by the adjacent fluid.  Forces 
normal to the direction of motion have not been shown acting on the free body dm. 

SdF
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dm

dF

dF

s

s

dF

dF

1

2

= p dA

= (p + dp) dA

dl

dW =  g dA dlρ

dz
θ

x

 
 

 
 Figure 5(a) Figure 5(b) 
 
Considering forces in the x-direction, Newton's second law ( )force = mass  acceleration×  can be written as 

x xF dm a=∑ , and with the acceleration in the x-direction xa dV dt=  we obtain 

 ( )1 2 sin S
dVdF dF dW dF dm
dt

θ− − − =  (17) 

Remembering that pressure p is force divided by area,  and  equal  and 1dF 2dF p dA ( )p dp dA+  respectively.  
The weight (force = mass ×  acceleration) of the element is dW g dm=  and dm dv dAdlρ ρ= = , hence 
dW g dAdlρ= .  Making these substitutions, (17) becomes 

 ( )( )sin S
dVp dA p dp dA gdAdl dF dAdl
dt

ρ θ ρ− + − − =  (18) 

Dividing (18) by g dAρ , cancelling terms, then replacing dl dt  with velocity V and sindl θ  with dz gives 

 Sdp dF VdVdz
g g dA gρ ρ

− − − =  (19) 

The term SdF
g dAρ

 represents the resistance to flow in length dl.  The shear stress force area SdF dAτ = =  and 

the area ( )perimeter  length× dA dP dl= is , hence SdF dP dlτ=  and the term 

 SdF dP dl dl
g dA g dA g R

τ τ
ρ ρ ρ

= =  (20) 

The term R in (20) is known as the hydraulic radius and is defined as the cross-sectional area divided by the 
wetted surface perimeter.  In this case, R dA dP= . 
 
The sum of all the shearing forces is the measure of energy lost due to the flow, remembering that work is force 
by distance and a body is said to possess energy if it is capable of doing work.  This energy loss is called lost 
head .  Shearing forces are often also called friction forces, and the lost head  is also known as friction 
head 

Lh Lh
fh  

 lost head L
dldh
g R
τ
ρ

=  (21) 

The units of head loss (or friction loss) are metres if other quantities are in SI units.  This can be verified by 
dimensional analysis 

 
( ) ( )

( ) ( ) ( )

1 2

3 2 metresL
ML T Ldldh L

g R ML LT L
τ
ρ

− −

− −= = = =  
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Substituting (20) and (21) into (19) and re-arranging gives the equation of motion for steady flow of any fluid

 0L
dp VdV dz dh

g gρ
+ + + =  (22) 

This differential equation for steady flow is a fundamental fluid flow equation.  When applied to an ideal fluid 
(lost head = 0) it is known as Euler's equation. 
 
For incompressible fluids (and water is practically incompressible) the integration of (22) is as follows 

 2 2 2

1 1 1

2

1
0

p V z
Lp V z

dp VdV dz dh
g gρ
+ + + =∫ ∫ ∫ ∫  

The evaluation of the last integral yields the total head lost LH .  Integrating and substituting the limits gives 

 ( )
2 2

2 1 2 1
2 1 0

2 2 L
p p V V z z H
g g g gρ ρ

⎛ ⎞⎛ ⎞− + − + − − =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 (23) 

Re-arranging (23) gives the customary form of Bernouilli's theorem (when no energies are added or extracted) 

 
2 2

1 1 1 2
12 L

p V p Vz H z
g g g gρ ρ

⎛ ⎞ ⎛
+ + − = + +⎜ ⎟ ⎜⎝ ⎠ ⎝ 22

⎞
⎟⎠

 (24) 

Note that in equations (23) and (24) all terms are in units of length, a fact that can be verified by dimensional 
analysis, eg 

 ( ) ( )
( )212 1 2

23 22
LTp V ML Tz L L L L

g g LTML LTρ

−− −

−− −+ + = + + = + +  

 
For an ideal fluid ( ) and when no other energies are added or extracted Bernoulli's theorem can be 
expressed as 

0LH =

 
2

constant
2

p V gz
ρ
+ + =  (25) 

In this form, Bernoulli's theorem can explain some seemingly paradoxical practical results of fluid flow (air and 
water).  The following extract from Encyclopaedia Britannica (1994-1999) is illuminating. 
 

Bernoulli's theorem indicates that, if an ideal fluid is flowing along a pipe of varying cross section, then the 
pressure is relatively low at constrictions where the velocity is high and relatively high where the pipe opens 
out and the fluid stagnates.  Many people find this situation paradoxical when they first encounter it.  Surely, 
they say, a constriction should increase the local pressure rather than diminish it?  The paradox evaporates as 
one learns to think of the pressure changes along the pipe as cause and the velocity changes as effect, instead 
of the other way around; it is only because the pressure falls at a constriction that the pressure gradient 
upstream of the constriction has the right sign to make the fluid accelerate.  Paradoxical or not, predictions 
based on Bernoulli's theorem are well-verified by experiment.  Try holding two sheets of paper so that they 
hang vertically two centimetres or so apart and blow downward so that there is a current of air between them.  
The sheets will be drawn together by the reduction in pressure associated with this current.  Ships are drawn 
together for much the same reason if they are moving through the water in the same direction at the same 
speed with a small distance between them.  In this case, the current results from the displacement of water by 
each ship's bow, which has to flow backward to fill the space created as the stern moves forward, and the 
current between the ships, to which they both contribute, is stronger than the current moving past their outer 
sides.  As another simple experiment, listen to the hissing sound made by a tap that is almost, but not quite, 
turned off.  What happens in this case is that the flow is so constricted and the velocity within the constriction 
so high that the pressure in the constriction is actually negative.  Assisted by the dissolved gases that are 
normally present, the water cavitates as it passes through, and the noise that is heard is the sound of tiny 
bubbles collapsing as the water slows down and the pressure rises again on the other side. 
 
Copyright 1994-1999 Encyclopædia Britannica 
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AN APPLICATION OF BERNOULLI'S THEOREM 
 
Figure 6 shows a pipe with water flowing under pressure, at a mean velocity equal to V.  A piezometer and a 
Pitot tube are attached to the pipe.  The piezometer is a simple device for measuring fluid pressure.  It is a thin 
tube inserted into the pipe at right angles and water will rise in the tube to a height equal to the static pressure 
head.  The Pitot tube is a bent tube with one end pointed directly into the stream flow.  The water rises in the 
tube until all its kinetic energy is converted into potential energy.  At A, the fluid streamlines are parallel but 
divide as they approach the blunt end of the Pitot tube at B.  At this point, there is complete stagnation (zero 
velocity), since the fluid at this point is not moving up, nor down, nor neither to the right or left.  The water in 
the Pitot tube will rise to a height equal to the stagnation pressure head.  The difference h between the static 
pressure head and stagnation pressure head is the velocity head. 
 
 
 

•
A B

V

Pitot tube

piezometer hvel

hstatic

hstag

CL
datum

Total Head or Energy Gradient

 
 

Figure 6 
 
Applying Bernoulli's theorem from the pipe cross section through A in the undisturbed fluid flow to the section 
through B, considering the centre-line of the pipe as the datum yields 

 
2 no loss

0 0
2 (assumed)

A Bp V p
g g gρ ρ

⎛ ⎞ ⎛ ⎞+ + − = + +⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
0  

The static pressure head is A
static

ph
gρ

= , the stagnation pressure head is B
stag

ph
gρ

=  and the difference between 

them is the velocity head , hence for an ideal "frictionless" fluid velh

 
2

2vel
Vh

g
=  (26) 

Note, that in the case of water flowing in an open channel or stream, the static pressure head is zero (since the 
local pressure is zero gauge).  The height to which water will rise in a Pitot tube, in this case, measures the 
velocity head.  In stream gauging measurements using weirs, formulae are derived based on an assumption that 
the velocity of flow v through a thin strip is a function of the head h of water above the strip.  This assumption 
can be deduced from a rearrangement of (26); 2v g= h  
 
 
APPLICATION OF THE BERNOULLI THEOREM IN HYDRAULIC DESIGN PROBLEMS 
 
In hydraulic design problems, the Bernoulli theorem should be applied in the following manner 
 
 (1) Draw a sketch of the system, choosing and labelling all cross sections of the stream (or pipe) under 

consideration. 
 (2) Apply the Bernoulli equation in the direction of flow.  That is, section numbers increase in the 

direction of flow.  Select a datum line such that all quantities (heads and elevations) are positive. 
 (3) Evaluate the energy upstream at Section 1 expressing pressure head and velocity head in metres of 

fluid.  If required, pressures should be expressed in gauge units.  All velocities can be assumed to be 
average or mean velocities of flow. 
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 (4) Add, in metres of the fluid, any energy contributed by mechanical devices such as pumps. 
 (5) Subtract, in metres of the fluid, any energy lost during flow (friction losses). 
 (6) Subtract, in metres of the fluid, any energy extracted by mechanical devices, such as turbines. 
 (7) Equate this summation of energy to the sum of the pressure head, velocity head and elevation head in 

Section 2. 
 (8) If the two velocity heads are unknown, they can be related by the equation of continuity. 
 
 
ENERGY GRADIENT 
 
The energy gradient (or energy line or energy grade line) is a graphical representation of the energy at each 
section.  With respect to a datum, the total energy (in metres of fluid) can be plotted at each section and the line 
obtained (passing through these points) is a valuable tool in many flow problems.  The energy gradient will slope 
downwards in the direction of flow, unless energy is added by mechanical means, or unless no losses are 
assumed.  In the case of no losses assumed, the energy gradient will be a horizontal line. 
 
 
HYDRAULIC GRADIENT 
 
The hydraulic gradient (or hydraulic grade line) lies vertically below the energy gradient by an amount equal to 
the velocity head at each section.  The two lines (energy gradient and hydraulic gradient) are parallel for all 
sections of equal cross sectional area.  The vertical distance between the centre of the stream and the hydraulic 
gradient is the pressure head at the particular section. 
 
 

p
ρg

z

V 2

2g

Datum

Hydraulic
gradient

Energy
gradient

B

B'

A

C

C

N

D

E

F

M

HL

 
 

Figure 7 
 
Consider Figure 7 which shows two bodies of fluid connected by a pipe of constant cross sectional area.  If a 
piezometer tube were erected at B the fluid would rise in it to BB' equal to the pressure head p gρ  existing at 
that section.  If the end of the pipe at E were closed so that no flow would occur, the height of the column would 
be BM.  The drop from M to B' when flow occurs, is due to two factors, 
 (i) a portion of the pressure head has been converted into velocity head 2 2V g  which the fluid has at B, 

and 
 (ii) there has been a loss of head LH  due to fluid friction between A and B.   
 
If a series of piezometers were erected along the pipe, the fluid would rise in them to various levels.  The line 
drawn through the summits of these imaginary series of fluid columns is the hydraulic gradient.  The hydraulic 
gradient represents the pressure along the pipe, as at any point the vertical distance from the pipe centre line to 
the hydraulic gradient is the pressure head at that point, assuming the profile has been drawn to scale. 
 
At C, this distance is zero, indicating that the pressure is atmospheric at both locations.  At D, the pipe is above 
the hydraulic gradient, indicating that the pressure head is DN− , or a vacuum of DN. 
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If the profile of a pipeline is drawn to scale, the hydraulic gradient enables the pressure head to be determined at 
any section by measurement on the diagram.  In addition, the hydraulic gradient shows the variation of pressure 
in the entire length of the pipe.  The hydraulic gradient is a straight line only if the pipe is straight and of 
constant cross sectional area.  If pipe sizes change, then there will be abrupt jumps in the hydraulic gradient. 
 
At A, there is slight curvature in the hydraulic gradient and energy gradient due to streamlines converging as they 
enter the pipe.  For long pipelines, the hydraulic gradient can be drawn from water surface to water surface 
without any appreciable loss in accuracy. 
 
 
FRICTION LOSSES IN PIPES 
 
Bernoulli's theorem (the energy equation) is used in the solution of practical pipe flow problems in various 
branches of engineering.  Flow of real fluids is more complex than flow of ideal fluids; shear forces between 
fluid particles and the boundary walls and between fluids themselves, result from the fluid's viscosity.  Equations 
that might account for the flow (Euler's differential equation) have no general solution and recourse must be 
made to experimentation and semi-empirical methods to solve flow problems in pipes. 
 
An important problem in determining the flow of fluids in pipes (using Bernoulli's theorem) is determining head 
loss LH  due to the friction of fluids flowing in pipes.  A formula for determining head loss is the Darcy-
Weisbach Formula 

 

2

2

pipe length friction factor velocity head 
pipe diameter 2

2

L
L VH f
D g

L Vf
D g

= × ×

⎛ ⎞⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 (27) 

where 
 f is a pipe friction factor 
 L is the length of the pipe in metres 
 D is the diameter of the pipe 
 V is the mean velocity of the flow 
 g is the acceleration due to gravity 
 
The friction factor f in the Darcy-Weisbach formula can be evaluated using a formula developed by Colebrook 
(1939) known as the Colebrook-White equation which is regarded as reliable for all pipes (rough or smooth) 
(Giles 1976, Featherstone & Nalluri 1988) 

Colebrook-White equation 10
1 22 log

3.7 RD
.51

f N f
ε⎡ ⎤= − +⎢ ⎥⎣ ⎦

 (28) 

where 
 Dε  is the relative roughness of the pipe 
  is the Reynolds number RN
 
In the Colebrook-White equation, Dε  is the ratio of the height of protuberances ε  of small particles attached 
to the inside surface of the pipe to its diameter D.  Studies of flow in pipes, whether laminar or turbulent (see 
Reynolds' experiment), have shown that there is a very thin layer of fluid attached to the sides of the pipe known 
as the boundary layer of thickness δ  (generally 0.02 mmδ < ).  In the early part of the 20th century, the 
German engineers Nikuradse and Prandtl (see citation below) experimented with pipes of varying diameter by 
coating them with sand grains of uniform diameter ε  and then subjecting them to flows of varying velocity.  
Their experiments showed that if the coating thickness ε  was greater than the thickness of the boundary layer 
δ , the surface was regarded as hydraulically rough.  And if the coating thickness ε , was less than the thickness 
of the boundary layer δ , the surface was regarded as hydraulically smooth. 
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Their equations for determining the friction factor f, improved and modified by others are quoted in the literature 
as the Kármán-Prandtl equations (Giles, 1976, Featherstone & Nalluri, 1988) 

smooth pipe surface ( )1.7δ ε>  ( )10
1 2 log 0.8RN f
f
= −  (29) 

rough pipe surface ( )0.08δ ε<  10
1 2 log 1.14D
f ε

⎛ ⎞= ⎜ ⎟⎝ ⎠ +  (30) 

The Colebrook-White equation (28) – the addition of equations (29) and (30) – has been found to accord with 
observations of flow in commercial pipes over a wide range of laminar and turbulent flows and is regarded as 
sufficient for determining the friction factor f in pipes (Featherstone & Nalluri 1988). 
 
The derivation of the Darcy-Weisbach formula is an interesting study in the usefulness of dimensional analysis 
and is given below. 
 

 
Prandtl, Ludwig (b. Feb. 4, 1875, Freising, Ger.—d. Aug. 15, 1953, Göttingen), German physicist 
who is considered to be the father of aerodynamics.  
In 1901 Prandtl became professor of mechanics at the University of Hannover, where he 
continued his earlier efforts to provide a sound theoretical basis for fluid mechanics.  He served as 
professor of applied mechanics at the University of Göttingen from 1904 to 1953 and there 
established a school of aerodynamics and hydrodynamics that achieved world renown.  In 1925 he 
became director of the Kaiser Wilhelm (later the Max Planck) Institute for Fluid Mechanics.  His 
discovery (1904) of the boundary layer, which adjoins the surface of a body moving in air or 
water, led to an understanding of skin friction drag and of the way in which streamlining reduces 
the drag of airplane wings and other moving bodies.  His work on wing theory, which followed 
similar work by a British physicist, Frederick W. Lanchester, but was carried out independently, 
elucidated the process of airflow over airplane wings of finite span.  That body of work is known 
as the Lanchester-Prandtl wing theory.  Prandtl made decisive advances in boundary-layer and 
wing theories, and his work became the fundamental material of aerodynamics.  He was an early 
pioneer in streamlining dirigibles, and his advocacy of monoplanes greatly advanced heavier-than-
air aviation.  He contributed the Prandtl-Glaubert rule for subsonic airflow to describe the 
compressibility effects of air at high speeds.  In addition to his important advances in the theories 
of supersonic flow and turbulence, he made notable innovations in the design of wind tunnels and 
other aerodynamic equipment.  He also devised a soap-film analogy for analysing the torsion 
forces of structures with non-circular cross sections.  
Copyright 1994-1999 Encyclopædia Britannica 
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DERIVATION OF THE DARCY-WEISBACH FORMULA 
 
In the development of Bernoulli's theorem, the lost head for the elemental distance dl was shown as equation (5) 

L
dldh
gR

τ
ρ

=  and for the total length of pipe L the lost head LH  can be expressed 

 L
LH
g R

τ
ρ

=  (31) 

where 
 τ  is shear stress 
 L is the length of the pipe in metres 
 R is the hydraulic radius in metres 
 ρ  is the density in kg/m3  
 g is the acceleration due to gravity 
 
The shear stress τ  is known to be a function of flow velocity V, pipe diameter D, density ρ , viscosity μ  and a 
coefficient K, the relative roughness of the pipe.  K Dε=  where ε  is the size of the protuberances on the 
inside of the pipe.  Thus, we may write 

 ( ), , , ,f V D Kτ ρ μ=  (32) 

The exact form of (32) is unknown but can be expressed in a general form 

  (33) a b c d eCV D Kτ ρ μ=

where C is a dimensionless coefficient and the unknown powers of the variables are expressed as the indices a, 
b, c, d and e.  Expressing (33) in terms of the dimensions of each of the variables gives (ignoring C since it is 
dimensionless) 

 ( ) ( ) ( ) ( ) ( )1 2 1 3 1 1 1

3

a c db

a a b c c d d d

ML T LT L ML ML T LL

L T L M L M L T

− − − − − − −

− − − −

=

=

e

 

Equating the indices of the dimensions M, L and T gives the following three equations 

 
1
1 3
2

c d
a b c d

a d

= +
− = + − −
− = − −

 

Solving in terms of d, which will allow V, D, ρ  and μ  to be combined, gives 

 
2
1

a d
c d
b d

= −
= −
= −

 

Substituting these values into (33) and simplifying gives 

 

2 1

2

d d d d

d
e

CV D K

DVC K

τ ρ

ρ ρ
μ

− − −

−

=

⎛ ⎞= ⎜ ⎟⎝ ⎠

e

V

μ
 

The term DVρ
μ

 is the Reynolds number .  Combining the Reynolds number, the coefficient C and the 

relative roughness of the pipe 

RN

K Dε=  together in a coefficient fC  gives 

 
2

2f
VC ρτ =  (34) 
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Substituting (34) into (31) gives 

 
2

2L f
LVH C

gR
=  (35) 

where 2 e d
f RC CK N −= . 

 
The hydraulic radius R is the cross-sectional area divided by the wetted surface perimeter 

Hydraulic Radius cross-sectional area
wetted surface perimeter

AR
P

= =  (36) 

For a circular pipe flowing full, the cross-sectional area ( )2 4A Dπ= , the wetted surface perimeter is the pipe 

circumference P Dπ=  and the hydraulic radius is 4R D= .  Substituting this expression into (35) gives 

 

2

2

2

4
2

L f

f

L VH C
R g

L VC
D g

=

=

 

Again, gathering terms into another coefficient – the friction factor f – gives the Darcy-Weisbach formula 

 
2

2L
L VH f
D g

⎛ ⎞⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 (37) 

The friction factor f is a function of the Reynolds Number , the relative roughness of the pipe RN K Dε=  and 
the original coefficient C in (33) 

 4 8 e d
f Rf C C K N −= =  (38) 

The friction factor f is given by the empirically derived Colebrook-White equation (28). 
 
 
MINOR LOSSES 
 
In addition to head loss LH  due to fluid friction, other head losses occur at entrances and exits of pipes, bends in 
pipes, changes in pipe size, at valves and other pipe fittings.  These minor losses (or local losses), due to changes 
in either direction or magnitude (or both) of the flow velocity V can be expressed in the general form 

 
2

2minor head loss = 
2e
VK

g
 

where eK  is the kinetic energy correction factor,  is the velocity in the downstream section of diameter ; 
 is the diameter upstream.  Featherstone & Nalluri (1988) have the following table of representative values of 

2V 2D

1D
eK  for changes in pipe diameters 

 
2

1
0 0.2 0.4 0.6 0.8 1.0

0.5 0.45 0.38 0.28 0.14 0e

D
D
K

 

Table 4 
 

Note that the value  relates to the abrupt entry from a reservoir into a circular pipe.  Minor losses of this 
type are called entry losses. 

0.5eK =
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Other values for minor losses cited in Featherstone & Nalluri (1988) are 
 

 Head loss at abrupt enlargement 
22

2 2

1
1

2
V A

g A
⎛ ⎞= −⎜ ⎟⎝ ⎠  

 Head loss 90º elbow 
2

1.0
2
V

g
=  

 Head loss at 90º smooth bend 
2

2
V

g
=  

 Discharge (exit) loss 
2

2
V

g
=  

 Head loss at a valve 
2

2V
VK

g
=  

 where VK  depends upon the type of valve and percentage of closure 
 
 
SOLUTION OF PIPE-FLOW PROBLEMS 
 
In the solution of pipe flow problems using Bernoulli's theorem, three basic cases arise 
 

 Case Given To find 

 I  or , , , ,Q V L D μ ε  LH  
 II , , , ,LH L D μ ε  Q or V 
 III ,  or , , ,LH Q V L μ ε  D 
 
Examples 1, 2 and 3 below describe the solutions to these three basic cases.  In these cases the following 
equations, in various combinations, are used, numbered as in the text 

Reynolds Number R
DVN ρ
μ

=  (13) 

Continuity equation 1 1 2 2 constantQ A V A V= = =  (15) 

Darcy-Weisbach equation 
2

2L
L VH f
D g

⎛ ⎞⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 (27) and (37) 

Colebrook-White equation 10
1 2 log

3.7 RD
2.51

f N f
ε⎡ ⎤= − +⎢ ⎥⎣ ⎦

 (28) 

To solve problems of type I, the Reynolds Number, Darcy-Weisbach and Colebrook-White equations can be 
combined to give an explicit equation for the flow velocity V 

 10
2.512 2 log

3.7
2

L

L

HV g D
L D HD g D L

ε μ

ρ

⎡ ⎤
⎢ ⎥

= − +⎢ ⎥
⎢ ⎥
⎣ ⎦

 (39) 
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The following table for the size of protuberances ε  (in mm's) for pipes is useful.  The values in the table have 
been taken from Diagram A1 in the Appendix of Giles et al (1994) where they were originally given in feet. 
 
 

Values of ε  in mm Kind of Pipe 
or Lining (new) Range Design Value 

Brass 0.0015 0.0015 
Copper 0.0015 0.0015 
Concrete 0.30 – 3.0 1.2 
Cast Iron – uncoated 0.12 – 0.61 0.250 
 – asphalt dipped 0.06 – 0.18 0.125 
 – cement lined 0.0024 0.0024 
 – bituminous lined 0.0024 0.0024 
 – centrifugally spun 0.0030 0.0030 
Galvanised Iron 0.06 – 0.245 0.1520 
Wrought Iron 0.03 – 0.09 0.06 
Commercial & Welded Steel 0.03 – 0.09 0.06 
Riveted Steel 0.9 –9.0 1.80 

 
Table 5 

(Taken from Diagram A1, Giles et al (1994), original values in feet) 
 
 
Example 1 (Case I: given  or , , , ,Q V L D μ ε  to find LH ) 
 
Determine the lost head LH  in 300 metres of new uncoated 300 mm inside diameter cast iron pipe when water 
at 15ºC flows at 1.5 m/s. 
 
Use: water at 15ºC has density 31000 kg mρ =  and viscosity  31.130 10  Pa sμ −= ×
 0.250 mmε =  (Table 5) 
 29.81 m sg =  
 
Solution 
 

1. Compute the Reynolds Number from (13) 

 ( ) ( ) ( )
3

1000 0.3 1.5 398,231
1.130 10R

DVN ρ
μ −= = =

×
 

2. Compute the friction factor f from the Colebrook-White equation (28) 

 10
1 22 log

3.7 RD
.51

f N f
ε⎡ ⎤= − +⎢ ⎥⎣ ⎦

 

 Note that f must be computed by iteration since it appears on the Left-Hand Side (LHS) and Right-
Hand Side (RHS) of (28).  A table of iterations is shown below 

 
Iteration n nf  RHS 1nf +  

1  0.1  7.221113  0.019177 
2  0.019177  7.134898  0.019644 
3  0.019644  7.136643  0.019634 
4  0.019634  7.136608  0.019634 

 
 Adopt f = 0.019634 
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3. Compute the lost head LH  from the Darcy-Weisbach equation (27) 

 
2 2300 1.50.019634 2.25 m

2 0.3 2 9.81L
L VH f
D g

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ×⎝ ⎠ ⎝ ⎠
 

 
 
Example 2 (Case II: given , , , ,LH L D μ ε  to find V ) 
 
Water at 15ºC flows through a 300 mm (inside diameter) steel pipe with a head loss LH  of 6 metres in a pipe of 
length 300 metres.  Calculate the flow. 
 
Use: water at 15ºC has density 31000 kg mρ =  and viscosity  31.130 10  Pa sμ −= ×
 0.06 mmε =  (Table 5) 
 29.81 m sg =  
 
Solutions 
 

Method 1 (iterative) 
 
1. Assume a friction factor f 
2. Calculate V from the Darcy-Weisbach equation (27) 

 
2

2L
L VH f
D g

⎛ ⎞⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 

giving 

 2 LH DV g
f L

⎛ ⎞ ⎛= ⎜ ⎟ ⎜⎝ ⎠ ⎝
⎞
⎟⎠  

3. Compute the Reynolds Number from (13) 

 R
DVN ρ
μ

=  

4. Compute a "new" friction factor by iteration using the Colebrook-White equation (28) 

 10
1 22 log

3.7 RD
.51

f N f
ε⎡ ⎤= − +⎢ ⎥⎣ ⎦

 

5. Repeat steps 2 to 4 until there is no change in V. 
 
Method 2 (direct) 
 
Use equation (39), which is a combination of the Reynolds number, Darcy-Weisbach and Colebrook-
White equations giving an explicit equation in V 

 10
2.512 2 log 2.81 m s

3.7
2

L

L

HV g D
L D HD g D L

ε μ

ρ

⎡ ⎤
⎢ ⎥

= − + =⎢ ⎥
⎢ ⎥
⎣ ⎦
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Example 3 (Case III: given ,  or , , ,LH Q V L μ ε  to find D ) 
 
What size of new uncoated cast iron pipe, 2500 metres long will deliver 1 m3/s of water at 15ºC with a drop in 
the hydraulic grade line of 65 metres? 
 
Use: water at 15ºC has density 31000 kg mρ =  and viscosity  31.130 10  Pa sμ −= ×
 0.250 mmε =  (Table 5) 
 29.81 m sg =  
 
Solution 
 

In this case, with D unknown, there are three unknowns in the Darcy-Weisbach equation (f, V and D), 
three unknowns in the Reynolds number ( ) and the relative roughness of the pipe ,  and RN V D Dε  is 
also unknown.  Using the Continuity equation (15) to eliminate the velocity in the Darcy-Weisbach 
equation (27) and in the Reynolds number will simplify the solution. 
 

Since  (Continuity equation) then Q1 1 2 2  constantQ A V A V= = = AV=  and area 
2

4
DA π

=  then 

rearranging gives 2
4Q QV

A Dπ
= =  and 

2
2

2 4
16QV

Dπ
= .  The expressions for V and  can be substituted 

into the Darcy-Weisbach and Reynolds number equations to give 

2V

 
2

2 5
8

L
LQH f
g Dπ

=  (40) 

and 

 4
R

QN
D

ρ
π μ

=  (41) 

The solution, using equations (40) and (41) and the Colebrook-White equation, is iterative 
 
Note: Normally, only one or two iterations are required since standard pipe sizes are usually selected.  

The next larger pipe-size diameter from that given by the computation is taken. 
 
Iteration A 
 
A1. Assume a friction factor f say 

 f = 0.02 

A2. Calculate D from a rearrangement of (40) using the assumed friction factor 

 ( ) ( )
( ) ( )

5 52 2
8 8 2500 10.02 0.576283 m

9.81 65L

LQD f
g Hπ π

= = =  (42) 

A3. Compute the Reynolds Number from (41) 

 ( ) ( )
( ) ( )3

4 4 1000 1 1,955,222.10594
1.130 10 0.576283R

QN
D

ρ
π μ π −= = =

×
 

A4. Compute the friction factor f from the Colebrook-White equation (28) 

 10
1 22 log

3.7 RD
.51

f N f
ε⎡ ⎤= − +⎢ ⎥⎣ ⎦

 

 Note that f must be computed by iteration since it appears on the Left-Hand Side (LHS) and Right-
Hand Side (RHS) of (28).  A table of iterations is shown below 

 
 

C:\Projects\Geospatial\Eng Surv 1\Fluid Theory\Fluid.doc 22 © 2004, R.E. Deakin 



Geospatial Science  RMIT 
 
 
 

Iteration n nf  RHS 1nf +  
1  0.02  7.797024  0.016449 
2  0.016449  7.790639  0.016476 
3  0.016476  7.790695  0.016476 

 
 Adopt f = 0.016476 
 
 Repeat the above steps until the value of the friction factor does not change.  When this occurs, all 

equations are satisfied. 
 
Iteration B 
 
B1. Adopt the "new" friction factor f from Iteration A 

 f = 0.016476 

B2. Calculate D from (42) using the new friction factor 

 5 2
8 0.554369 m

L

LQD f
g Hπ

= =  

B3. Compute the Reynolds Number from (41) 

 4 2,032,509.48955R
QN
D

ρ
π μ

= =  

B4. Compute the friction factor f by iteration using the Colebrook-White equation (28). 
 

Iteration n nf  RHS 1nf +  
1  0.016476  7.762130  0.016597 
2  0.016597  7.762363  0.016596 

 
 Adopt f = 0.016596 
 
Iteration C 
 
C1. Adopt the "new" friction factor f from Iteration B 

 f = 0.016596 

C2. Calculate D from (42) using the new friction factor 

 5 2
8 0.555178 m

L

LQD f
g Hπ

= =  

C3. Compute the Reynolds Number from (41) 

 4 2,029,549.61912R
QN
D

ρ
π μ

= =  

C4. Compute the friction factor f by iteration using the Colebrook-White equation (28). 
 

Iteration n nf  RHS 1nf +  
1  0.016596  7.763442  0.016592 
2  0.016592  7.763443  0.016592 

 
 Adopt f = 0.016592 
 
The friction factor has changed by 0.003524 between Iterations A and B, and only 0.000004 between 
Iterations B and C.  It may be assumed that further iterations would produce no change.  Thus we may 
adopt the computed pipe diameter from the last iteration D = 0.555 m. 
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In practice, a pipe diameter computed in this manner will generally not accord with "standard" pipe sizes.  
In such cases, the nearest larger diameter is chosen.  This will usually deliver a greater quantity of water, 
which could be regulated by the introduction of a valve to give the desired discharge Q. 

 
Example 4 
 
A uniform pipeline, 5000 m long, 200 mm in diameter and roughness size 0.03 mm, conveys water at 15ºC 
between two reservoirs A and B.  The difference in water level between the reservoirs is maintained at 50 m. 

In addition to the entry loss of 
2

0.5
2
V

g
 a valve on the pipeline produces a head loss of 

2
10

2
V

g
. 

 
Determine the steady discharge Q between the reservoirs using the Colebrook-White equation. 
 
Use: water at 15ºC has density 31000 kg mρ =  and viscosity  31.130 10  Pa sμ −= ×

 29.81 m sg =  
 
 

.

.
..

Datum

HA

BH

Lost Head
(friction)

Lost Head
(valve)

Entry loss
Velocity
Head

Pressure
Head

z

A

B

C
D

Elevation
Head

Gross Head
HA BH-

 
 

Figure 8 
 
Solution (Outline) 
 
The reservoir surface at A is the hydraulic grade line and is also the energy grade line.  At the square-edged 

entrance to the pipe the energy gradient drops by 
2

0.5
2
V

g
 because of the entrance loss ( )0.5eK =  and the 

hydraulic gradient drops 
2

1.5
2
V

g
.  This can be seen by applying Bernoulli's theorem (16) 

 
2 2

1 1 2 2
1 22 2ADDED LOST EXTRACTED

p V p Vz H H H z
g g g gρ ρ

⎛ ⎞ ⎛
+ + + − − = + +⎜ ⎟ ⎜⎝ ⎠ ⎝

⎞
⎟⎠

 (16) 

between the reservoir surface and a point just downstream of the pipe entrance at A. 

 
2 2

0 0 0.5
2 2

A A A
A A

V p VH z
g g gρ

+ + − = + +  (i) 

and 
2

1.5
2

A A
A A

p Vz H
g gρ
+ = −  
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Repeating the procedure between A and C, a point just upstream of the valve, then between C and D, a point just 
downstream of the valve, then between D and B, a point just upstream of the exit, and finally between B and the 
reservoir surface gives 

 
2 2

12 2
A A C C

A L
p V p Vz H z

g g g gρ ρ
+ + − = + + C  (ii) 

 
2 2 2

10
2 2 2

C C C D D
C

p V V p Vz
g g g g gρ ρ
+ + − = + + Dz  (iii) 

 
2 2

22 2
D D B B

D L
p V p Vz H z

g g g gρ ρ
+ + − = + + B  (iv) 

 
2 no exit loss

0 0
2 (assumed)

B B
B

p V z
g gρ
+ + − = + + BH  (v) 

1LH  and 2LH  are head losses due to fluid friction in the length of pipe  between A and the valve C and the 
length of pipe  between the valve D and B.  The total length of pipe is 

1L
2L 1L L L2= + .  Adding equations (i), (ii), 

(iii), (iv) and (v) gives 

 
2 2

1 2Gross Head 0.5 10
2 2

A B
A B L

V V
LH H H

g g
− = = + + + H  

From the Continuity equation  and since the pipe diameter (and hence 
cross sectional area) is constant, we may say that 

1 1 2 2 constantn nQ AV A V A V= = = =

A BV V V= = , and from the Darcy-Weisbach equation 

 
2 2 2 2

1 2Gross Head 10.5 10.5
2 2 2 2
V L V L V V L Vf f f

2

2g D g D g g D g
= + + = +  (vi) 

In equation (vi), Gross Head, L, D and g are known; the pipe friction factor f and the velocity V are unknown.  
The solution of (vi) requires iteration.  Two "methods" are available 

 
Method 1 (iterative) 
 
1. Assume a friction factor f 
2. Calculate V from equation (vi) 
3. Calculate the Reynolds number from (13) 
4. Calculate "new" friction factor f by iteration from the Colebrook-White equation (28) 
5. Repeat steps 2, 3 and 4 until the friction factor f remains unchanged 
 
Method 2 (iterative) 
 
In most practical problems, the lost head due to friction LH  will be very much larger than minor losses 
(entry loss, valve loss, etc).  If the minor losses are ignored, we may assume that the Gross Head is the 
lost head due to friction and we have (see Example 2 above) the case where , , , ,LH L D μ ε  are given 
and V can be determined directly.  This value will be a good starting approximation of V in an iterative 
process. 
 
1. Calculate V from equation (39), with an approximation of the lost head due to friction LH  
2. Calculate the minor losses in (vi) and then a "new" lost head 
4. Repeat steps 1 and 2 until the velocity V remains unchanged 
 
This method is simpler and converges more rapidly than Method 1. 
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Solution (numerical, using Method 2) 
 
Iteration A 
 

A1. Assume the lost head due to friction LH  is equal to the Gross head and use equation (39), which is a 
combination of the Reynolds number, Darcy-Weisbach and Colebrook-White equations to solve for 
V 

 10
2.512 2 log 1.565026 m s

3.7
2

L

L

HV g D
L D HD g D L

ε μ

ρ

⎡ ⎤
⎢ ⎥

= − + =⎢ ⎥
⎢ ⎥
⎣ ⎦

 

A2. Calculate minor losses in (vi) 

 
2

10.5 1.310791
2MINOR
VH

g
= =  

 Calculate lost head due to friction 

  Gross Head 48.689209 mL MINORH H= − =

Iteration B 
 

B1. Use the "new" lost head due to friction LH  in equation (39) to compute a new V 

 1.542932 m sV =  

B2. Calculate minor losses in (vi) 

 
2

10.5 1.274043 m
2MINOR
VH

g
= =  

 Calculate lost head due to friction 

  Gross Head 48.725957 mL MINORH H= − =

Iteration C 
 

C1. Use the "new" lost head due to friction LH  in equation (39) to compute a new V 

 1.543556 m sV =  

C2. Calculate minor losses in (vi) 

 
2

10.5 1.275072 m
2MINOR
VH

g
= =  

 Calculate lost head due to friction 

  Gross Head 48.724928 mL MINORH H= − =

 
Since the change in V between Iterations B and C has only been 0.000624 m/s we may assume the following 
values as correct 

 
1.544 m s
1.28 m
48.72 m

MINOR

L

V
H

H

=
=
=

 

The discharge 
2

30.04851 m s
4

D VQ AV π
= = =  (48.51 litres/second) 
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PIPES IN SERIES 
 
Where a pipe is made up of sections of different diameters, the Continuity equation and Energy equations 
(Bernoulli's theorem) establish the following two simple relationships which must be satisfied: 

Discharge 1 2 nQ Q Q Q= = = =  

Head Loss due to friction 1 2L L L LnH H H H= + + +  

 
Example 5 
 
Reservoir A delivers water to reservoir B through two uniform pipelines AJ:JB of diameters 300 mm and 
200 mm respectively.  Length of pipe AJ is 3000 m and pipe JB is 4000 m; the effective roughness size of both 
pipes is 0.015 mmε =  and the gross head H is 25 m. 

Assuming an entry loss of 
2

0.5
2
V

g
 and a head loss due to the contraction of the pipe sizes of 

2

2e
VK

g
  (use 

 from Table 4) determine the discharge Q at B. 0.28eK =
 
 

.

Datum

HA

BH

Entry loss
Velocity
Head

Pressure
Head

z

A

B
Elevation
Head

Gross Head
HA BH-

HL1

HL2

V 2

2g
2

J

V 2

2g
Ke 1

 
 
 

Figure 9 
 
Solution 
 
Applying Bernoulli's theorem between A and B gives  

 
2 2 2 2

1 1 1 1 2 2
1 2

1 2
Gross Head 0.5 0.28

2 2 2 2
V L V V L V VH f f

2
2

2g D g g D g g
= = + + + +  (i) 

Since the friction factors, 1f  and 2f  are initially unknown the simplest method of solution is to input a series of 
trial values of the discharge .  If  is assumed, the velocity  is given by 1Q 1Q 1V

 1
1

1

QV
A

=  (ii) 

From the continuity equation  and since 1 2Q Q Q= = Q AV=  the velocity  is linked to  by  2V 1V

 
2

1 1
2 1

2 2

A DV V
A D

⎛ ⎞= = ⎜ ⎟⎝ ⎠ 1V  (iii) 
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The Reynolds numbers  can be computed for the pipe velocities  and  from (13) and (41) RN 1V 2V

 4
R

DV QN
D

ρ ρ
μ π μ

= =  (iv) 

The friction factors f can be computed by iteration from the Colebrook-White equation (28) 

 10
1 22 log

3.7 RD
.51

f N f
ε⎡ ⎤= − +⎢ ⎥⎣ ⎦

 (v) 

The minor losses mH  and head losses 1LH  and 2LH  can be computed for the trial value of . 1Q
 
Table 6 is part of an Excel spreadsheet, and shows trial values of  (discharge in litres/second) for 20 l/s to 
50 l/s in intervals of 5 l/s.  These values are in the left-hand column.  Friction factors have been computed by 
iteration from the Colebrook-White equation and head losses computed.  The total head loss 

1Q

LH  is shown in the 
right-hand column. 
 
Figure 10 is an Excel plot of Discharge v Total Head Loss, ie the left-hand column of Table 6 versus the right-
hand column.  A "trendline" has been fitted to the seven data points (an Excel graph option).  Using this 
equation, discharge Q = 36.79 l/s for a head loss of 25 m is obtained.  This is the last value in Table 6. 
 
 

pipe flows pipe velocities pipe friction factors Head Losses Total 
Q1 (l/s) Q2 (l/s) V1 (m/s) V2 (m/s) f1 f2 Hm HL1 HL2 HL

20 20 0.2829 0.6366 0.019338 0.017974 0.024 0.789 7.426 8.239 
25 25 0.3537 0.7958 0.018485 0.017249 0.037 1.179 11.135 12.350 
30 30 0.4244 0.9549 0.017835 0.016700 0.054 1.637 15.524 17.215 
35 35 0.4951 1.1141 0.017316 0.016265 0.073 2.164 20.579 22.816 
40 40 0.5659 1.2732 0.016888 0.015908 0.095 2.756 26.289 29.140 
45 45 0.6366 1.4324 0.016527 0.015609 0.121 3.414 32.646 36.181 
50 50 0.7074 1.5915 0.016216 0.015352 0.149 4.135 39.640 43.925 

          
36.79 36.79 0.5205 1.1711 0.017154 0.016129 0.081 2.368 22.547 24.997 

 
Table 6 

 

Discharge versus Total Head Loss

trendline equation 
y = 0.0345x1.8267
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Figure 10 
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PIPES IN PARALLEL 
 
For flow through two or more parallel pipes of equal or unequal diameter, again the Continuity equation and 
Energy equations (Bernoulli's theorem) establish the following two simple relationships which must be satisfied: 

Discharge 1 2 nQ Q Q Q= = = =  

Head Loss due to friction 1 2L L L LnH H H H= + + +  

 
Solutions of flow problems for pipes in parallel, are iterative in nature.  Examples are not given in these notes, 
but several texts mentioned in the references (eg, Featherstone & Nalluri, 1988) have worked examples 
demonstrating the various problems and techniques of solution. 
 
 
PIPE NETWORK ANALYSIS 
 
Pipe network analysis provides the basis for the design of new systems and extension of existing systems.  
Design criteria are that specified minimum flow rates must be attained at the outflow points of the network.  The 
flows and pressure distributions across a network are affected by 
 (a) the arrangement and sizes of the pipes and 
 (b) the distribution of the outflows. 
 
Since a change in diameter in one pipe length will affect the flow and pressure distribution everywhere, pipe 
network analysis is not an explicit process.  Optimal design methods, which incorporate hydraulic analysis of the 
system in which pipe diameters are systematically altered, require computer software to properly analyse pipe 
networks. 
 
Pipe network analysis involves the determination of pipe flow rates and pressure heads, which satisfy the 
Continuity and Energy Conservation conditions. 
 
 (1) Continuity Conservation: The algebraic sum of the flow rates (say litres/second) in the pipes 

meeting at a junction (or node), together with any external flows, is zero 
 

 

60

120 50

10

flow "out"

flo
w

 "o
ut

"flow "in"

external flow

 
 
 (2) Energy Conservation: The algebraic sum of the head losses LH  in the pipes around any closed 

loop formed by pipes is zero. 
 
When the equation relating energy losses to pipe flow rates are introduced into the Continuity and Energy 
Conservation conditions (1) or (2), systems of non-linear equations are produced.  There are no direct solutions 
of such sets of equations and iterative techniques are employed. 
 
The earliest systematic method of pipe network analysis, due to Professor Hardy Cross (see citation below) and 
known by his name (the Hardy Cross Method), is applicable to systems in which the pipes form closed loops.  
Assumed pipe flow rates, complying with the continuity requirement are successively adjusted, loop by loop, 
until in every loop, the Energy Conservation condition is satisfied within some small, specified tolerance.  The 
Hardy Cross Method is also known as the Head Balance Method or the Loop Method. 
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Cross, Hardy (b. Feb. 10, 1885, Nansemond County, Va., U.S.--d. Feb. 11, 1959, Virginia Beach, 
Va.), U.S. professor of civil and structural engineering whose outstanding contribution was a 
method of calculating tendencies to produce motion (moments) in the members of a continuous 
framework, such as the skeleton of a building.  Cross was appointed professor of structural 
engineering at the University of Illinois, Urbana, in 1930; seven years later he became full 
professor at Yale, retiring in 1951.  Among other honours, he received the Institution of Structural 
Engineers' (British) gold medal.  By the use of Cross's technique, known as the moment 
distribution method, or simply the Hardy Cross method, calculation can be carried to any required 
degree of accuracy by successive approximations, thus avoiding the immense labour of solving 
simultaneous equations that contain as many variables as there are rigid joints in a frame.  He also 
successfully applied his mathematical methods to the solution of pipe network problems that arise 
in municipal water supply design; these methods have been extended to other pipe systems, such 
as gas pipelines. 
 
Copyright 1994-1999 Encyclopædia Britannica 

 
In the Hardy Cross Method, outflows from the system are generally assumed to occur at nodes (or junctions); 
this assumption results in uniform flow in the pipelines which simplifies the analysis. 
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