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ABSTRACT 

These notes provide a detailed derivation of the equations for computing the direct and 

inverse problems on the ellipsoid.  These equations could be called Bessel's method and 

have a history dating back to F. W. Bessel's original paper on the topic titled: 'On the 

computation of geographical longitude and latitude from geodetic measurements', 

published in Astronomische Nachrichten (Astronomical Notes), Band 4 (Volume 4), 

Number 86, Speiten 241-254 (Columns 241-254), Altona 1826.  The equations developed 

here are of a slightly different form than those presented by Bessel, but they lead directly 

to equations presented by Rainsford (1955) and Vincenty (1975) and the method of 

development closely follows that shown in Geometric Geodesy (Rapp, 1981).  An 

understanding of the methods introduced in the following pages, in particular the 

evaluation of elliptic integrals by series expansion, will give the student an insight into 

other geodetic calculations. 

INTRODUCTION 

The direct and inverse problems on the ellipsoid are fundamental geodetic operations and 

can be likened to the equivalent operations of plane surveying; radiations (computing 

coordinates of points given bearings and distances radiating from a point of known 

coordinates) and joins (computing bearings and distances between points having known 

coordinates).  In plane surveying, the coordinates are 2-Dimensional (2D) rectangular 

coordinates, usually designated East and North and the reference surface is a plane, either 

a local horizontal plane or a map projection plane. 
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In geodesy, the reference surface is an ellipsoid, the coordinates are latitudes and 

longitudes, directions are known as azimuths and distances are geodesic arc lengths. 
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Fig. 1: Geodesic curve on an ellipsoid  

The geodesic is a unique curve on the surface of an ellipsoid defining the shortest distance 

between two points.  A geodesic will cut meridians of an ellipsoid at angles α , known as 

azimuths and measured clockwise from north 0º to 360� .  Figure 1 shows a geodesic curve 

C between two points A ( ),A Aφ λ  and B ( ),B Bφ λ  on an ellipsoid.  ,φ λ  are latitude and 

longitude respectively and an ellipsoid is taken to mean a surface of revolution created by 

rotating an ellipse about its minor axis, NS.  The geodesic curve C of length s from A to B 

has a forward azimuth ABα  measured at A and a reverse azimuth BAα  measured at B.   

The direct problem on an ellipsoid is: given latitude and longitude of A and azimuth ABα  

and geodesic distance s, compute the latitude and longitude of B and the reverse azimuth 

BAα . 

The inverse problem is: given the latitudes and longitudes of A and B, compute the 

forward and reverse azimuths ABα , BAα  and the geodesic distance s. 

Formula for computing geodesic distances and longitude differences between points 

connected by geodesic curves are derived from solutions of elliptic integrals and in Bessel's 

method, these elliptic integrals are solutions of equations connecting differential elements 

on the ellipsoid with corresponding elements on an auxiliary sphere.  These integrals do 

not have direct solutions but instead are solved by expanding them into trigonometric 

series and integrating term-by-term.  Hence the equations developed here are series-type 
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formula truncated at a certain number of terms that give millimetre precision for any 

length of line not exceeding 180º in longitude difference. 

These formulae were first developed by Bessel (1826) who gave examples of their use using 

10-place logarithms.  A similar development is given in Handbuch der Vermessungskunde 

(Handbook of Geodesy) by Jordan/Eggert/Kneissl, 1958. 

The British geodesist Hume Rainsford (1955) presented equations and computational 

methods for the direct and inverse problems that were applicable to machine computation 

of the mid 20th century.  His formulae and iterative method for the inverse case were 

similar to Bessel's, although his equations contained different ellipsoid constants and 

geodesic curve parameters, but his equations for the direct case, different from Bessel's, 

were based on a direct technique given by G.T. McCaw (1932-33) which avoided iteration.  

For many years Rainsford's (and McCaw's) equations were the standard method of solving 

the direct and inverse problems on the ellipsoid when millimetre precision was required, 

even though they involved iteration and lengthy long-hand machine computation.  In 1975, 

Thaddeus (Tom) Vincenty (1975-76), then working for the Geodetic Survey Squadron of 

the US Air Force, presented a set of compact nested equations that could be conveniently 

programmed on the then new electronic computers.  His method and equations were based 

on Rainsford's inverse method combined with techniques developed by Professor Richard 

H. Rapp of the Ohio State University.  Vincenty's equations for the direct and inverse 

problems on the ellipsoid have become a standard method of solution. 

Vincenty's method (following on from Rainsford and Bessel) is not the only method of 

solving the direct and inverse problems on the ellipsoid.  There are other techniques; some 

involving elegant solutions to integrals using recurrence relationships, e.g., Pittman (1986) 

and others using numerical integration techniques, e.g., Kivioja (1971) and Jank & Kivioja 

(1980). 

In this paper, we present a development following Rapp (1981) and based on Bessel's 

method which yields Rainsford's equations for the inverse problem.  We then show how 

Vincenty's equations are obtained and how they are used in practice.  In addition, certain 

ellipsoid relationships are given, the mathematical definition of a geodesic is discussed and 

the characteristic equation of a geodesic derived.  The characteristic equation of a geodesic 

is fundamental to all solutions of the direct and inverse problems on the ellipsoid. 
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SOME ELLIPSOID RELATIONSHIPS 

The size and shape of an ellipsoid is defined by one of three pairs of parameters: (i) ,a b  

where a and b are the semi-major and semi-minor axes lengths of an ellipsoid respectively, 

or (ii) ,a f  where f is the flattening of an ellipsoid, or (iii) 2,a e  where 2e  is the square of 

the first eccentricity of an ellipsoid.  The ellipsoid parameters 2, , ,a b f e  are related by the 

following equations 

 1
a b b

f
a a

−
= = −  (1) 

 ( )1b a f= −   (2) 

 ( )
2 2 2

2

2 2
1 2

a b b
e f f

a a

−
= = − = −  (3) 

 ( ) ( )
2

22

2
1 1 2 1

b
e f f f

a
− = = − − = −  (4) 

The second eccentricity e′  of an ellipsoid is also of use and 

 
( )

( )

2 2 2 2
2

22 2 2

2
1

1 1

f fa b a e
e

b b e f

−−′ = = − = =
− −

 (5) 

 
2

2

21

e
e

e

′
=

′+
 (6) 

In Figure 1 the normals to the surface at A and B intersect the rotational axis of the 

ellipsoid (NS line) at AH  and BH  making angles ,A Bφ φ  with the equatorial plane of the 

ellipsoid.  These are the latitudes of A and B respectively.  The longitudes ,A Bλ λ  are the 

angles between the Greenwich meridian plane (a reference plane) and the meridian planes 

AONAH  and BONBH  containing the normals through A and B.  φ  and λ  are curvilinear 

coordinates and meridians of longitude (curves of constant λ ) and parallels of latitude 

(curves of constant φ ) are parametric curves on the ellipsoidal surface. 

For a general point P on the surface of the ellipsoid (see Fig. 2), planes containing the 

normal to the ellipsoid intersect the surface creating elliptical sections known as normal 

sections.  Amongst the infinite number of possible normal sections at a point, each having 

a certain radius of curvature, two are of interest: (i) the meridian section, containing the 

axis of revolution of the ellipsoid and having the least radius of curvature, denoted by ρ , 

and (ii) the prime vertical section, perpendicular to the meridian plane and having the 

greatest radius of curvature, denoted by ν . 
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( )

( )
( )

3
2

2 2

32 2

1 1

1 sin

a e a e

We
ρ

φ

− −
= =

−
 (7) 

 
( )

1
22 21 sin

a a

We
ν

φ
= =

−
 (8) 

 2 2 21 sinW e φ= −  (9) 

The centres of the radii of curvature of the prime vertical sections at A and B are at AH  

and BH , where AH  and BH  are the intersections of the normals at A and B and the 

rotational axis, and A APHν = , B BPHν = .  The centres of the radii of curvature of the 

meridian sections at A and B lie on the normals between P and AH  and P and BH . 

Alternative equations for the radii of curvature ρ  and ν  are given by 

 
( )

3
2

2

32 21 cos

a c

Vb e
ρ

φ
= =

′+
 (10) 

 
( )

1
2

2

2 21 cos

a c

Vb e
ν

φ
= =

′+
 (11) 

 
2

1

a a
c

b f
= =

−
 (12) 

 2 2 21 cosV e φ′= +  (13) 

and c is the polar radius of curvature of the ellipsoid. 

The latitude functions W and V are related as follows 

 
( )

1
2

2
2

2 2
   and   

1 1

V V b
W W V

e ae
= = =

′+ ′+
 (14) 

Points on the ellipsoidal surface have curvilinear coordinates ,φ λ  and Cartesian 

coordinates x,y,z where the x-z plane is the Greenwich meridian plane, the x-y plane is the 

equatorial plane and the y-z plane is a meridian plane 90º east of the Greenwich meridian 

plane.  Cartesian and curvilinear coordinates are related by 

 

( )2

cos cos

cos cos

1 sin

x

y

z e

ν φ λ

ν φ λ

ν φ

=

=

= −

 (15) 

Note that ( )21 eν −  is the distance along the normal from a point on the surface to the 

point where the normal cuts the equatorial plane. 
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THE DIFFERENTIAL RECTANGLE ON THE ELLIPSOID 

The derivation of equations relating to the geodesic requires an understanding of the 

connection between differentially small quantities on the surface of the ellipsoid.  These 

relationships can be derived from the differential rectangle, with diagonal PQ in Figure 2 

which shows P and Q on an ellipsoid, having semi-major axis a, flattening f, separated by 

differential changes in latitude dφ  and longitude dλ .  P and Q are connected by a curve 

of length ds making an angle α  (the azimuth) with the meridian through P.  The 

meridians λ  and dλ λ+ , and the parallels φ  and dφ φ+  form a differential rectangle on 

the surface of the ellipsoid.  The differential distances dp  along the parallel φ  and dm  

along the meridian λ  are 

 cosdp wd dλ ν φ λ= =  (16) 

 dm dρ φ=   (17) 

where ρ  and ν  are radii of curvature in the meridian and prime vertical planes 

respectively and cosw ν φ=  is the perpendicular distance from the rotational axis. 

The differential distance ds is given by 

 ( ) ( )
2 2

2 2 cosds dp dm d dν φ λ ρ φ= + = +  (18) 
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Figure 2: Differential rectangle on the ellipsoid
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and so 

 

2 2
2 2 2 2 2 2cos      or     cos

ds d ds d

d d d d

λ φ
ν φ ρ ν φ ρ

φ φ λ λ

    = + = +     
 

while 

 sin cos     and    cos
d d

ds ds

λ φ
α ν φ α ρ= =  (19) 

MATHEMATICAL DEFINITION OF A GEODESIC 

A geodesic can be defined mathematically by considering 

concepts associated with space curves and surfaces.  A 

space curve may be defined as the locus of the terminal 

points P of a position vector ( )tr  defined by a single 

scalar parameter t, 

 ( ) ( ) ( ) ( )t x t y t z t= + +r i j k  (20) 

, ,i j k  are fixed unit Cartesian vectors in the directions of 

the x,y,z coordinate axes.  As the parameter t varies the 

terminal point P of the vector sweeps out the space 

curve C. 

Let s be the arc-length of C measured from some convenient point on C, so that 

2 2 2
ds dx dy dz

dt dt dt dt

         = + +             
 or 

d d
s dt

dt dt
= •∫

r r
.  Hence s is a function of t and x,y,z are 

functions of s.  Let Q, a small distance sδ along the curve from P, have a position vector 

δ+r r .  Then PQδ =r
����

 and sδ δr ≃ .  Both when sδ is positive or negative 
s

δ

δ

r
 

approximates to a unit vector in the direction of s increasing and 
d

ds

r
 is a tangent vector of 

unit length denoted by t̂ ; hence 

 ˆ d dx dy dz

ds ds ds ds
= = + +

r
t i j k  (21) 

Since t̂  is a unit vector then ˆ ˆ 1• =t t  and differentiating with respect to s leads to 

ˆ
ˆ 0

d

ds
• =

t
t  from which we deduce that 

ˆd

ds

t
 is orthogonal to t̂  and write 

 
ˆ

ˆ
d

ds
κ=

t
n , 0κ >  (22) 
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Figure 3: Space curve C



 

Geodesics – Bessel's method 8 

ˆd

ds

t
 is called the curvature vector k, n̂  is a unit vector called the principal normal vector, 

κ  the curvature and 
1
ρ

κ
=  is the radius of curvature.  The circle through P, tangent to t̂  

with this radius ρ  is called the osculating circle.  Also 
ˆ

ˆ
d

ds
κ• =

t
n ; i.e., n̂  is the unit 

vector in the direction of k.  Let b̂  be a third unit vector defined by the vector cross 

product 

 ˆ ˆ ˆ= ×b t n  (23) 

thus ˆˆ ˆ,  and t b n  form a right-handed triad.  Differentiating equation (23) with respect to s 

gives 

 ( )
ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆˆ ˆ ˆ ˆ

d d d d d d

ds ds ds ds ds ds
κ= × = × + × = × + × = ×

b t n n n
t n n t n n t t  

then 

 ( )
ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ 0

d d d

ds ds ds

 • = • × = • × =  
b n n

t t t t t  

so that 
ˆd

ds

b
 is orthogonal to t̂ .  But from ˆ ˆ 1• =b b  it follows that 

ˆ
ˆ 0

d

ds
• =

b
b  so that 

ˆd

ds

b
 is 

orthogonal to b̂  and so is in the plane containing t̂  and n̂ .  Since 
ˆd

ds

b
 is in the plane of t̂  

and n̂  and is orthogonal to t̂ , it must be parallel to n̂ .  The direction of 
ˆd

ds

b
 is opposite n̂  

as it must be to ensure the cross product 
ˆ

ˆd

ds
×

b
t  is in the direction of b̂ .  Hence 

 
ˆ

ˆ
d

ds
τ= −

b
n , 0τ >  (24) 

We call b̂  the unit binormal vector, τ  the torsion, and 
1

τ
 the radius of torsion.  t̂ , n̂  and 

b̂  form a right-handed set of orthogonal unit vectors along a space curve. 

The plane containing t̂  and n̂  is the osculating plane, the plane containing n̂  and b̂  is 

the normal plane and the plane containing t̂  and b̂  is the rectifying plane.  Figure 4 shows 

these orthogonal unit vectors for a space curve. 
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Figure 4:  The tangent t̂ , principal normal n̂  and binormal b̂  to a space curve 

 

Also ˆ ˆˆ = ×n b t  and the derivative with respect to s is 

 ( )
ˆ ˆˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆˆ ˆ

d d d d

ds ds ds ds
τ κ τ κ= × = × + × = − × + × = −

n b t
b t t b n t b n b t  (25) 

Equations (22), (24) and (25) are known as the Frenet-Serret formulae. 

 

ˆ
ˆ

ˆ
ˆ

ˆ ˆ ˆ

d

ds

d

ds
d

ds

κ

τ

τ κ

=

= −

= −

t
n

b
n

n
b t

 (26) 

These formulae, derived independently by the French mathematicians Jean-Frédéric 

Frenet (1816–1900) and Joseph Alfred Serret (1819–1885) describe the dynamics of a point 

moving along a continuous and differentiable curve in three-dimensional space.  Frenet 

derived these formulae in his doctoral thesis at the University of Toulouse; the latter part 

of which was published as 'Sur quelques propriétés des courbes à double courbure', (Some 

properties of curves with double curvature) in the Journal de mathématiques pures et 

appliqués (Journal of pure and applied mathematics), Vol. 17, pp.437-447, 1852.  Frenet 

also explained their use in a paper titled 'Théorèmes sur les courbes gauches' (Theorems on 

awkward curves) published in 1853.  Serret presented an independent derivation of the 

same formulae in 'Sur quelques formules relatives à la théorie des courbes à double 

courbure' (Some formulas relating to the theory of curves with double curvature) published 

in the J. de Math. Vol. 16, pp.241-254, 1851 (DSB 1971). 
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A geodesic may be defined in the following manner: 

 

A curve drawn on a surface so that its osculating plane at any point contains the 

normal to the surface at the point is a geodesic.  It follows that the principal normal 

at any point on the curve is the normal to the surface and the geodesic is the shortest 

distance between two points on a surface. 
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Figure 5:  The osculating plane of a geodesic 

To understand that the geodesic is the shortest path on a surface requires the use of 

Meusnier's theorem, a fundamental theorem on the nature of surfaces.  Jean-Baptiste-

Marie-Charles Meusnier de la Place (1754 - 1793) was a French mathematician who, in a 

paper titled Mémoire sur la corbure des surfaces (Memoir on the curvature of surfaces), 

read at the Paris Academy of Sciences in 1776 and published in 1785, derived his theorem 

on the curvature, at a point of a surface, of plane sections with a common tangent (DSB 

1971).  His theorem can be stated as: 

Between the radius ρ  of the osculating circle of a plane slice C and the radius 

Nρ  of the osculating circle of a normal slice NC , where both slices have the 

same tangent at P, there exists the relation 

 cosNρ ρ ξ=  

where ξ  is the angle between the unit principal normals n̂  and N̂  to curves C 

and NC  at P. 
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In Figure 5, an infinitesimal arc PQ of a geodesic coincides with the section of the surface 

S by a plane containing t̂  and N̂  where N̂  is a unit vector normal to the surface at P. 

This plane is a normal section plane through P and by Meusnier's theorem, the geodesic 

arc PQ is the arc of least curvature through P and Q; or the shortest distance on the 

surface between two adjacent points P and Q is along the geodesic through the points.  In 

Figure 5, curve C (the arc APB) will have a smaller radius of curvature at P than curve 

NC  the normal section arc Q'PQ. 

THE CHARACTERISTIC EQUATION OF A GEODESIC USING DIRECTION 
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The characteristic equation of a geodesic can be derived from relationships between the 

direction cosines of the principal normal to a curve and the normal to the surface.  In 

Figure 6, 1 2 3r r r= + +r i j k  is a vector between two points in space having a magnitude 

2 2 2
1 2 3r r r r= + + .  1 2 3ˆ

r r r

r r r r
= = + +

r
r i j k  is a unit vector and the scalar components 

1 cos
r

r
α= , 2 cos

r

r
β=  and 3 cos

r

r
γ= .  cosl α= , cosm β=  and cosn γ=  are known as 

direction cosines and the unit vector can be expressed as ˆ l m n= + +r i j k . 

From equations (20) and (22) we may write the unit principal normal vector n̂  of a curve 

C as 

 
2

2

1
ˆ

d x y z
x y z

ds
ρ ρ ρ

κ κ κ κ

′′ ′′ ′′
′′ ′′ ′′= = + + = + +

r
n i j k i j k  (27) 
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where 
1

ρ
κ

= .  
dx

x
ds

′ =  and 
2

2

d x
x

ds
′′ =  are first and second derivatives with respect to arc 

length respectively and similarly for , , ,y z y z′ ′ ′′ ′′ . 

The unit normal N̂  to the ellipsoid surface is 1 2 3ˆ N N N

ν ν ν
= + +N i j k  where 1 2 3, ,N N N  are 

the Cartesian components of the normal vector PH
����

 and ν  is the magnitude.  1 cos
N

α
ν

= , 

2 cos
N

β
ν

=  and 3 cos
N

γ
ν

=  are the direction cosines l, m and n.  Note that the direction 

of the unit normal to the ellipsoid is towards the centre of curvature of normal sections 

passing through P. 
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Figure 7:  The unit normal N̂  to the ellipsoid 

The unit normal N̂  to the ellipsoid surface is given by 

 
sinˆ x y ν φ

ν ν ν

 − − −       = + +           
N i j k  (28) 

To ensure that the curve C is a geodesic, i.e., the unit principal normal n̂  to the curve 

must be coincident with the unit normal N̂  to the surface, the coefficients in equations 

(27) and (28) must be equal, thus 

 
sin

; ;    
x y

x y z
ν φ

ρ ρ ρ
ν ν ν

− − −′′ ′′ ′′= = =  

This leads to 

 
sin

x y z

yx

ρ ρ ρ

ν φν ν ν

′′ ′′ ′′
= =  (29) 
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From the first two equations of (29) we have x y
x y

ν ν
ρ ρ′′ ′′=  giving the second-order 

differential equation (provided 0ρν ≠ ) 

 0xy yx′′ ′′− =  

which can be written as ( ) 0
d

xy yx
ds

′ ′− =  and so a first integral is 

 xy yx C′ ′− =  (30) 

where C is an arbitrary constant.  Now, from equations (15), x and y are functions of φ  

and λ , and the chain rule gives 

 

x d x d
x

ds ds

y d y d
y

ds ds

φ λ

φ λ

φ λ

φ λ

∂ ∂′ = +
∂ ∂
∂ ∂′ = +
∂ ∂

 (31) 

Differentiating the first two equations of (15) with respect to φ , bearing in mind that ν  is 

a function of φ  gives 

 

( )
3
2

2

2 2

sin cos cos cos

sin cos
sin cos cos cos

1 sin

x d

d

ae

e

ν
ν φ λ φ λ

φ φ

φ φ
ν φ λ φ λ

φ

∂
= − +

∂

= − +
−

 

Using equation (8) and simplifying yields 

 sin cos
x

ρ φ λ
φ

∂
= −

∂
 

Similarly 

 sin sin cos sin sin sin
y d

d

ν
ν φ λ φ λ ρ φ λ

φ φ

∂
= − + = −

∂
 

Placing these results, together with the derivatives  and 
x y

λ λ

∂ ∂
∂ ∂

 into equations (31) gives 

 

sin cos cos sin

sin sin cos cos

d d
x

ds ds
d d

y
ds ds

φ λ
ρ φ λ ν φ λ

φ λ
ρ φ λ ν φ λ

′ = − −

′ = − +
 

These values of  and x y′ ′  together with x and y from equations (15) substituted into 

equation (30) gives 

 2 2cos
d

C
ds

λ
ν φ =  (32) 
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which can be re-arranged to give an expression for the differential distance ds 

 
2 2cos

ds d
C

ν φ
λ=  

ds is also given by equation (18) and equating the two and simplifying gives the 

differential equation of the geodesic (Thomas 1952) 

 ( )2 2 2 2 2 2 2 2 2cos cos 0C d C dρ φ ν φ ν φ λ+ − =  (33) 

From equation (19), sin cos
d

ds

λ
α ν φ=  and substituting into equation (32) gives the 

characteristic equation of the geodesic on the ellipsoid 

 

 cos sin Cν φ α =  (34) 

 

Equation (34) is also known as Clairaut's equation in honour of the French mathematical 

physicist Alexis-Claude Clairaut (1713-1765).  In a paper in 1733 titled Détermination 

géométrique de la perpendiculaire à la méridienne, tracée par M. Cassini, avec plusieurs 

methods d’en tirer la grandeur et la figure de la terre (Geometric determination of the 

perpendicular to the meridian, traced by Mr. Cassini, … on the figure of the Earth.) 

Clairaut made an elegant study of the geodesics of quadrics of rotation.  It included the 

property already pointed out by Johann Bernoulli: the osculating plane of the geodesic is 

normal to the surface (DSB 1971). 

The characteristic equation of a geodesic shows that the geodesic on the ellipsoid has the 

intrinsic property that at any point, the product of the radius w of the parallel of latitude 

and the sine of the azimuth of the geodesic at that point is a constant.  This means that as 

cosw ν φ=  decreases in higher latitudes, in both the northern and southern hemispheres, 

sinα  increases until it reaches a maximum or minimum of 1± , noting that the azimuth of 

a geodesic at a point will vary between 0° and 180° if the point is moving along a geodesic 

in an easterly direction or between 180° and 360° if the point is moving along a geodesic in 

a westerly direction.  At the point when sin 1α = ± , which is known as the vertex, w is a 

minimum and the latitude φ  will be a maximum value 0φ , known as the geodetic latitude 

of the vertex.  Thus the geodesic oscillates over the surface of the ellipsoid between two 

parallels of latitude having a maximum in the northern and southern hemispheres and 

crossing the equator at nodes; but as we will demonstrate later, due to the eccentricity of 

the ellipsoid the geodesic will not repeat after a complete cycle. 
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Figure 8:  A single cycle of a geodesic on the Earth 

Figures 8a, 8b and 8c show a single cycle of a geodesic on the Earth.  This particular 

geodesic reaches maximum latitudes of approximately ±45º and has an azimuth of 

approximately 45º as it crosses the equator at longitude 0º. 

Figure 9 shows a schematic representation of the oscillation of a geodesic on an ellipsoid.  

P is a point on a geodesic that crosses the equator at A, heading in a north-easterly 

direction reaching a maximum northerly latitude maxφ  at the vertex 0P  (north), then 

descends in a south-easterly direction crossing the equator at B, reaching a maximum 

southerly latitude minφ  at 0P  (south), then ascends in a north-easterly direction crossing 

the equator again at A'.  This is one complete cycle of the geodesic, but 
A
λ ′  does not equal 

Aλ  due to the eccentricity of the ellipsoid, hence we say that the geodesic curve does not 

repeat after a complete cycle. 

 

equator •••

•

•

•

node node node

vertex

vertex

P

P0φmax

φmin

φ

λ

A B A'

A

 
 

Figure 9:  Schematic representation of the oscillation of a geodesic on an ellipsoid 
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RELATIONSHIPS BETWEEN PARAMETRIC LATITUDE ψ  AND GEODETIC 

LATITUDE φ  

The development of formulae is simplified if parametric latitude ψ  is used rather than 

geodetic latitude φ .  The connection between the two latitudes can be obtained from the 

following relationships. 

Figure 10 shows a portion of a meridian NPE of an 

ellipsoid having semi-major axis OE a=  and semi-

minor axis ON b= .  P is a point on the ellipsoid 

and P ′  is a point on an auxiliary circle centred on O 

of radius a.  P and P ′  have the same perpendicular 

distance w from the axis of revolution ON.  The 

normal to the ellipsoid at P cuts the major axis at 

an angle φ  (the geodetic latitude) and intersects the 

rotational axis at H.  The distance PH ν= . The 

angle P OE ψ′ =  is the parametric latitude 

The Cartesian equation of the ellipse and the 

auxiliary circle of Figure 10 are 
2 2

2 2
1

w z

a b
+ =  and 2 2 2w z a+ =  respectively.  Now, since 

the w-coordinate of P and P ′  are the same then 
2

2 2 2 2 2 2

2 P P P P

a
a z w w a z

b
′ ′− = = = −  which 

leads to P P

b
z z

a
′= .  Using this relationship 

 
cos

sin

w OM a

z MP b

ψ

ψ

= =

= =
 (35) 

Note that writing equations (35) as cos
w

a
ψ=  and sin

z

b
ψ=  then squaring and adding 

gives 
2 2

2 2

2 2
cos sin 1

w z

a b
ψ ψ+ = + =  which is the Cartesian equation of an ellipse. 

 

From Figure 10 

 cos cosw aν φ ψ= =  (36) 

and from the third of equations (15) ( )21 sinz eν φ= − , hence using equations (35) we 

may write 

•

•

•

φ

P

O

H

no
rm

al

N

M Eψ

a

w

tangent

auxiliary circle

a

b

ν

z

w

P'
N'

Figure 10: Meridian section of ellipsoid
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( )2

cos cos

sin 1 sin

w a

z b e

ψ ν φ

ψ ν φ

= =

= = −
 (37) 

from which the following ratios are obtained 

 ( )2tan 1 tan
z b

e
w a

ψ φ= = −  

Since 
2 2 2

2

2 2
1

a b b
e

a a

−
= = −  then 

2
2

2
1

b
e

a
− =  and we may define parametric latitude ψ  by 

 ( ) ( )
1
22tan tan 1 tan 1 tan

b
e f

a
ψ φ φ φ= = − = −  (38) 

Alternatively, using equations (36) and (8) we may define the parametric latitude ψ  by 

 
( )

1
22 2

cos
cos

1 sine

φ
ψ

φ
=

−
 (39) 

or equivalently by 

 
( )

1
22 2

sin
sin

1 cose

ψ
φ

ψ
=

−
 (40) 

These three relationships are useful in the derivation of formulae for geodesic distance and 

longitude difference that follow. 

THE LATITUDES 0φ  AND 0ψ  OF THE GEODESIC VERTEX 

Now Clairaut's equation (34) is cos sin constant Cν φ α = = , where 
( )

1
22 21 sin

a

e
ν

φ
=

−
.  

The term cosν φ  will be a minimum (and the latitude φ  will be a maximum in the 

northern and southern hemispheres) when sinα  is a maximum of 1, and this occurs when 

90  or 270α = � � .  This point is known as the geodesic vertex. 

Let 0 0cosν φ  be this smallest value, then 

 0 0cos cos sinCν φ ν φ α= =  (41) 

0φ  is called the maximum geodetic latitude and the value of ψ  corresponding to 0φ  is 

called the maximum parametric latitude and is denoted by 0ψ .  Using this correspondence 

and equations (36) and (41) gives 

 0cos cos sin cos sina aψ ν φ α ψ α= =  (42) 
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From this we may define the parametric latitude of the vertex 0ψ  as 

 0cos cos sinψ ψ α=  (43) 

and the azimuth α  of the geodesic as 

 
2 2

0cos cos
cos

cos

ψ ψ
α

ψ

−
=  (44) 

 

From equation (43) we see that if the azimuth α  of a geodesic is known at a point P 

having parametric latitude ψ , the parametric latitude 0ψ  of the vertex 0P  can be 

computed.  Conversely, given ψ  and 0ψ  of points P and 0P  the azimuth of the geodesic 

between them may be computed from equation (44). 

 

THE ELLIPSOID, THE AUXILIARY SPHERE AND THE DIFFERENTIAL 

EQUATIONS 

The derivation of Bessel's formulae (or Rainsford's and Vincenty's equations) begins by 

developing relationships between the ellipsoid and a sphere.  The sphere is an auxiliary 

surface and not an approximation of the ellipsoid; its radius therefore is immaterial and 

can be taken to be 1 (unit radius). 

 

•

•

•
•
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•

•
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Figure 11a:  The geodesic passing through

and   on the ellipsoid.P P1 2

Figure 11b:  The great circle passing through

and   on the auxiliary sphere.P' P'1 2

E

H
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Figure 11a shows a geodesic passing through 1P  and 2P  on an ellipsoid.  The geodesic has 

azimuths Eα  where it crosses the equator (a node), 1α  and 2α  at 1P  and 2P  respectively 

and reaches a maximum latitude at the vertex where its azimuth is 90α = � .  The length 

of the geodesic between 1P  and 2P  is s and the longitudes of 1P  and 2P  are 1λ  and 2λ .  

Using equation (43) we may write 

 1 1 2 2 0cos sin cos sin cosψ α ψ α ψ= =  (45) 

Figure 11b shows 1P ′  and 2P ′  on an auxiliary sphere (of unit radius) where latitudes on 

this sphere are defined to be equal to parametric latitudes on the ellipsoid.  The geodesic, a 

great circle on a sphere, passing through 1P ′  and 2P ′  has azimuths EA  at the equator E, 1A  

and 2A  at 1P ′  and 2P ′  respectively and 90A = �  at the vertex H.  The length of the great 

circle between 1P ′  and 2P ′  is σ  and the longitudes of 1P ′  and 2P ′  are 1ω  and 2ω .  Again, 

using equation (43), which holds for all geodesics (or great circles on auxiliary spheres) we 

may write 

 1 1 2 2 0cos sin cos sin cosA Aψ ψ ψ= =  (46) 

Now, since parametric latitudes are defined to be equal on the auxiliary sphere and the 

ellipsoid, equations (45) and (46) show that on these two surfaces A α= , i.e., azimuths of 

great circles on the auxiliary sphere are equal to azimuths of geodesics on the ellipsoid. 

Now, consider the differential rectangle on the ellipsoid and sphere shown in Figures 12a 

and 12b below 

λ
λ + dλ

φ

φ + dφ

•

•

ds
α

α α+ + d dα α

ν cos φ dλ

ρ 
dφ

ω
ω + dω

ψ

ψ + dψ

•

•

dσ

dωcos ψ

d
ψ

Figure 12a:  Differential rectangle 

                 on ellipsoid

Figure 12b:  Differential rectangle 

                 on sphere

α

 

We have for the ellipsoid [see Figure 2 and equations (19)]  

 
cos

sin cos

ds d

ds d

α ρ φ

α ν φ λ

=

=
 (47) 
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and for the sphere 

 
cos

sin cos

d d

d d

σ α ψ

σ α ψ ω

=

=
 (48) 

Dividing equations (47) by equations (48) gives 

 
coscos sin

;
cos sin cos

d dds ds

d d d d

ρ φ ν φ λα α

σ α ψ σ α ψ ω
= =  

and noting from equation (36) that cos cosaν φ ψ= , then cancelling terms gives 

 
ds d d

a
d d d

φ λ
ρ

σ ψ ω
= =  (49) 

We may write these equations as two separate relationships 

 
ds d

d d

φ
ρ

σ ψ
=  (50) 

 
1d ds

d a d

λ

ω σ
=  (51) 

and if we can obtain an expression for 
d

d

φ

ψ
 then we may develop two relatively simple 

differential equations; one involving distance 
ds

dσ
 (s ellipsoid and σ  sphere) and the other 

involving longitude 
d

d

λ

ω
 (λ  ellipsoid and ω  sphere).  Integration yields equations that will 

enable us to compute geodesic lengths s on the ellipsoid given great circle distances σ  on 

an auxiliary sphere, and equations to compute longitude differences λ∆  on the ellipsoid 

given longitude differences ω∆  on the auxiliary sphere. 

 

An expression for 
d

d

φ

ψ
 can be determined as follows. 

From equation (38) we have 

 ( )
1
22tan 1 taneψ φ= −  

and differentiating with respect to ψ  gives 

 ( ) ( ){ }1
22tan 1 tan

d d d
e

d d d

φ
ψ φ

ψ φ ψ
= −  

and ( )
1
22 2 2sec 1 sec

d
e

d

φ
ψ φ

ψ
= −  
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giving 
( )

1
2

2

22

1 cos

cos1

d

d e

φ φ

ψ ψ
=

−
 (52) 

Substituting equation (52) into equation (50) gives 

 
( )

1
2

2

22

cos

cos1

ds

d e

ρ φ

σ ψ
=

−
 (53) 

and substituting equation (53) into equation (51) gives 

 
( )

1
2

2

22

cos

cos1

d

d a e

λ ρ φ

ω ψ
=

−
 (54) 

Now from equation (36) we may write 

 
2 2

2 2

cos cos
   and   

cos cos

a aφ φ

ψ ν ψ ν
= =  

and using the relationships given in equations (4), (10), (11) and (12) we may write 

 
( ) ( )

1 1
2 2

2 2 2 2 3 2

2 2 2 3 2 3 2 32 2

cos
; ;

cos 1 1

a b V c a a a

a V b b V b Ve a e

φ ρ ρ

ψ ν
= = = = =

− −
 (55) 

Substituting these results into equations (53) and (54) gives 

 
ds a

d Vσ
=  (56) 

and 
1d

d V

λ

ω
=  (57) 

Now from equation (13) we may write 2 2 21 cosV e φ′= +  and also from equation (55) we 

may write 
2 2

2 2

2
cos cos

b V

a
φ ψ= .  Using these gives 

 
2 2

2 2 2

2
1 cos

b V
V e

a
ψ′= +  

Now using equations (4) and (5) gives 

 
( )

2
2 2 2 2

2

2 2 2

1 1 cos
1

1 cos

e
V e V

e

e V

ψ

ψ

= + −
−

= +
 

and ( )2 2 21 cos 1V e ψ− =  from which we obtain 

 
( )

1
22 2

1

1 cos
V

e ψ
=

−
 (58) 
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Substituting equation (58) into equations (56) and (57) gives 

 ( )
1
22 21 cos

ds
a e

d
ψ

σ
= −  (59) 

and 

 ( )
1
22 21 cos

d
e

d

λ
ψ

ω
= −  (60) 

Equations (59) and (60) are the two differential equations from which we obtain distance s 

and longitude difference ω λ− . 

 

FORMULA FOR COMPUTATION OF GEODESIC DISTANCE s 
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Figure 13:  Geodesic on auxiliary sphere 

 

Figure 13 shows 1P ′  and 2P ′  on an auxiliary sphere (of unit radius) where latitudes on this 

sphere are defined to be equal to parametric latitudes on the ellipsoid.  The geodesic, a 

great circle on a sphere, passing through 1P ′  and 2P ′  has azimuths Eα  at the equator E, 1α  

at 1P ′ , 2α  at 2P ′  and 90α = �  at the vertex H.   
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Note here that we have shown previously that for our auxiliary sphere, the azimuth of a 

great circle on the sphere is equal to the azimuth of the geodesic on the ellipsoid.  The 

length of the great circle arc between 1P ′  and 2P ′  is σ  and the longitudes of 1P ′  and 2P ′  

are 1ω  and 2ω .  Also note that 1σ  and 2σ  are angular distances along the great circle from 

the node E to 1P ′  and E to 2P ′  respectively and the angular distance from E to the vertex 

H is 90º.  1ψ , 2ψ  and 0ψ  are the parametric latitudes of 1P , 2P  and the vertex 

respectively, and they are also the latitudes of 1P ′ , 2P ′  and the vertex H on the auxiliary 

sphere. 

 

From the spherical triangle 1P N H′ ′  with the right-

angle at H, using the sine rule (for spherical 

trigonometry) 

 
( )

( )
( )

1

0 1

sin 90sin

sin 90 sin 90

α

ψ ψ
=

− −

�

� �
 

or 1

0 1

sin 1

cos cos

α

ψ ψ
=  

so 1 1 0sin cos cosα ψ ψ=  (61) 

Note that equation (61) can also be obtained from equation (43) and at the equator where 

90ψ = �  and cos 1ψ =  we have 

 0sin cosEα ψ=  (62) 

Using Napier's Rules for circular parts in the right-angled spherical triangle 1P N H′ ′  

( ) ( )

( ) ( )1 1 1

1 1 1

1

1

sin mid-part product of tan adjacent-parts

sin 90 tan tan 90

cos tan cot

tan

tan

α ψ σ

α ψ σ

ψ

σ

=

− = −

=

=

� �

 

and 

 1
1

1

tan
tan

cos

ψ
σ

α
=  (63) 

P'
1 •

α 1
90

°−
 ψ

1

90°− σ1

90°−
 ψ

0

N'

H

90°− ψ0

90°− σ1

90°− α1

ψ1
90°− ψ1( )90°−
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Using Napier's Rules for circular parts in the right-angled spherical triangle 2P N H′ ′  

P'2 •

•
α 2

90
°−

 ψ
2

90°−
 ψ

0

N'

H
90°−(σ1

σ)

90°−ψ0

90°−α2

ψ2

σ 1( )90°−

90°− ψ 2( )90°−

+ σ
+

 

 

( ) ( )

( )( ) ( )

( )
2 1 0

2 1 0

sin mid-part product of cos opposite-parts

sin cos 90 cos 90

sin sin sin

ψ σ σ ψ

ψ σ σ ψ

=

= − + −

= +

� �

 (64) 

Note: The subscript 2 can be dropped and we can just refer to a general point P' and the 

distance from 1P ′  to P' is σ , hence 

 ( )1 0sin sin sinψ σ σ ψ= +  (65) 

Referring to equations (59) and (60), we need to develop an expression for 2cos ψ .  This 

can be achieved in the following manner. 

Squaring both sides of equation (65) and using the trigonometric identity 
2 2sin cos 1ψ ψ+ =  we have 

 ( )2 2 2 2
1 0sin 1 cos sin sinψ ψ σ σ ψ= − = +  

so that 

 ( )2 2 2
1 0cos 1 sin sinψ σ σ ψ= − +  (66) 

Let 

 1x σ σ= +  (67) 

and equation (66) becomes 

 2 2 2
0cos 1 sin sinxψ ψ= −  (68) 

We may now write equation (59) with dx dσ=  since 1σ  is constant, as 

 

( )

( )
( )

1
2

1
2

1
2

2 2

2 2 2
0

2 2 2 2
0

1 cos

1 1 sin sin

1 sin sin

ds a e d

a e x dx

a e e x dx

ψ σ

ψ

ψ

= −

 = − − 

= − +
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Now using equations (4), (5) and (6) 

 
( )

( )

( )

1
2

1
2

1
2

1
2

2
2 2

02 2

2 2 2
0

2

2 2 2
0

1
sin sin

1 1

1 sin sin
1

1 sin sin

e
ds a x dx

e e

a
e x dx

e

b e x dx

ψ

ψ

ψ

 ′ = +   ′ ′+ + 

′= +
′+

′= +

 

Now, since 2e′  is a constant for the ellipsoid and 0ψ  is a constant for a particular geodesic 

we may write 

 2 2 2 2 2
0sin cos Eu e eψ α′ ′= =  (69) 

where Eα  is the azimuth of the geodesic at the node or equator crossing, and 

 ( )
1
22 21 sinds b u x dx= +  (70) 

The length of the geodesic arc s between 1P  and 2P  is found by integration as 

 ( )
1

1
2

1

2 21 sin

x

x

s b u x dx

σ σ

σ

= +

=

= +∫  (71) 

where the integration terminals are 1x σ=  and 1x σ σ= +  remembering that at 1P ′ , 

0σ =  and 1x σ= , and at 2P ′ , 1x σ σ= + . 

Equation (71) is an elliptic integral and does not have a simple closed-form solution.  

However, the integrand ( )
1
22 21 sinu x+  can be expanded in a series and then evaluated by 

term-by-term integration. 

The integrand in equation (71) can be expanded by use of the binomial series 

 ( )
0

1 n
n

n

x B x
β β

∞

=

+ = ∑  (72) 

An infinite series where n is a positive integer, β  is any real number and the binomial 

coefficients nBβ  are given by 

 
( )( )( ) ( )1 2 3 1

!
n

n
B

n
β β β β β β− − − − +

=
⋯

 (73) 

The binomial series (72) is convergent when 1 1x− < < .  In equation (73) n! denotes n-

factorial and ( )( )( )! 1 2 3 3 2 1n n n n n= − − − ⋅ ⋅⋯ .  zero-factorial is defined as 0 ! 1=  and 

the binomial coefficient 0 1Bβ = . 
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In the case where β  is a positive integer, say k, the binomial series (72) can be expressed 

as the finite sum 

 ( )
0

1
k

k k n
n

n

x B x
=

+ = ∑  (74) 

where the binomial coefficients k
nB  in series (74) are given by 

 
( )

!

! !
k
n

k
B

n k n
=

−
 (75) 

The binomial coefficients 
1
2

nB  for the series (72) are given by equation (73) with the 

following results for 0,1, 2 and 3n =  

 0n =  
1
2

0 1B =  

 1n =  
1
2

1

1

2
B =  

 2n =  
( )( )1

2

1 1
2 2

2

1

2! 8
B

−
= = −  

 3n =  
( )( )( )1

2

1 1 3
2 2 2

3

1

3! 16
B

− −
= =  

Inspecting the results above, we can see that the binomial coefficients 
1
2

nB  form a sequence 

 
1 1 1 1 1 3 1 1 3 5 1 1 3 5 7 1 1 3 5 7 9

1, , , , , , ,
2 2 4 2 4 6 2 4 6 8 2 4 6 8 10 2 4 6 8 10 12

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
− − −

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋯  

Using these results 

 

( )
1
22 2 2 2 4 4 6 6

8 8 10 10

1 1 1 1 1 3
1 sin 1 sin sin sin

2 2 4 2 4 6
1 1 3 5 1 1 3 5 7

sin sin
2 4 6 8 2 4 6 8 10

u x u x u x u x

u x u x

⋅ ⋅ ⋅
+ = + − +

⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

− + +
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋯ (76) 

To simplify this expression, and make the eventual integration easier, the powers of sinx  

can be expressed in terms of multiple angles using the standard form 

 

( )
( ) ( )

( ) ( )

2

2 2 1

2 221 1
sin cos2 cos 2 2 cos 2 4

1 22 2

2 2
cos 2 6 1 cos2

3 1

n
n

n n

n

n nn
x nx n x n x

n

n n
n x x

n

−

      −         = + − − + −                
          − − + −     −      

⋯  (77) 

Using equation (77) and the binomial coefficients 2
2

n
n

n
B

n

  =    
 computed using equation 

(75) gives 
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 2 1 1
sin cos2

2 2
x x= −  

 4 3 1 1
sin cos 4 cos2

8 8 2
x x x= + −  

 6 5 1 3 15
sin cos6 cos 4 cos2

16 32 16 32
x x x x= − + −  

 8 35 1 1 7 7
sin cos 8 cos6 cos 4 cos2

128 128 16 32 16
x x x x x= + − + −  

 10 63 1 5 45 15 105
sin cos10 cos 8 cos6 cos 4 cos2

256 512 256 512 64 256
x x x x x x= − + − + −  (78) 

Substituting equations (78) into equation (76) and arranging according to cos2x , cos 4x , 

etc, we obtain (Rapp 1981, p. 7-8) 

 ( )
1
22 21 sin cos2 cos 4 cos6 cos 8 cos10u x A B x C x D x E x F x+ = + + + + + +⋯ (79) 

where the coefficients A, B, C, etc., are 

 

2 4 6 8 10

2 4 6 8 10

4 6 8 10

6 8 10

8 10

10

1 3 5 175 441
1

4 64 256 16384 65536
1 1 15 35 735

4 16 512 2048 65536
1 3 35 105

64 256 4096 16384
1 5 315

512 2048 131072
5 35

16384 65536
7

131072

A u u u u u

B u u u u u

C u u u u

D u u u

E u u

F u

= + − + − + −

= − + − + − +

= − + − + −

= − + − +

= − + −

= − +

⋯

⋯

⋯

⋯

⋯

⋯

 (80) 

Substituting equation (79) into equation (71) gives  

 { }
1

1

cos2 cos 4 cos6 cos 8 cos10s b A B x C x D x E x F x dx

σ σ

σ

+

= + + + + + +∫ ⋯  (81) 

or 

 

1 1 1 1

1 1 1 1

1 1

1 1

cos2 cos 4 cos6

cos 8 cos10

s
A dx B x dx C x dx D x dx

b

E x dx F x dx

σ σ σ σ σ σ σ σ

σ σ σ σ

σ σ σ σ

σ σ

+ + + +

+ +

= + + +

+ +

∫ ∫ ∫ ∫

∫ ∫ ⋯

 (82) 
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The evaluation of the integral 

 [ ] ( ){ }
1

1

1

1

1 1

1 1
cos sin sin sinnx dx nx n n

n n

σ σ

σ σ

σ

σ

σ σ σ

+
+= = + −∫  (83) 

combined with the trigonometric identity 

 ( ) ( )sin sin 2 cos sin
2 2

n n
nX nY X Y X Y

   
− = + −         

 

where 1X σ σ= +  and 1Y σ=  so that 12X Y σ σ+ = +  and X Y σ− =  gives 

 
1

1

2
cos cos sin

2
m

n
nx dx n

n

σ σ

σ

σ σ

+

=∫  (84) 

Noting that 

 ( ) ( )1 1 1sin sin 2 cos 2 sin
2 2

n n
n nσ σ σ σ σ σ+ − = +  

and with 2 1σ σ σ= − , then ( )1 1 2 1 1 22 2σ σ σ σ σ σ σ+ = + − = +  

and putting 1 2

2
m

σ σ
σ

+
=  (85) 

then 

 12 2mσ σ σ= +  (86) 

and 

 ( )1 1sin sin 2 cos sin
2

m

n
n n nσ σ σ σ σ+ − =  (87) 

Using this result, equation (82) becomes 

 
( ) ( ) ( )

( ) ( )

1 1
2 3

1 1
54

cos2 sin cos 4 sin2 cos6 sin 3

cos 8 sin 4 cos10 sin 5

m m m

m m

s
A B C D

b

E F

σ σ σ σ σ σ σ

σ σ σ σ

= + + +

+ + +⋯
 

or re-arranged as (Rapp 1981, equation 39, p. 9) 

 
{

}
cos2 sin cos 4 sin2 cos6 sin 3

2 3

cos 8 sin 4 cos10 sin 5
4 5

m m m

m m

C D
s b A B

E F

σ σ σ σ σ σ σ

σ σ σ σ

= + + +

+ + +⋯
 (88) 

Equation (88) may be modified by adopting another set of constants; defined as 

 0 2 4 6 8 10; ; ; ; ;
2 3 4 5

C D E F
B A B B B B B B= = = = = =  (89) 
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to give 

 

{

}

0 2 4 6

8 10

2

cos2 sin cos 4 sin2 cos6 sin 3

cos 8 sin 4 cos10 sin 5

cos2 sin

m m m

m m

n m

s b B B B B

B B

B n n

σ σ σ σ σ σ σ

σ σ σ σ

σ σ

= + + +

+ + +

+ +

⋯

⋯

 (90) 

where the coefficients 0 2 4, , ,B B B … are 

 

2 4 6 8 10

0

2 4 6 8 10

2

4 6 8 10

4

6 8 10

6

8 10

8

10

1 3 5 175 441
1

4 64 256 16384 65536
1 1 15 35 735

4 16 512 2048 65536
1 3 35 105

128 512 8192 32768
1 5 105

1536 6144 131072
5 35

65536 262144
7

65

B u u u u u

B u u u u u

B u u u u

B u u u

B u u

B

= + − + − + −

= − + − + − +

= − + − + −

= − + − +

= − + −

= −

⋯

⋯

⋯

⋯

⋯

10

5360
u +⋯

 

Since each of these convergent series is alternating, an upper bound of the error committed 

in truncating the series is the first term omitted – keeping terms up to 8u  only commits an 

error of order 10u  – and equation (90) can be approximated by 

 
{

}
0 2 4 6

8

cos2 sin cos 4 sin2 cos6 sin 3

cos 8 sin 4

m m m

m

s b B B B B

B

σ σ σ σ σ σ σ

σ σ

= + + +

+
 (91) 

where 

 

2 4 6 8
0

2 4 6 8
2

4 6 8
4

6 8
6

8
8

1 3 5 175
1

4 64 256 16384
1 1 15 35

4 16 512 2048
1 3 35

128 512 8192
1 5

1536 6144
5

65536

B u u u u

B u u u u

B u u u

B u u

B u

= + − + −

= − + − +

= − + −

= − +

= −

 (92) 

The approximation (91) and the coefficients given by equations (92) are the same as 

Rainsford (1955, equations 18 and 19, p.15) and also Rapp (1981, equations 40 and 41, p. 

9). 
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Equation (91) can be used in two ways which will be discussed in detail later.  Briefly, 

however, the first way is in the direct problem – where s, 2u  and 1σ  are known – to solve 

iteratively for σ  (and hence mσ  from 12 2mσ σ σ= + ; and 
1

x σ σ= + ) by using Newton-

Raphson iteration for the real roots of the equation ( ) 0f σ =  given in the form of an 

iterative equation 

 ( ) ( )

( )( )
( )( )1

n

n n

n

f

f

σ
σ σ

σ
+ = −

′
 (93) 

where n denotes the nth iteration and ( )f σ  can be obtained from equation (91) as 

 

( )
0 2 4 6

8

cos2 sin cos 4 sin2 cos6 sin 3

cos 8 sin 4

m m m

m

f B B B B

s
B

b

σ σ σ σ σ σ σ σ

σ σ

= + + +

+ −
 (94) 

and the derivative ( ) ( ){ }
d

f f
d

σ σ
σ

′ =  is given by 

 ( ) ( )
1
22 21 sinf u xσ′ = +  (95) 

[Note here that ( )f σ  is the result of integrating the function ( )
1
22 21 sinu x+  with respect 

to dx; so then the derivative ( )f σ′  must be the original function.] 

An initial value, ( )1σ  (σ  for 1n = ) can be computed from ( )1
0

s

B b
σ =  and the functions 

( )( )1f σ  and ( )( )1f σ′  evaluated from equations (94) and (95) using ( )1σ .  ( )2σ  ( ) for 2nσ =  

can now be computed from equation (93) and this process repeated to obtain values 

( ) ( )3 4, ,σ σ ….  This iterative process can be concluded when the difference between ( )1nσ +  

and ( )nσ  reaches an acceptably small value. 

The second application of equation (91) is in the inverse problem where s is computed once 

σ  has been determined by spherical trigonometry. 
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FORMULA FOR COMPUTATION OF LONGITUDE DIFFERENCE BETWEEN TWO 

POINTS ON A GEODESIC 

P'
1

P'2

P'
P'

i

i+1

vertex
α = 90°  

•

•
•

•

•

•

α 1

α i

αE

σ 1

90
°−

 ψ
1

90°−
 ψ

0

90
°

N'

H

E

equator auxiliary
sphere

node

ω1

dω

geo
desic

dσ

 

 

Figure 14:  Geodesic on auxiliary sphere 

Figure 14 shows 1P ′  and 2P ′  on an auxiliary sphere (of unit radius) where latitudes on this 

sphere are defined to be equal to parametric latitudes on the ellipsoid.  iP ′  and 1iP+′  are 

arbitrary points on the geodesic (a great circle) between 1P ′  and 2P ′  separated by the 

angular distance dσ . 

N′

α i

P'

P'

i

i+1

•

• dσ

cosψi dω

dω

90
°−
ψ i

geodes
icQ

 

Figure 15 
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Figure 15 shows the differential spherical triangle 1i iP N P+′ ′ ′  broken into two right-angled 

spherical triangles 1i iP Q P+′ ′  and 1iQN P+′ ′ .  The great circle arc 1iQ P+′  is defined as 

1cos dψ ω , which is the differential arc length of the parallel of parametric latitude 1ψ .  

Approximating the spherical triangle 1i iP Q P+′ ′  with a plane right-angled triangle gives 

cos sini id dψ ω σ α=  and 

 
sin

cos
i

i

d d
α

ω σ
ψ

=  (96) 

From equation (43) 

 0cos
sin

cos
i

i

ψ
α

ψ
=  (97) 

and substituting equation (97) into (96) gives the relationship (dropping the subscript i) 

 0
2

cos

cos
d d

ψ
ω σ

ψ
=  (98) 

Substituting equation (98) into equation (60) and re-arranging gives 

 
( )

1
22 2

0 2

1 cos
cos

cos

e
d d

ψ
λ ψ σ

ψ

−
=  (99) 

Subtracting equation (98) from equation (99) gives an expression for the difference 

between differentials of two measures of longitude; dω  on the auxiliary sphere and dλ  on 

the ellipsoid 

 
( )

1
22 2

0 2 2

1 cos 1
cos

cos cos

e
d d d

ψ
λ ω ψ σ

ψ ψ

 − − = − 
 
 

 (100) 

Equation (100) can be simplified by expanding ( )
1
22 21 cose ψ−  using the binomial series 

(72) 

 ( ) ( )
1 12 22 2 2 2

0

1 cos cos
n

n

n

e B eψ ψ
∞

=

− = −∑  

and from the previous development, the binomial coefficients 
1
2

nB  form a sequence 

 
1 1 1 1 1 3 1 1 3 5 1 1 3 5 7 1 1 3 5 7 9

1, , , , , , ,
2 2 4 2 4 6 2 4 6 8 2 4 6 8 10 2 4 6 8 10 12

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
− − −

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋯ 
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Using these results 

 

( )
1
22 2 2 2 4 4 6 6

8 8 10 10

1 1 1 1 1 3
1 cos 1 cos cos cos

2 2 4 2 4 6
1 1 3 5 1 1 3 5 7

cos cos
2 4 6 8 2 4 6 8 10

e e e e

e e

ψ ψ ψ ψ

ψ ψ

⋅ ⋅ ⋅
− = − − −

⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

− − +
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋯ (101) 

so that  

 

( )
1
22 2

2 4 2 6 4

2 2

8 6 10 8

1 cos 1 1 1 1
cos cos

cos cos 2 8 16

5 7
cos cos

128 256

e
e e e

e e

ψ
ψ ψ

ψ ψ

ψ ψ

−
= − − −

− − +⋯  (102) 

Now, subtracting 
2

1

cos ψ
 from both sides of equation (102) gives a new equation whose 

left-hand-side is the term inside the brackets [ ] in equation (100), and using this result we 

may write equation (100) as 

 

{
}

2 4 2 6 4
0

8 6 10 8

1 1 1
cos cos cos

2 8 16

5 7
cos cos

128 256

d d e e e

e e d

λ ω ψ ψ ψ

ψ ψ σ

− = − − −

− − +⋯  (103) 

which can be re-arranged as 

 

{
}

2
2 2 4 4

0

6 6 8 8

1 1
cos 1 cos cos

2 4 8

5 7
cos cos

64 128

e
d d e e

e e d

ω λ ψ ψ ψ

ψ ψ σ

− − = + +

+ + +⋯  (104) 

From equations (65) and (67) we have ( )1 0sin sin sinψ σ σ ψ= +  and 1x σ σ= +  

respectively, which gives 0sin sin sinxψ ψ=  and 2 2 2 2
0sin sin sin 1 cosxψ ψ ψ= = − .  This 

result can be re-arranged as 

 2 2 2
0cos 1 sin sin xψ ψ= −  

Now ( )24 2 2
0cos 1 sin sin xψ ψ= − , ( )36 2 2

0cos 1 sin sin xψ ψ= − , ( )48 2 2
0cos 1 sin sin xψ ψ= − , 

etc., and using the binomial series (74) we may write 

 4 2 2 4 4
0 0cos 1 2 sin sin sin sinx xψ ψ ψ= − +  

 6 2 2 4 4 6 6
0 0 0cos 1 3 sin sin 3 sin sin sin sinx x xψ ψ ψ ψ= − + −  

 8 2 2 4 4 6 6 8 8
0 0 0 0cos 1 4 sin sin 6 sin sin 4 sin sin sin sinx x x xψ ψ ψ ψ ψ= − + − +  
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Substituting these relationships into equation (104) and noting that dx dσ=  gives 

 

( ){
( )

( )

(

)
}

2
2 2 2

0 0

4 2 2 4 4
0 0

6 2 2 4 4 6 6
0 0 0

8 2 2 4 4
0 0

6 6 8 8
0 0

1
cos 1 1 sin sin

2 4

1
1 2 sin sin sin sin

8
5

1 3 sin sin 3 sin sin sin sin
64
7

1 4 sin sin 6 sin sin
128

4 sin sin sin sin

e
d d e x

e x x

e x x x

e x x

x x

dx

ω λ ψ ψ

ψ ψ

ψ ψ ψ

ψ ψ

ψ ψ

− − = + −

+ − +

+ − + −

+ − +

− +

+⋯  (105) 

Now, expressions for 2 4sin , sin ,x x … have been developed previously and are given in 

equations (78).  These even powers of sinx  may be substituted into equation (105) to give 

 

(

(

2
2 2

0 0

4 2
0

4
0

6 2
0

4
0

1 1 1
cos 1 1 sin cos2

2 4 2 2

1 1 1
1 2 sin cos2

8 2 2

3 1 1
sin cos 4 cos2

8 8 2

5 1 1
1 3 sin cos2

64 2 2

3 1 1
3 sin cos 4 cos2

8 8 2

e
d d e x

e x

x x

e x

x x

ω λ ψ ψ

ψ

ψ

ψ

ψ

    − − = + − −       
 

+ − − 
  

 + + −   
 

+ − − 
  
 

+ + − 
 

6
0

8 2
0

4
0

6
0

8
0

5 1 3 15
sin cos6 cos 4 cos2

16 32 16 32

7 1 1
1 4 sin cos2

128 2 2

3 1 1
6 sin cos 4 cos2

8 8 2

5 1 3 15
4 sin cos6 cos 4 cos2

16 32 16 32

35 1 1
sin cos 8 co

128 128 16

x x x

e x

x x

x x x

x

ψ

ψ

ψ

ψ

ψ


 − − + −   

  + − −    
 

+ + − 
  
 

− − + − 
  

+ + −

}

s 6

7 7
cos 4 cos2

32 16

x

x x

dx






+ − 


+⋯  (106) 
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Expanding the components of equation (106) associated with the even powers of e we have 

 2 2 2
0 0

1 1 1
1 sin sin cos2

4 2 2
e xψ ψ

  − +   
  (107) 

 

(4 2 2
0 0

4 4 4
0 0 0

1
1 sin sin cos2

8

3 1 1
sin sin cos 4 sin cos2

8 8 2

e x

x x

ψ ψ

ψ ψ ψ

− +

+ + − 
 (108) 

 

(6 2 2
0 0

4 4 4
0 0 0

6 6 6 6
0 0 0 0

5
1 sin sin cos2

64
9 3 3

sin sin cos 4 sin cos2
8 8 2
5 1 3 15

sin sin cos6 sin cos 4 sin cos2
16 32 16 32

e x

x x

x x x

ψ ψ

ψ ψ ψ

ψ ψ ψ ψ

− +

+ + −

− + − + 
 (109) 

 

(8 2 2
0 0

4 4 4
0 0 0

6 6 6
0 0 0

6
0

8 8 8
0 0 0

8 8
0 0

7
1 sin sin cos2

128
9 3

sin sin cos 4 3 sin cos2
4 4
5 1 3

sin sin cos6 sin cos 4
4 8 4
15

sin cos2
8
35 1 1

sin sin cos 8 sin cos6
128 128 16
7 7

sin cos 4 sin cos2
132 16

e x

x x

x x

x

x x

x x

ψ ψ

ψ ψ ψ

ψ ψ ψ

ψ

ψ ψ ψ

ψ ψ

− +

+ + −

− + −

+

+ + −

+ − 
 (110) 

 

Gathering together the constant terms and the coefficients of cos2 , cos 4 , cos6 ,  etc.x x x  in 

equations (107) to (110), we can write equation (106) as 

 { }
2

0 0 2 4 6 8cos cos2 cos 4 cos6 cos 8
2

e
d d C C x C x C x C x dxω λ ψ− = + + + + +⋯  (111) 

where the coefficients 0 2 4, , , etc.C C C  are 
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2 4 6 8
0

2 4 6 8 2
0

4 6 8 4
0

6 8 6
0

8 8
0

1 1 5 7
1

4 8 64 128
1 1 15 7

sin
8 8 128 64

3 45 63
sin

64 512 512

25 35
sin

1024 512

245
sin

16384

C e e e e

e e e e

e e e

e e

e

ψ

ψ

ψ

ψ

= + + + + +

 − + + + +   

 + + + +   

 − + +   

 + +   
−

⋯

⋯

⋯

⋯

⋯

⋯  (112) 

 

2 4 6 8 2
2 0

4 6 8 4
0

6 8 6
0

8 8
0

1 1 15 7
sin

8 8 128 64

1 15 21
sin

16 128 128

75 105
sin

2048 1024

49
sin

2048

C e e e e

e e e

e e

e

ψ

ψ

ψ

ψ

 = + + + +   
 − + + +   
 + + +   
 + +   

−

⋯

⋯

⋯

⋯

⋯  (113) 

 

4 6 8 4
4 0

6 8 6
0

8 8
0

1 15 21
sin

64 512 512

15 21
sin

1024 512

49
sin

1096

C e e e

e e

e

ψ

ψ

ψ

 = + + +   

 − + +   

 + +   
−

⋯

⋯

⋯

⋯  (114) 

 

6 8 6
6 0

8 8
0

5 7
sin

2048 1024

7
sin

2048

C e e

e

ψ

ψ

 = + +   
 − +   

+

⋯

⋯

⋯  (115) 

 8 8
8 0

7
sin

16384
C e ψ

 = + −  
⋯ ⋯ (116) 

The longitude differences (spherical ω  minus geodetic λ ) are given by the integral 

 { }
1

1

2

0 0 2 4 6 8cos cos2 cos 4 cos6 cos 8
2

x

x

e
C C x C x C x C x dx

σ σ

σ

ω λ ψ

= +

=

∆ − ∆ = + + + + +∫ ⋯  (117) 

where 2 1ω ω ω∆ = −  is the difference in longitudes of 1P ′  and 2P ′  on the auxiliary sphere 

and 2 1λ λ λ∆ = −  is the difference in longitudes of 1P  and 2P  on the ellipsoid. 
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Equation (117) has a similar form to equation (81) and the solution of the integral in 

equation (117) can be achieved by the same method used to solve the integral in equation 

(81).  Hence, similarly to equation (88) and also Rapp (1981 equation (55), p. 13) 

 
{

}

2
4

0 0 2

6 8

cos cos2 sin cos 4 sin2
2 2

cos6 sin 3 cos 8 sin 4
3 4

m m

m m

e C
C C

C C

ω λ ψ σ σ σ σ σ

σ σ σ σ

∆ − ∆ = + +

+ + +⋯
 (118) 

Rainsford (1955, p. 14, equations 10 and 11) has the differences in longitudes ω λ∆ − ∆  as 

a function of the flattening f and the azimuth of the geodesic at the equator Eα ; noting 

that from either equations (61) or (69) we may obtain the relationships 

 0sin cosEα ψ=  (119) 

 2 2
01 sin sinEα ψ− =  (120) 

Also, since ( )2 22 2e f f f f= − = − , even powers of the eccentricity e can be expressed as 

functions of the flattening f 

 

2 2

4 2 3 4

6 3 4 5 6

8 4 5 6 7 8

2

4 4

8 12 6

16 32 24 8

e f f

e f f f

e f f f f

e f f f f f

= −

= − +

= − + −

= − + − +

 (121) 

Re-arranging equation (118) and using equation (119) gives 

 

2 2 2

0 2 4

2 2

6 8

sin cos2 sin cos 4 sin2
2 2 4

cos6 sin 3 cos 8 sin 4
6 8

E m m

m m

e e e
C C C

e e
C C

ω λ α σ σ σ σ σ

σ σ σ σ

∆ − ∆ = + +
+ + + 
⋯  (122) 

Now, with equations (112) and (120) the coefficient 
2

0
2

e
C  can be written as 

 

( )

( )

( )

2 2
4 6 8

0

4 6 8 2

26 8 2

38 2

1 1 5

2 2 8 16 128

1 1 15
1 sin

16 16 256

3 45
1 sin

128 1024

25
1 sin

2048

E

E

E

e e
C e e e

e e e

e e

e

α

α

α

= + + + +

 − + + −  
 + + + −  
 − + −  

+

⋯

⋯

⋯

⋯

⋯  (123) 
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noting here that terms greater than 8e  have been ignored. 

Using equations (121) in equation (123) with the trigonometric identity 
2 2cos sin 1E Eα α+ =  gives 

 

2
5

0

2 3 4 5 2

3 4 5 4

4 5 6

7

2 8

1 1 1 3
cos

4 4 4 2

3 27 81
cos

16 64 64

25 25
cos

128 64

E

E

E

e
C f f

f f f f

f f f

f f

α

α

α

= − +

 − + + − +   
 + + − +   
 − − +   

+

⋯

⋯

⋯

⋯

⋯  (124) 

Now for any geodetic ellipsoid 8 2.01e-009e ≃  and 4 1.26e-010f ≃ , and since terms greater 

than 8e  have been ignored in the development of equation (123) then no additional errors 

will be induced by ignoring terms greater than 4f  in equation (124).  Hence we define 

 

( ){

}

2
2 2

0

2 4

3 6

1
1 1 cos

2 4

3 9
1 cos

16 4

25
cos

128

E

E

E

e
C f f f f

f f

f

α

α

α

≡ − + +

 + +   

−  (125) 

Using similar reasoning we also define 

 ( )
2

2 2 2 4 3 6
2

1 1 9 75
1 cos 1 cos cos

2 4 4 4 256
E E E

e
C f f f f f f fα α α

    ≡ + + − + +      
 (126) 

 
2

2 4 3 6
4

1 9 15
1 cos cos

4 32 4 256
E E

e
C f f f fα α

    ≡ + −      
 (127) 

 { }
2

3 6
6

5
cos

6 768
E

e
C f f α≡   (128) 

Using equations (125) to (128) enables equation (122) to be approximated by 

 

 { }0 2 4 6sin cos2 sin cos 4 sin2 cos6 sin 3E m m mf A A A Aω λ α σ σ σ σ σ σ σ∆ − ∆ = + + +  (129) 

 

where 2 1ω ω ω∆ = −  is the difference in longitudes of 1P ′  and 2P ′  on the auxiliary sphere 

and 2 1λ λ λ∆ = −  is the difference in longitudes of 1P  and 2P  on the ellipsoid, and the 

coefficients are 
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( )

( )

2 2 2 4 3 6
0

2 2 2 4 3 6
2

2 4 3 6
4

3 6
6

1 3 9 25
1 1 cos 1 cos cos

4 16 4 128

1 1 9 75
1 cos 1 cos cos

4 4 4 256

1 9 15
1 cos cos

32 4 256
5

cos
768

E E E

E E E

E E

E

A f f f f f f

A f f f f f f

A f f f

A f

α α α

α α α

α α

α

 = − + + + + −  

 = + + − + +  

 = + −  

=

 (130) 

The approximation (129) and the coefficients (130) are the same as Rainsford (1955, 

equations 10 and 11, p. 14) and also Rapp (1981, equation 56, p. 13). 

Equation (129) can be used in two ways which will be discussed in detail later.  Briefly, 

however, the first way is in the direct problem – after σ  (and mσ  from 12 2mσ σ σ= + ) 

has been solved iteratively – to compute the difference ω λ∆ − ∆ .  And in the inverse 

problem to compute the longitude difference iteratively. 

 

VINCENTY'S MODIFICATIONS OF RAINSFORD'S EQUATIONS 

In 1975, T. Vincenty (1975) produced other forms of equations (91) and (129) more suited 

to computer evaluation and requiring a minimum of trigonometric function evaluations.  

These equations may be obtained in the following manner. 

 

Vincenty's modification of Rainsford's equation for distance 

The starting point here is equation (91) [Rainsford's equation for distance] that can be re-

arranged as 

 

2 4 6

0 0 0 0

8

0

cos2 sin cos 4 sin2 cos6 sin 3

cos 8 sin 4

m m m

m

s B B B

bB B B B

B

B

σ σ σ σ σ σ σ

σ σ

= − − −

−  (131) 

or 

 
0

s

bB
σ σ= +∆  (132) 

where 
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2 4 6

0 0 0

8

0

cos2 sin cos 4 sin2 cos6 sin 3

cos 8 sin 4

m m m

m

B B B

B B B

B

B

σ σ σ σ σ σ σ

σ σ

∆ = − − −

−  (133) 

Now, from equations (92) 2 4 6 8
0

1 3 5 175
1 1

4 64 256 16384
B u u u u x= + − + − = +  and 

( ) 1

0

1
1 x

B

−= + .  Using a special case of the binomial series [equation (72) with 1β = −  and 

with 1x < ] 

 ( ) 1 2 3 41 1x x x x x
−+ = − + − + −⋯ 

allows us to write 

 

2 3
2 4 2 4 2 4

0

4
2 4

2 4 6 8

1 1 3 1 3 1 3
1

4 64 4 64 4 64

1 3

4 64

1 7 15 579
1

4 64 256 16384

u u u u u u
B

u u

u u u u

         = − − + + − + − − +             

 + − + −  

= − + − + −

⋯ ⋯ ⋯

⋯ ⋯

⋯  

and using this result gives 

 

2 4 6 8 2 4 6 82

0

2 4 6 8

1 1 15 35 1 7 15 579
1

4 16 512 2048 4 64 256 16384

1 1 37 47

4 8 512 1024

B
u u u u u u u u

B

u u u u

    = − + − + − − + − + −      

= − + − + −

⋯ ⋯

⋯

 

Similarly, the other ratios are obtained and 

 

2 4 6 82

0

4 6 84

0

6 86

0

88

0

1 1 37 47

4 8 512 1024

1 1 27

128 128 4096

1 1

1536 1024

5

65536

B
u u u u

B

B
u u u

B

B
u u

B

B
u

B

= − + − + −

= − + − +

= − + −

= − +

⋯

⋯

⋯

⋯

 (134) 

For a geodesic on the GRS80 ellipsoid, having 0Eα = �  (which makes 2u  a maximum) and 

with 22.5 , 22.5mσ σ= =� �  (which makes cos 8 sin 4 1mσ σ = ) the maximum value of the 

last term in equations (131) and (133) is 8

0

cos 8 sin 4 1.5739827e-013 radiansm

B

B
σ σ = . 



 

Geodesics – Bessel's method 41 

This is equivalent to an arc length of 0.000001 m on a sphere of radius 6378137 m.  This 

term will be ignored and σ∆  is defined as 

 2 4 6

0 0 0

cos2 sin cos 4 sin2 cos6 sin 3m m m

B B B

B B B
σ σ σ σ σ σ σ∆ ≡ − − −  (135) 

Now, using the trigonometric identities 

 
2

3 3

sin2 2 sin cos cos2 2 cos 1

sin 3 3 sin 4 sin cos 3 4 cos 3 cos

A A A A A

A A A A A A

= = −

= − = −
 

then 

 
2

3

cos 4 2 cos 2 1

cos6 4 cos 2 3 cos2

A A

A A A

= −

= −
 

and using these identities in equation (135) gives 

 

( )( )

( )( )

22 4

0 0

3 36

0

cos2 sin 2 cos 2 1 2 sin cos

4 cos 2 3 cos2 3 sin 4 sin

m m

m m

B B

B B

B

B

σ σ σ σ σ σ

σ σ σ σ

∆ = − − −

− − −
 

which may be written as 

 

( )

( )( )

22 4

0 0

2 26

0

sin cos2 2 cos 2 cos 2 1

cos2 3 4 sin 4 cos 2 3

m m

m m

B B

B B

B

B

σ σ σ σ σ

σ σ σ

∆ = − − −
− − − 

 (136) 

Now 

 

2

4 6 82

0

3

6 82

0

1 1 53

16 16 1024

1 3

64 128

B
u u u

B

B
u u

B

 −   = − + −   

 −   = − +   

⋯

⋯

 (137) 

Comparing equations (137) with equations (134) we have 

 

4 6 84

0

2

4 6 82

0

1 1 54
2

64 64 4096

1 1 1 53

4 64 64 4096

B
u u u

B

B
u u u

B

  − = − +   

 −   = − +   
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and these two equations differ by 81

4096
u  which would be equivalent to a maximum error 

of 5.0367e-013 radians or 0.000003 m on a sphere of radius 6378137 m.  Ignoring this small 

difference, we define 

 

2

4 2

0 0

1
2

4

B B

B B

   −   − ≡        
 (138) 

Again, comparing equations (137) with equations (134) we have 

 

6 86

0

2

6 82

0

1 1

1536 1024

1 1 3

24 1536 3072

B
u u

B

B
u u

B

  − = +   

 −   = +   

 

and noting that 8 81 3

1024 3072
u u=  we may say 

 

3

6 2

0 0

1

24

B B

B B

   −   − =        
 (139) 

Using equations (138) and (139) we may write equation (136) as 

 

( )

( )( )

2

22 2

0 0

3

2 22

0

1
sin cos2 cos 2 cos 2 1

4

1
cos2 3 4 sin 4 cos 2 3

24

m m

m m

B B

B B

B

B

σ σ σ σ σ

σ σ σ

   − −    ∆ = + −         
 −   + − −     

 

We may now express the great circle arc length σ  as 

 

 
s

bA
σ σ= +∆

′
 (140) 

 

where 

 

 

( ){
( )( )

2

2 2

1
sin cos2 cos 2 cos 2 1

4

1
cos2 3 4 sin 3 4 cos 2

6

m m

m m

B B

B

σ σ σ σ σ

σ σ σ

′ ′∆ = + −

′− − + − + 

 (141) 

 

and 
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 ( )( )( )

2 4 6 8
0

2 4 6 8

2
2 2 2

1 3 5 175
1

4 64 256 16384
4096 768 320 175

1
16384 16384 16384 16384

1 4096 768 320 175
16384

A B u u u u

u u u u

u
u u u

′ = = + − + −

= + − + −

= + + − + −  (142) 

 ( )( )( )

2 4 6 82

0

2 4 6 8

2
2 2 2

1 1 37 47

4 8 512 1024

256 128 74 47

1024 1024 1024 1024

256 128 74 47
1024

B
B u u u u

B

u u u u

u
u u u

−′ = = − + −

= − + −

= + − + −  (143) 

Equations (140) to (143) are the same as those given by Vincenty (1975, equations 7, 6, 3 

and 4, p. 89).  Vincenty notes in his paper that these equations were derived from 

Rainsford's inverse formula and that most significant terms in 8u  were retained, but he 

gave no outline of his method. 

 

Vincenty's modification of Rainsford's equation for longitude difference 

The starting point here is equation (129) [Rainsford's equation for longitude differences] 

with coefficients 0 2 4 6, ,  and A A A A .  Referring to this equation, Rainsford (1955, p. 14) 

states: 

“The A coefficients are given as functions of f since they converge more rapidly than when 

given as functions of 2e .  The maximum value of any term in 4f  (i.e. 3f  in the A's) is less 

than 0 .00001′′  even for a line half round the world.  Thus the 6A  term may be omitted 

altogether and the following simplified forms used even for precise results:” 

Rainsford's simplified formula is 

 { }0 2 4sin cos2 sin cos 4 sin2E m mf A A Aω λ α σ σ σ σ σ′ ′ ′∆ − ∆ = + +  (144) 

where 2 1ω ω ω∆ = −  is the difference in longitudes of 1P ′  and 2P ′  on the auxiliary sphere 

and 2 1λ λ λ∆ = −  is the difference in longitudes of 1P  and 2P  on the ellipsoid, and the 

coefficients are 
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( )

( )

2 2 4
0

2 2 4
2

2 4
4

1 3
1 1 cos cos

4 16
1 1

1 cos cos
4 4
1

cos
32

E E

E E

E

A f f f

A f f f

A f

α α

α α

α

′ = − + −

′ = + −

′ =

 (145) 

Equation (144) can be written as 

 2 4
0

0 0

sin cos2 sin cos 4 sin2E m m

A A
A f

A A
ω λ α σ σ σ σ σ

 ′ ′  ′∆ − ∆ = + +  ′ ′  
 (146) 

Using the trigonometric double angle formulas sin2 2 sin cosA A A= , 2cos2 2 cos 1A A= −  

we can write 

 
2

sin2 2 sin cos

cos 4 2 cos 2 1m m

σ σ σ

σ σ

=

= −
 

and equation (146) becomes 

 

( )( )

( )

22 4
0

0 0

22 4
0

0 0

sin cos2 sin 2 cos 2 1 2 sin cos

sin sin cos2 2 cos 2 cos 2 1

E m m

E m m

A A
A f

A A

A A
A f

A A

ω λ α σ σ σ σ σ σ

α σ σ σ σ σ

 ′ ′  ′∆ − ∆ = + + −  ′ ′  
   ′ ′  ′= + + −   ′ ′   

 (147) 

Now the coefficient 0A′  may be re-arranged as follows 

 

( )

( )

( )( )

( )( )

2 2 4
0

2 2 4

2 2

2 2

1 3
1 1 cos cos

4 16

4 3
1 1 cos cos

16 16

1 cos 4 1 3 cos
16

1 cos 4 4 3 cos
16

E E

E E

E E

E E

A f f f

f f f

f
f f

f
f

α α

α α

α α

α α

′ = − + +

 = − + −   

= − + −

= − + −

 

or 

 0 1A C′ = −  

where 

 ( )( )2 2cos 4 4 3cos
16

E E

f
C fα α= + −  

Now using these relationships and a special result of the binomial series [equation (72) 

with x C= −  and 1β = − ] we may write 
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 ( ) 1 2 3

0

1 1
1 1

1
C C C C

A C

−= = − = + + + +
′ −

⋯ 

and 

 2 2 2 2 4 3 42

0

1 1 3 1
cos cos cos cos

4 4 16 8
E E E E

A
f f f f

A
α α α α

′
= + − + +

′
⋯ 

Ignoring terms greater than 3f  (greater than 2 2

0

 in 
A

f
A

′
′
) we have 

 ( )( )

2 2 2 2 42

0

2 2

1 1 3
cos cos cos

4 4 16

cos 4 4 3cos
16

E E E

E E

A
f f f

A

f
f

C

α α α

α α

′
≡ + −

′

= + −

=

 

Also 

 2 4 3 64

0

1 1
cos cos

32 128
E E

A
f f

A
α α

′
= + +

′
⋯  

and ignoring terms greater than 3f  (greater than 2 4

0

 in 
A

f
A

′
′
) we have 

 2 4 2 44 4

0 0

1 1
cos    and   2 cos

32 16
E E

A A
f f

A A
α α

′ ′
≡ =

′ ′
 

Now 

 2 2 4 3 4 3 61 1 3
cos cos cos

16 8 32
E E EC f f fα α α= + − +⋯ 

and ignoring terms greater than 3f  (greater than 2 2 in f C ) we have 

 2 2 4 4

0

1
cos 2

16
E

A
C f

A
α

′
≡ =

′
 

Using these results we may write equation (147) as 

 

 ( ) ( ){ }21 sin sin cos2 cos 1 2 cos 2E m mC f C Cλ ω α σ σ σ σ σ ∆ = ∆ − − + + − +    (148) 

 

where 2 1ω ω ω∆ = −  is the difference in longitudes of 1P ′  and 2P ′  on the auxiliary sphere 

and 2 1λ λ λ∆ = −  is the difference in longitudes of 1P  and 2P  on the ellipsoid, and 

 ( )( )2 2cos 4 4 3cos
16

E E

f
C fα α= + −  (149) 
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Equations (148) and (149) are essentially the same as Vincenty (1975, equations 11 and 10, 

p.89) – Vincenty uses L and λ  where we have used λ∆  and ω∆  respectively – although 

he gives no outline of his method of deriving his equations from Rainsford's. 

 

SOLVING THE DIRECT AND INVERSE PROBLEMS ON THE ELLIPSOID USING 

VINCENTY'S EQUATIONS 

Vincenty (1975) set out methods of solving the direct and inverse problems on the 

ellipsoid.  His methods were different from those proposed by Rainsford (1955) even 

though his equations (140) to (143) for spherical arc length σ  and (148) and (149) for 

longitude λ  were simplifications of Rainsford's equations.  His approach was to develop 

solutions more applicable to computer programming rather than the mechanical methods 

used by Rainsford.  Vincenty's method relies upon the auxiliary sphere and there are 

several equations using spherical trigonometry.  Since distances are often small when 

compared with the Earth's circumference, resulting spherical triangles can have very small 

sides and angles.  In such cases, usual spherical trigonometry formula, e.g., sine rule and 

cosine rule, may not furnish accurate results and other, less common formula, are used.  

Vincenty's equations and his methods are now widely used in geodetic computations. 

In the solutions of the direct and inverse problems set out in subsequent sections, the 

following notation and relationships are used. 

 a, f semi-major axis length and flattening of ellipsoid. 

 b semi-minor axis length of the ellipsoid, ( )1b a f= −  

 2e  eccentricity of ellipsoid squared, ( )2 2e f f= −  

 2e ′  2nd-eccentricity of ellipsoid squared, 
2

2

21

e
e

e
′ =

−
 

 ,φ λ  latitude and longitude on ellipsoid:  measured 0  to 90φ ±� �  (north latitudes 

  positive and south latitudes negative) and  measured 0  to 180λ ±� �  (east  

  longitudes positive and west longitudes negative). 

 s length of the geodesic on the ellipsoid. 

 1 2,α α  azimuths of the geodesic, clockwise from north 0  to 360� � ; 2α  in the direction 

  1 2PP  produced. 
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 12α  azimuth of geodesic 1 2PP ; 12 1α α=  

 21α  reverse azimuth; azimuth of geodesic 2 1P P ; 21 2 180α α= ± �  

 Eα  azimuth of geodesic at the equator, 0sin cosEα ψ=  

 2u  2 2
0sine ψ′=  

 ψ  parametric latitude, ( )tan 1 tanfψ φ= −  

 0ψ  parametric latitude of geodesic vertex, 0cos cos sin sin Eψ ψ α α= =  

 ,ψ ω  latitude and longitude on auxiliary sphere:  measured 0  to 90ψ ±� �  (north  

  latitudes positive and south latitudes negative) and  measured 0  to 180ω ±� �  

  (east longitudes positive and west longitudes negative). 

 ,λ ω∆ ∆  longitude differences; 2 1λ λ λ∆ = −  (ellipsoid) and 2 1ω ω ω∆ = −  (spherical) 

 σ  angular distance (great circle arc) 1 2P P′ ′  on the auxiliary sphere. 

 1σ  angular distance from equator to 1P ′  on the auxiliary sphere, 1
1

1

tan
tan

cos

ψ
σ

α
=  

 mσ  angular distance from equator to mid-point of great circle arc 1 2P P′ ′  on the 

  auxiliary sphere, 12 2mσ σ σ= +  

 

THE DIRECT PROBLEM ON THE ELLIPSOID USING VINCENTY'S EQUATIONS 

Using Vincenty's equations the direct problem on the ellipsoid 

[given latitude and longitude of 1P  on the ellipsoid and azimuth 12α  and geodesic 

distance s to 2P  on the ellipsoid, compute the latitude and longitude of 2P  and the 

reverse azimuth 21α ] 

may be solved by the following sequence. 

With the ellipsoid constants ( ) ( )
2

2 2

2
, , 1 , 2  and 

1

e
a f b a f e f f e

e
′= − = − =

−
 and given 

1 1 1 12, ,φ λ α α=  and s 

1. Compute parametric latitude 1ψ  of 1P  from 

 ( )1 1tan 1 tanfψ φ= −  
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2. Compute the parametric latitude of the geodesic vertex 0ψ  from 

 0 1 1cos cos sinψ ψ α=  

3. Compute the geodesic constant 2u  from 

 2 2 2
0sinu e ψ′=  

4. Compute angular distance 1σ  on the auxiliary sphere from the equator to 1P ′  from 

 1
1

1

tan
tan

cos

ψ
σ

α
=  

5. Compute the azimuth of the geodesic at the equator Eα  from 

 0 1 1sin cos cos sinEα ψ ψ α= =  

6. Compute Vincenty's constants A′  and B ′  from 

 

( )( )( )

( )( )( )

2
2 2 2

2
2 2 2

1 4096 768 320 175
16384

256 128 74 47
1024

u
A u u u

u
B u u u

′ = + + − + −

′ = + − + −  

7. Compute angular distance σ  on the auxiliary sphere from 1P ′  to 2P ′  by iteration 

using the following sequence of equations until there is negligible change in σ  

 

( ){
( )( )

1

2

2 2

2 2

1
sin cos2 cos 2 cos 2 1

4

1
cos2 3 4 sin 3 4 cos 2

6

m

m m

m m

B B

B

s

bA

σ σ σ

σ σ σ σ σ

σ σ σ

σ σ

= +

′ ′∆ = + −

′− − + − + 

= + ∆
′

 

 The first approximation for σ  in this iterative solution can be taken as 
s

bA
σ

′
≃  

8. After computing the spherical arc length σ  the latitude of 2P  can be computed using 

spherical trigonometry and the relationship 
( )

2
2

tan
tan

1 f

ψ
φ =

−
 

 
( ) ( )

1 1 1
2 22

1 1 1

sin cos cos sin cos
tan

1 sin sin sin cos cos cosEf

ψ σ ψ σ α
φ

α ψ σ ψ σ α

+
=

− + −
 

9. Compute the longitude difference ω∆  on the auxiliary sphere from 

 1

1 1 1

sin sin
tan

cos cos sin sin cos

σ α
ω

ψ σ ψ σ α
∆ =

−
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10. Compute Vincenty's constant C from 

 ( )( )2 2cos 4 4 3 cos
16

E E

f
C fα α= + −  

11. Compute the longitude difference λ∆  on the ellipsoid from 

 ( ) ( ){ }21 sin sin cos2 cos 1 2 cos 2E m mC f C Cλ ω α σ σ σ σ σ ∆ = ∆ − − + + − +    

12. Compute azimuth 2α  from 

 2

1 1 1

sin
tan

cos cos cos sin sin
Eαα

ψ σ α ψ σ
=

−
 

13. Compute reverse azimuth 21α  

 21 2 180α α= ± �  

 

Shown below is the output of a MATLAB function Vincenty_Direct.m that solves the 

direct problem on the ellipsoid. 

The ellipsoid is the GRS80 ellipsoid and ,φ λ  for 1P  are 45− �  and 132�  respectively with 

12 1 43 25.876544α ′ ′′= �  and 3880275.684153 ms = .  ,φ λ  computed for 2P  are 10− �  and 

133�  respectively with the reverse azimuth 21 181 14 22.613213α ′ ′′= �  

 

>> Vincenty_Direct 

 

///////////////////////////////////////////////// 

// DIRECT CASE on ellipsoid: Vincenty's method // 

///////////////////////////////////////////////// 

 

ellipsoid parameters 

a    =  6378137.000000000 

f    = 1/298.257222101000 

b    =  6356752.314140356100 

e2   =  6.694380022901e-003 

ep2  =  6.739496775479e-003 

 

Latitude & Longitude of P1 

latP1 = -45  0  0.000000 (D M S) 

lonP1 = 132  0  0.000000 (D M S) 

 

Azimuth & Distance P1-P2 

az12 =    1 43 25.876544 (D M S) 

s    =    3880275.684153 

 

Parametric Latitude of P1 

psiP1 = -44 54 13.636256 (D M S) 

 

Parametric Latitude of vertex P0 

psiP0 =  88 46 44.750547 (D M S) 

 

Geodesic constant u2 (u-squared) 

u2 =  6.736437077728e-003 
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angular distance on auxiliary sphere from equator to P1' 

sigma1 = -7.839452835875e-001 radians 

 

Vincenty's constants A and B 

A =  1.001681988050e+000 

B =  1.678458818215e-003 

 

angular distance sigma on auxiliary sphere from P1' to P2' 

sigma =  6.099458753810e-001 radians 

iterations =  5 

 

Latitude of P2 

latP2 = -10  0  0.000000 (D M S) 

 

Vincenty's constant C 

C =  8.385253517062e-004 

 

Longitude difference P1-P2 

dlon =   1  0  0.000000 (D M S) 

 

Longitude of P2 

lon2 = 133  0  0.000000 (D M S) 

 

Reverse azimuth 

alpha21 = 181 14 22.613213 (D M S) 

 

>> 

 

 

 

THE INVERSE PROBLEM ON THE ELLIPSOID USING VINCENTY'S EQUATIONS 

Using Vincenty's equations the inverse problem on the ellipsoid 

[given latitudes and longitudes of 1P  and 2P  on the ellipsoid compute the forward 

and reverse azimuths 12α  and 21α  and the geodesic distance s] 

may be solved by the following sequence. 

With the ellipsoid constants ( ) ( )
2

2 2

2
, , 1 , 2  and 

1

e
a f b a f e f f e

e
′= − = − =

−
 and given 

1 1 2 2,  and ,φ λ φ λ  

1. Compute parametric latitudes 1 2 and ψ ψ  of 1P  and 2P  from 

 ( )tan 1 tanfψ φ= −  

2. Compute the longitude difference λ∆  on the ellipsoid 

 2 1λ λ λ∆ = −  
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3. Compute the longitude difference ω∆  on the auxiliary sphere between 1P ′  to 2P ′  by 

iteration using the following sequence of equations until there is negligible change in 

ω∆ .  Note that σ  should be computed using the atan2 function after evaluating 

2sin sinσ σ=  and cosσ .  This will give 180 180σ− < ≤� � . 

 

( ) ( )

( )( )

( )

2 22
2 1 2 1 2

1 2 1 2

1 2

1 2

2

2 2

sin cos sin cos sin sin cos cos

cos sin sin cos cos cos

sin
tan

cos
cos cos sin

sin
sin
2 sin sin

cos2 cos
cos

cos 4 4 3cos
16

1 sin sin cos2 cos

E

m

E

E E

E m

f
C f

C f C C

σ ψ ω ψ ψ ψ ψ ω

σ ψ ψ ψ ψ ω

σ
σ

σ

ψ ψ ω
α

σ
ψ ψ

σ σ
α

α α

ω λ α σ σ σ σ

= ∆ + − ∆

= + ∆

=

∆
=

= −

= + −

∆ = ∆ + − + + ( ){ }21 2 cos 2 mσ
 − +  

 

 The first approximation for ω∆  in this iterative solution can be taken as ω λ∆ ∆≃  

4. Compute the parametric latitude of the geodesic vertex 0ψ  from 

 0cos sin Eψ α=  

5. Compute the geodesic constant 2u  from 

 2 2 2
0sinu e ψ′=  

6. Compute Vincenty's constants A′  and B ′  from 

 

( )( )( )

( )( )( )

2
2 2 2

2
2 2 2

1 4096 768 320 175
16384

256 128 74 47
1024

u
A u u u

u
B u u u

′ = + + − + −

′ = + − + −  

7. Compute geodesic distance s from 

 

( ){
( )( )

( )

2

2 2

1
sin cos2 cos 2 cos 2 1

4

1
cos2 3 4 sin 3 4 cos 2

6

m m

m m

B B

B

s bA

σ σ σ σ σ

σ σ σ

σ σ

′ ′∆ = + −

′− − + − + 
= − ∆  

8. Compute the forward azimuth 12 1α α=  from 

 2
1

1 2 1 2

cos sin
tan

cos sin sin cos cos

ψ ω
α

ψ ψ ψ ψ ω

∆
=

− ∆
 



 

Geodesics – Bessel's method 52 

9. Compute azimuth 2α  from 

 1
2

1 2 1 2

cos sin
tan

sin cos cos sin cos

ψ ω
α

ψ ψ ψ ψ ω

∆
=

− + ∆
 

10. Compute reverse azimuth 21α  

 21 2 180α α= ± �  

 

Shown below is the output of a MATLAB function Vincenty_Inverse.m that solves the 

inverse problem on the ellipsoid. 

The ellipsoid is the GRS80 ellipsoid.  ,φ λ  for 1P  are 10− �  and 110�  respectively and ,φ λ  

for 2P  are 45− �  and 155�  respectively.  Computed azimuths are 12 140 30 03.017703α ′ ′′= �  

and 21 297 48 47.310738α ′ ′′= � , and geodesic distance 5783228.548429 ms = . 

 

>> Vincenty_Inverse 

 

//////////////////////////////////////////////////// 

// INVERSE CASE on ellipsoid: Vincenty's method // 

//////////////////////////////////////////////////// 

 

ellipsoid parameters 

a    =  6378137.000000000 

f    = 1/298.257222101000 

b    =  6356752.314140356100 

e2   =  6.694380022901e-003 

ep2  =  6.739496775479e-003 

 

Latitude & Longitude of P1 

latP1 = -10  0  0.000000 (D M S) 

lonP1 = 110  0  0.000000 (D M S) 

 

Latitude & Longitude of P2 

latP2 = -45  0  0.000000 (D M S) 

lonP2 = 155  0  0.000000 (D M S) 

 

Parametric Latitudes of P1 and P2 

psiP1 =  -9 58  1.723159 (D M S) 

psiP2 = -44 54 13.636256 (D M S) 

 

Longitude difference on ellipsoid P1-P2 

dlon =  45  0  0.000000 (D M S) 

 

Longitude difference on auxiliary sphere P1'-P2' 

domega =  9.090186019005e-001 radians 

iterations =  5 

 

Parametric Latitude of vertex P0 

psiP0 =  51 12 36.239192 (D M S) 

 

Geodesic constant u2 (u-squared) 

u2 =  4.094508823114e-003 

 

Vincenty's constants A and B 

A =  1.001022842684e+000 

B =  1.021536528199e-003 
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Azimuth & Distance P1-P2 

az12 =  140 30  3.017703 (D M S) 

s    =    5783228.548429 

 

Reverse azimuth 

alpha21 = 297 48 47.310738 (D M S) 

 

>> 

 

 

EXCEL WORKBOOK vincenty.xlsvincenty.xlsvincenty.xlsvincenty.xls FROM GEOSCIENCE AUSTRALIA  

Geoscience Australia has made available an Excel workbook vincenty.xlsvincenty.xlsvincenty.xlsvincenty.xls containing four 

spreadsheets labelled Ellipsoids, Direct Solution, Inverse Solution and Test Data.  The Direct Solution 

and Inverse Solution spreadsheets are implementations of Vincenty's equations.  The Excel 

workbook vincenty.xlsvincenty.xlsvincenty.xlsvincenty.xls can be downloaded via the Internet at the Geoscience Australia 

website (http://www.ga.gov.au/) following the links to Geodetic Calculations then Calculate 

Bearing Distance from Latitude Longitude.  At this web page the spreadsheet vincenty.xlsvincenty.xlsvincenty.xlsvincenty.xls is 

available for use or downloading.  Alternatively, the Intergovernmental Committee on 

Surveying and Mapping (ICSM) has produced an on-line publication Geocentric Datum of 

Australia Technical Manual Version 2.2 (GDA Technical Manual, ICSM 2002) with a link 

to vincenty.xlsvincenty.xlsvincenty.xlsvincenty.xls. 

The operation of vincenty.xlsvincenty.xlsvincenty.xlsvincenty.xls is relatively simple, but since the spreadsheets use the Excel 

solver for the iterative solutions of certain equations then the Iteration box must be checked 

on the Calculation sheet.  The Calculation sheet is found under Tools/Options on the Excel 

toolbar.  Also, on the Calculation sheet make sure the Maximum change box has a value of 

0.000000000001. 

The Direct Solution and Inverse Solution spreadsheets have statements that the spreadsheets 

have been tested in the Australian region but not exhaustively tested worldwide. 

To test vincenty.xlsvincenty.xlsvincenty.xlsvincenty.xls, direct and inverse solutions between points on a geographic rectangle 

ABCD covering Australia were computed using vincenty.xlsvincenty.xlsvincenty.xlsvincenty.xls and MATLAB functions 

Vincenty_Direct.m and Vincenty_Inverse.m.  Figure 16 shows the geographic rectangle 

ABCD whose sides are the meridians of longitude 110�  and 155�  and parallels of latitude 

10− �  and 45− � .  Several lines were chosen on and across this rectangle. 
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Figure 16:  Geographic rectangle covering Australia 
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Table 1:  Geodesic curves between 1P  and 2P  on the GRS80 ellipsoid 
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Table 1 shows a number of long geodesics that are either bounding meridians of the 

rectangle or geodesics crossing the rectangle.  All of these results have been computed 

using the MATLAB function Vincenty_Inverse.m and verified by using the MATLAB 

function Vincenty_Direct.m.  Each of the lines were then computed using the Inverse 

Solution spreadsheet of the Excel workbook vincenty.xlsvincenty.xlsvincenty.xlsvincenty.xls; all azimuths were identical and the 

differences between distances were 0.000002 m on one line and 0.000001 m on two other 

lines.  Each of the lines were then verified by using the Direct Solution spreadsheet (all 

computed latitudes and longitudes we in exact agreement).  It could be concluded that the 

Excel workbook vincenty.xlsvincenty.xlsvincenty.xlsvincenty.xls gives results accurate to at least the 5th decimal of distance and 

the 6th decimal of seconds of azimuth for any geodesic in Australia. 

Vincenty (1975) verifies his equations by comparing his results with Rainsford's over five 

test lines (Rainsford 1955).  On one of these lines – line (a) 1 55 45φ ′= � , 1 0 00λ ′= � , 

12 96 36 08.79960α ′ ′′= � , 14110526.170 ms =  on Bessel's ellipsoid 6377397.155 ma =  

1 299.1528128f =  – Vincenty finds his direct solution gives 2 33 26 00.000012φ ′ ′′= − � , 

2 108 13 00.000007λ ′ ′′= �  and 21 137 52 22.014528α ′ ′′= � .  We can confirm that the 

MATLAB function Vincenty_Direct.m also gives these results, but it is interesting to note 

that the Direct Solution spreadsheet of the Excel workbook vincenty.xlsvincenty.xlsvincenty.xlsvincenty.xls does not give these 

results.  This is due to the Excel solver – used to determine a value by iteration – 

returning an incorrect value.  Whilst the error in the Excel solver result is small, it is, 

nonetheless, significant and users should be aware of the likelihood or erroneous results 

over very long geodesics using vincenty.xlsvincenty.xlsvincenty.xlsvincenty.xls. 

 

MATLAB FUNCTIONS 

Shown below are two MATLAB functions Vincenty_Direct.m and Vincenty_Inverse.m 

that have been written to test Vincenty's equations and his direct and inverse methods of 

solution.  Both functions call another function DMS.m that is also shown. 
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MATLAB function Vincenty_Direct.m 
 

 

function Vincenty_Direct 

%  Vincenty_Direct computes the "direct case" on the ellipsoid using 

%  Vinventy's method. 

%  Given the size and shape of the ellipsoid and the latitude and  

%  longitude of P1 and the azimuth and geodesic distance of P1 to P2,  

%  this function computes the latitude and longitude of P2 and the  

%  reverse azimuth P2 to P1. 

  

%============================================================================ 

% Function:  Vincenty_Direct 

% 

% Useage:    Vincenty_Direct; 

% 

% Author: 

%  Rod Deakin,  

%  Department of Mathematical and Geospatial Sciences,  

%  RMIT University, 

%  GPO Box 2476V, MELBOURNE VIC 3001 

%  AUSTRALIA 

%  email: rod.deakin@rmit.edu.au 

% 

% Date: 

%  Version 1.0   2 March 2008 

% 

% Functions Required: 

%      [D,M,S] = DMS(DecDeg) 

% 

% Remarks:   

%  This function computes the DIRECT CASE on the ellipsoid.  Given the size 

%  and shape of an ellipsoid (defined by parameters a and f, semi-major 

%  axis and flattening respectively) and the latitude and longitude of P1 

%  and the azimuth (az12) P1 to P2 and the geodesic distance (s) P1 to P2,  

%  the function computes the latitude and longitude of P2 and the reverse 

%  azimuth (az21) P2 to P1.  Latitudes and longitudes of the geodesic 

%  vertices P0 and P0' are also output as well as distances and longitude 

%  difference from P1 and P2 to the relevant vertices. 

% 

% References: 

%  [1] Deakin, R.E, and Hunter, M.N., 2007. 'Geodesics on an Ellipsoid - 

%         Bessels' Method', School of Mathematical and Geospatial Sciences, 

%         RMIT University, January 2007. 

%  [2] Vincenty, T., 1975. 'Direct and Inverse solutions of geodesics on  

%         the ellipsoid with application of nested equations', Survey 

%         Review, Vol. 23, No. 176, pp.88-93, April 1975. 

% 

% Variables: 

%  a            - semi-major axis of ellipsoid 

%  A            - Vincenty's constant for computation of sigma 

%  alpha1       - azimuth P1-P2 (radians) 

%  az12         - azimuth P1-P2 (degrees) 

%  az21         - azimuth P2-P1 (degrees) 

%  b            - semi-minor axis of ellipsoid 

%  A            - Vincenty's constant for computation of sigma 

%  cos_alpha1   - cosine of azimuth of geodesic P1-P2 at P1 

%  dlambda      - longitude difference P1 to P2 (radians) 

%  domega       - longitude difference P1' to P2' (radians) 

%  d2r          - degree to radian conversion factor 

%  e2           - eccentricity of ellipsoid squared 

%  ep2          - 2nd eccentricity squared 

%  f            - flattening of ellipsoid 

%  flat         - denominator of flattening, f = 1/flat 

%  lambda1      - longitude of P1 (radians) 

%  lambda2      - longitude of P2 (radians) 

%  lat1         - latitude of P1 (degrees) 
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%  lat2         - latitude of P2 (degrees) 

%  lon1         - longitude of P1 (degrees) 

%  lon2         - longitude of P2 (degrees) 

%  phi1         - latitude of P1 (radians) 

%  phi2         - latitude of P2 (radians) 

%  pion2        - pi/2 

%  psi0         - parametric latitude of P0 (radians) 

%  psi1         - parametric latitude of P1 (radians) 

%  psi2         - parametric latitude of P2 (radians) 

%  s            - geodesic distance P1 to P2 

%  sigma1       - angular distance (radians) on auxiliary sphere from  

%                 equator to P1' 

%  sin_alpha1   - sine of azimuth of geodesic P1-P2 at P1 

%  twopi        - 2*pi 

%  u2           - geodesic constant u-squared 

% 

% 

%============================================================================ 

  

% Define some constants 

d2r   = 180/pi; 

twopi = 2*pi; 

pion2 = pi/2; 

  

% Set defining ellipsoid parameters 

a    = 6378137;           % GRS80 

flat = 298.257222101; 

% a    = 6377397.155;        % Bessel (see Ref [2], p.91) 

% flat = 299.1528128; 

  

% Compute derived ellipsoid constants 

f   = 1/flat; 

b   = a*(1-f); 

e2  = f*(2-f); 

ep2 = e2/(1-e2); 

  

%--------------------------------------- 

% latitude and longitude of P1 (degrees) 

%--------------------------------------- 

 lat1 =  -45;            

 lon1 =  132; 

  

% lat and lon of P1 (radians) 

phi1    = lat1/d2r; 

lambda1 = lon1/d2r; 

  

%------------------------------------ 

% azimuth of geodesic P1-P2 (degrees) 

%------------------------------------ 

az12 = 1 + 43/60 + 25.876544/3600;  

% 

% azimuth of geodesic P1-P2 (radians) 

alpha1 = az12/d2r; 

  

% sine and cosine of azimuth P1-P2 

sin_alpha1 = sin(alpha1); 

cos_alpha1 = cos(alpha1); 

  

%------------------ 

% geodesic distance 

%------------------ 

s = 3880275.684153; 

  

% [1] Compute parametric latitude psi1 of P1 

psi1 = atan((1-f)*tan(phi1)); 

  

% [2] Compute parametric latitude of vertex 

psi0 = acos(cos(psi1)*sin_alpha1); 
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% [3] Compute geodesic constant u2 (u-squared) 

u2 = ep2*(sin(psi0)^2); 

  

% [4] Compute angular distance sigma1 on the auxiliary sphere from equator 

%     to P1' 

sigma1 = atan2(tan(psi1),cos_alpha1); 

  

% [5] Compute the sine of the azimuth of the geodesic at the equator 

sin_alphaE = cos(psi0); 

  

% [6] Compute Vincenty's constants A and B 

A = 1 + u2/16384*(4096 + u2*(-768 + u2*(320-175*u2))); 

B = u2/1024*(256 + u2*(-128 + u2*(74-47*u2))); 

  

% [7] Compute sigma by iteration 

sigma = s/(b*A); 

iter = 1; 

while 1 

    two_sigma_m = 2*sigma1 + sigma; 

    s1 = sin(sigma); 

    s2 = s1*s1; 

    c1 = cos(sigma); 

    c1_2m = cos(two_sigma_m); 

    c2_2m = c1_2m*c1_2m; 

    t1 = 2*c2_2m-1; 

    t2 = -3+4*s2; 

    t3 = -3+4*c2_2m; 

    delta_sigma = B*s1*(c1_2m+B/4*(c1*t1-B/6*c1_2m*t2*t3)); 

    sigma_new = s/(b*A)+delta_sigma; 

    if abs(sigma_new-sigma)<1e-12 

        break; 

    end; 

    sigma = sigma_new; 

    iter = iter + 1; 

end; 

s1 = sin(sigma); 

c1 = cos(sigma); 

  

% [8] Compute latitude of P2 

y = sin(psi1)*c1+cos(psi1)*s1*cos_alpha1; 

x = (1-f)*sqrt(sin_alphaE^2+(sin(psi1)*s1-cos(psi1)*c1*cos_alpha1)^2); 

phi2 = atan2(y,x); 

lat2 = phi2*d2r; 

  

% [9] Compute longitude difference domega on the auxiliary sphere 

y = s1*sin_alpha1; 

x = cos(psi1)*c1-sin(psi1)*s1*cos_alpha1; 

domega = atan2(y,x); 

  

% [10] Compute Vincenty's constant C 

x = 1-sin_alphaE^2; 

C = f/16*x*(4+f*(4-3*x)); 

  

% [11] Compute longitude difference on ellipsoid 

two_sigma_m = 2*sigma1 + sigma; 

c1_2m = cos(two_sigma_m); 

c2_2m = c1_2m*c1_2m; 

dlambda = domega-(1-C)*f*sin_alphaE*(sigma+C*s1*(c1_2m+C*c1*(-1+2*c2_2m))); 

dlon = dlambda*d2r; 

lon2 = lon1+dlon; 

  

% [12] Compute azimuth alpha2 

y = sin_alphaE; 

x = cos(psi1)*c1*cos_alpha1-sin(psi1)*s1; 

alpha2 = atan2(y,x); 

  

% [13] Compute reverse azimuth az21 



 

Geodesics – Bessel's method 59 

az21 = alpha2*d2r + 180; 

if az21 > 360 

    az21 = az21-360; 

end; 

  

  

  

%------------------------------------------------- 

% Print computed quantities, latitudes and azimuth 

%------------------------------------------------- 

  

  

fprintf('\n/////////////////////////////////////////////////'); 

fprintf('\n// DIRECT CASE on ellipsoid: Vincenty''s method //'); 

fprintf('\n/////////////////////////////////////////////////'); 

fprintf('\n\nellipsoid parameters'); 

fprintf('\na    = %18.9f',a); 

fprintf('\nf    = 1/%16.12f',flat); 

fprintf('\nb    = %21.12f',b); 

fprintf('\ne2   = %20.12e',e2); 

fprintf('\nep2  = %20.12e',ep2); 

  

fprintf('\n\nLatitude & Longitude of P1'); 

[D,M,S] = DMS(lat1); 

if D==0 && lat1<0 

    fprintf('\nlatP1 =  -0 %2d %9.6f (D M S)',M,S); 

else 

    fprintf('\nlatP1 = %3d %2d %9.6f (D M S)',D,M,S); 

end; 

[D,M,S] = DMS(lon1); 

if D==0 && lon1<0 

    fprintf('\nlonP1 =  -0 %2d %9.6f (D M S)',M,S); 

else 

    fprintf('\nlonP1 = %3d %2d %9.6f (D M S)',D,M,S); 

end; 

fprintf('\n\nAzimuth & Distance P1-P2'); 

[D,M,S] = DMS(az12); 

fprintf('\naz12 = %4d %2d %9.6f (D M S)',D,M,S); 

fprintf('\ns    = %17.6f',s); 

  

fprintf('\n\nParametric Latitude of P1'); 

[D,M,S] = DMS(psi1*d2r); 

if D==0 && psi1<0 

    fprintf('\npsiP1 =  -0 %2d %9.6f (D M S)',M,S); 

else 

    fprintf('\npsiP1 = %3d %2d %9.6f (D M S)',D,M,S); 

end; 

  

fprintf('\n\nParametric Latitude of vertex P0'); 

[D,M,S] = DMS(psi0*d2r); 

if D==0 && psi0<0 

    fprintf('\npsiP0 =  -0 %2d %9.6f (D M S)',M,S); 

else 

    fprintf('\npsiP0 = %3d %2d %9.6f (D M S)',D,M,S); 

end; 

  

fprintf('\n\nGeodesic constant u2 (u-squared)'); 

fprintf('\nu2 = %20.12e',u2); 

  

fprintf('\n\nangular distance on auxiliary sphere from equator to P1'''); 

fprintf('\nsigma1 = %20.12e radians',sigma1); 

  

fprintf('\n\nVincenty''s constants A and B'); 

fprintf('\nA = %20.12e',A); 

fprintf('\nB = %20.12e',B); 

  

fprintf('\n\nangular distance sigma on auxiliary sphere from P1'' to P2'''); 

fprintf('\nsigma = %20.12e radians',sigma); 
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fprintf('\niterations = %2d',iter); 

  

fprintf('\n\nLatitude of P2'); 

[D,M,S] = DMS(lat2); 

if D==0 && lat2<0 

    fprintf('\nlatP2 =  -0 %2d %9.6f (D M S)',M,S); 

else 

    fprintf('\nlatP2 = %3d %2d %9.6f (D M S)',D,M,S); 

end; 

  

fprintf('\n\nVincenty''s constant C'); 

fprintf('\nC = %20.12e',C); 

  

fprintf('\n\nLongitude difference P1-P2'); 

[D,M,S] = DMS(dlon); 

if D==0 && dlon<0 

    fprintf('\ndlon =  -0 %2d %9.6f (D M S)',M,S); 

else 

    fprintf('\ndlon = %3d %2d %9.6f (D M S)',D,M,S); 

end; 

  

fprintf('\n\nLongitude of P2'); 

[D,M,S] = DMS(lon2); 

if D==0 && lon2<0 

    fprintf('\nlon2 =  -0 %2d %9.6f (D M S)',M,S); 

else 

    fprintf('\nlon2 = %3d %2d %9.6f (D M S)',D,M,S); 

end; 

  

fprintf('\n\nReverse azimuth'); 

[D,M,S] = DMS(az21); 

fprintf('\nalpha21 = %3d %2d %9.6f (D M S)',D,M,S); 

  

fprintf('\n\n'); 

 

 

 

MATLAB function Vincenty_Inverse.m 
 

function Vincenty_Inverse 

%  Vincenty_Inverse computes the "inverse case" on the ellipsoid using 

%  Vinventy's method. 

%  Given the size and shape of the ellipsoid and the latitudes and  

%  longitudes of P1 and P2 this function computes the geodesic distance 

%  P1 to P2 and the forward and reverse azimuths 

  

%============================================================================ 

% Function:  Vincenty_Inverse 

% 

% Useage:    Vincenty_Inverse; 

% 

% Author: 

%  Rod Deakin,  

%  Department of Mathematical and Geospatial Sciences,  

%  RMIT University, 

%  GPO Box 2476V, MELBOURNE VIC 3001 

%  AUSTRALIA 

%  email: rod.deakin@rmit.edu.au 

% 

% Date: 

%  Version 1.0   7 March 2008 

% 

% Functions Required: 

%      [D,M,S] = DMS(DecDeg) 

% 

% Remarks:   

%  This function computes the INVERSE CASE on the ellipsoid.  Given the size 



 

Geodesics – Bessel's method 61 

%  and shape of an ellipsoid (defined by parameters a and f, semi-major 

%  axis and flattening respectively) and the latitudes and longitudes of P1 

%  this function computes the forward azimuth (az12) P1 to P2, the reverse 

%  azimuth (az21) P2 to P1 and the geodesic distance (s) P1 to P2. 

% 

% References: 

%  [1] Deakin, R.E, and Hunter, M.N., 2007. 'Geodesics on an Ellipsoid - 

%         Bessels' Method', School of Mathematical and Geospatial Sciences, 

%         RMIT University, January 2007. 

%  [2] Vincenty, T., 1975. 'Direct and Inverse solutions of geodesics on  

%         the ellipsoid with application of nested equations', Survey 

%         Review, Vol. 23, No. 176, pp.88-93, April 1975. 

% 

% Variables: 

%  A            - Vincenty's constant for computation of sigma 

%  a            - semi-major axis of ellipsoid 

%  alpha1       - azimuth at P1 for the line P1-P2 (radians) 

%  alpha2       - azimuth at P2 for the line P1-P2 extended (radians) 

%  az12         - azimuth P1-P2 (degrees) 

%  az21         - azimuth P2-P1 (degrees) 

%  B            - Vincenty's constant for computation of sigma 

%  b            - semi-minor axis of ellipsoid 

%  C            - Vincenty's constant for computation of longitude 

%                 difference 

%  cdo          - cos(domega) 

%  cos_sigma    - cos(sigma) 

%  delta_sigma  - small change in sigma 

%  dlambda      - longitude difference P1 to P2 (radians) 

%  domega       - longitude difference P1' to P2' (radians) 

%  d2r          - degree to radian conversion factor 

%  e2           - eccentricity of ellipsoid squared 

%  ep2          - 2nd eccentricity squared 

%  f            - flattening of ellipsoid 

%  flat         - denominator of flattening, f = 1/flat 

%  lambda1      - longitude of P1 (radians) 

%  lambda2      - longitude of P2 (radians) 

%  lat1         - latitude of P1 (degrees) 

%  lat2         - latitude of P2 (degrees) 

%  lon1         - longitude of P1 (degrees) 

%  lon2         - longitude of P2 (degrees) 

%  phi1         - latitude of P1 (radians) 

%  phi2         - latitude of P2 (radians) 

%  pion2        - pi/2 

%  psi0         - parametric latitude of P0 (radians) 

%  psi1         - parametric latitude of P1 (radians) 

%  psi2         - parametric latitude of P2 (radians) 

%  s            - geodesic distance P1 to P2 

%  sdo          - sin(domega) 

%  sigma        - angular distance (radians) on auxiliary sphere from P1'  

%                 to P2' 

%  sin_alphaE   - sine of azimuth of geodesic P1-P2 at equator 

%  sin_sigma    - sin(sigma) 

%  twopi        - 2*pi 

%  u2           - geodesic constant u-squared 

% 

% 

%============================================================================ 

  

% Define some constants 

d2r   = 180/pi; 

twopi = 2*pi; 

pion2 = pi/2; 

  

% Set defining ellipsoid parameters 

 a    = 6378137;           % GRS80 

 flat = 298.257222101; 

% a    = 6377397.155;        % Bessel (see Ref [2], p.91) 

% flat = 299.1528128; 



 

Geodesics – Bessel's method 62 

  

% Compute derived ellipsoid constants 

f   = 1/flat; 

b   = a*(1-f); 

e2  = f*(2-f); 

ep2 = e2/(1-e2); 

  

%--------------------------------------- 

% latitude and longitude of P1 (degrees) 

%--------------------------------------- 

lat1 =  -10;            

lon1 =  110; 

  

% lat and lon of P1 (radians) 

phi1    = lat1/d2r; 

lambda1 = lon1/d2r; 

  

%--------------------------------------- 

% latitude and longitude of P2 (degrees) 

%--------------------------------------- 

lat2 =  -45;            

lon2 =  155; 

  

% lat and lon of P2 (radians) 

phi2    = lat2/d2r; 

lambda2 = lon2/d2r; 

  

% [1] Compute parametric latitudes psi1 and psi2 of P1 and P2 

psi1 = atan((1-f)*tan(phi1)); 

psi2 = atan((1-f)*tan(phi2)); 

  

s1 = sin(psi1); 

s2 = sin(psi2); 

c1 = cos(psi1); 

c2 = cos(psi2); 

  

% [2] Compute longitude difference dlambda on the ellipsoid 

dlambda = lambda2-lambda1; % (radians) 

dlon = lon2-lon1;          % (degrees) 

  

% [3] Compute longitude difference domega on the auxiliary sphere by 

%     iteration 

domega = dlambda; 

iter = 1; 

while 1 

    sdo = sin(domega); 

    cdo = cos(domega); 

    x = c2*sdo; 

    y = c1*s2 - s1*c2*cdo; 

    sin_sigma = sqrt(x*x + y*y); 

    cos_sigma = s1*s2 + c1*c2*cdo; 

    sigma = atan2(sin_sigma,cos_sigma); 

    sin_alphaE = c1*c2*sdo/sin_sigma; 

    % Compute c1_2m = cos(2*sigma_m) 

    x = 1-(sin_alphaE*sin_alphaE); 

    c1_2m = cos_sigma - (2*s1*s2/x); 

    % Compute Vincenty's constant C 

    C = f/16*x*(4+f*(4-3*x)); 

    % Compute domega     

    c2_2m = c1_2m*c1_2m; 

    domega_new = dlambda+(1-C)*f*sin_alphaE*(sigma+C*sin_sigma*(c1_2m+C*cos_sigma*(-

1+2*c2_2m))); 

    if abs(domega-domega_new)<1e-12 

        break; 

    end; 

    domega = domega_new; 

    iter = iter + 1; 

end;     
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% [4] Compute parametric latitude of vertex 

psi0 = acos(sin_alphaE); 

  

% [5] Compute geodesic constant u2 (u-squared) 

u2 = ep2*(sin(psi0)^2); 

  

% [6] Compute Vincenty's constants A and B 

A = 1 + u2/16384*(4096 + u2*(-768 + u2*(320-175*u2))); 

B = u2/1024*(256 + u2*(-128 + u2*(74-47*u2))); 

  

% [7] Compute geodesic distance s 

t1 = 2*c2_2m-1; 

t2 = -3+4*sin_sigma*sin_sigma; 

t3 = -3+4*c2_2m; 

delta_sigma = B*sin_sigma*(c1_2m+B/4*(cos_sigma*t1-B/6*c1_2m*t2*t3)); 

s = b*A*(sigma-delta_sigma); 

  

% [8] Compute forward azimuth alpha1 

y = c2*sdo; 

x = c1*s2 - s1*c2*cdo; 

alpha1 = atan2(y,x); 

if alpha1<0 

    alpha1 = alpha1+twopi; 

end; 

az12 = alpha1*d2r; 

  

% [9] Compute azimuth alpha2 

y = c1*sdo; 

x = -s1*c2 + c1*s2*cdo; 

alpha2 = atan2(y,x); 

  

% [10] Compute reverse azimuth az21 

az21 = alpha2*d2r + 180; 

if az21 > 360 

    az21 = az21-360; 

end; 

  

%------------------------------------------------- 

% Print computed quantities, latitudes and azimuth 

%------------------------------------------------- 

  

fprintf('\n////////////////////////////////////////////////////'); 

fprintf('\n// INVERSE CASE on ellipsoid: Vincenty''s method //'); 

fprintf('\n////////////////////////////////////////////////////'); 

fprintf('\n\nellipsoid parameters'); 

fprintf('\na    = %18.9f',a); 

fprintf('\nf    = 1/%16.12f',flat); 

fprintf('\nb    = %21.12f',b); 

fprintf('\ne2   = %20.12e',e2); 

fprintf('\nep2  = %20.12e',ep2); 

  

fprintf('\n\nLatitude & Longitude of P1'); 

[D,M,S] = DMS(lat1); 

if D==0 && lat1<0 

    fprintf('\nlatP1 =  -0 %2d %9.6f (D M S)',M,S); 

else 

    fprintf('\nlatP1 = %3d %2d %9.6f (D M S)',D,M,S); 

end; 

[D,M,S] = DMS(lon1); 

if D==0 && lon1<0 

    fprintf('\nlonP1 =  -0 %2d %9.6f (D M S)',M,S); 

else 

    fprintf('\nlonP1 = %3d %2d %9.6f (D M S)',D,M,S); 

end; 

fprintf('\n\nLatitude & Longitude of P2'); 

[D,M,S] = DMS(lat2); 

if D==0 && lat2<0 
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    fprintf('\nlatP2 =  -0 %2d %9.6f (D M S)',M,S); 

else 

    fprintf('\nlatP2 = %3d %2d %9.6f (D M S)',D,M,S); 

end; 

[D,M,S] = DMS(lon2); 

if D==0 && lon2<0 

    fprintf('\nlonP2 =  -0 %2d %9.6f (D M S)',M,S); 

else 

    fprintf('\nlonP2 = %3d %2d %9.6f (D M S)',D,M,S); 

end; 

  

fprintf('\n\nParametric Latitudes of P1 and P2'); 

[D,M,S] = DMS(psi1*d2r); 

if D==0 && psi1<0 

    fprintf('\npsiP1 =  -0 %2d %9.6f (D M S)',M,S); 

else 

    fprintf('\npsiP1 = %3d %2d %9.6f (D M S)',D,M,S); 

end; 

[D,M,S] = DMS(psi2*d2r); 

if D==0 && psi2<0 

    fprintf('\npsiP2 =  -0 %2d %9.6f (D M S)',M,S); 

else 

    fprintf('\npsiP2 = %3d %2d %9.6f (D M S)',D,M,S); 

end; 

  

fprintf('\n\nLongitude difference on ellipsoid P1-P2'); 

[D,M,S] = DMS(dlon); 

if D==0 && dlon<0 

    fprintf('\ndlon =  -0 %2d %9.6f (D M S)',M,S); 

else 

    fprintf('\ndlon = %3d %2d %9.6f (D M S)',D,M,S); 

end; 

  

fprintf('\n\nLongitude difference on auxiliary sphere P1''-P2'''); 

fprintf('\ndomega = %20.12e radians',sigma); 

fprintf('\niterations = %2d',iter); 

  

fprintf('\n\nParametric Latitude of vertex P0'); 

[D,M,S] = DMS(psi0*d2r); 

if D==0 && psi0<0 

    fprintf('\npsiP0 =  -0 %2d %9.6f (D M S)',M,S); 

else 

    fprintf('\npsiP0 = %3d %2d %9.6f (D M S)',D,M,S); 

end; 

  

fprintf('\n\nGeodesic constant u2 (u-squared)'); 

fprintf('\nu2 = %20.12e',u2); 

  

fprintf('\n\nVincenty''s constants A and B'); 

fprintf('\nA = %20.12e',A); 

fprintf('\nB = %20.12e',B); 

  

fprintf('\n\nAzimuth & Distance P1-P2'); 

[D,M,S] = DMS(az12); 

fprintf('\naz12 = %4d %2d %9.6f (D M S)',D,M,S); 

fprintf('\ns    = %17.6f',s); 

  

fprintf('\n\nReverse azimuth'); 

[D,M,S] = DMS(az21); 

fprintf('\nalpha21 = %3d %2d %9.6f (D M S)',D,M,S); 

  

fprintf('\n\n'); 
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MATLAB function DMS.m 
 

function [D,M,S] = DMS(DecDeg) 

% [D,M,S] = DMS(DecDeg)  This function takes an angle in decimal degrees and returns 

%   Degrees, Minutes and Seconds 

  

val = abs(DecDeg); 

D = fix(val); 

M = fix((val-D)*60); 

S = (val-D-M/60)*3600; 

  

if abs(S-60) < 5.0e-10 

    M = M + 1; 

    S = 0.0; 

end 

if M == 60 

    D = D + 1; 

    M = 0.0; 

end 

if D >=360 

   D = D - 360;  

end     

  

if(DecDeg<=0) 

    D = -D; 

end 

return 
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