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ABSTRACT 
 The direct and inverse problems of the geodesic on an ellipsoid are fundamental 
geodetic operations.  This paper presents a detailed derivation of a set of recurrence 
relationships that can be used to obtain solutions to the direct and inverse problems with 
sub-millimetre accuracies for any length of line anywhere on an ellipsoid.  These 
recurrence relationships were first described by Pittman (1986), but since then, little or 
nothing about them has appeared in the geodetic literature.  This is unusual for such an 
elegant technique and it is hoped that this paper can redress this situation.  Pittman's 
method has much to recommend it. 

BIOGRAPHIES OF PRESENTERS 
Rod Deakin and Max Hunter are lecturers in the School of Mathematical and Geospatial 
Sciences, RMIT University; Rod is a surveyor and Max is a mathematician, and both 
have extensive experience teaching undergraduate students. 

INTRODUCTION 
 Twenty-one years ago (March 1986), Michael E. Pittman, an assistant professor 
of mathematical physics with the Department of Physics, University of New Orleans, 
Louisiana USA, published a paper titled 'Precision Direct and Inverse Solutions of the 
Geodesic' in Surveying and Mapping (the journal of the American Congress on 
Surveying & Mapping, now called Surveying and Land Information Systems).  It was 
probably an unusual event – a physicist writing a technical article on geodetic 
computation – but even more unusual was Pittman's method; or as he put it in his paper, 
"The following method is rather different."  And it certainly is. 
 Usual approaches could be roughly divided into two groups: (i) numerical 
integration schemes and (ii) series expansion of elliptic integrals.  The first group could 
be further divided into integration schemes based on simple differential relationships of 
the ellipsoid (e.g., Kivioja 1971, Jank & Kivioja 1980, Thomas & Featherstone 2005), 
or numerical integration of elliptic integrals that are usually functions of elements of the 
ellipsoid and an auxiliary sphere (e.g., Saito 1970, 1979 and Sjöberg 2006).  The second 
group includes the original method of F. W. Bessel (1826) that used an auxiliary sphere 
and various modifications to his method (e.g., Rainsford 1955, Vincenty 1975, 1976 and 
Bowring 1983, 1984). 
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 Pittman developed simple recurrence relationships for the evaluation of elliptic 
integrals that yield distance and longitude difference between a point on a geodesic and 
the geodesic vertex.  These equations can then be used to solve the direct and inverse 
problems.  Pittman's technique is not limited by distance, does not involve any auxiliary 
surfaces, does not use arbitrarily truncated series and its accuracy is limited only by 
capacity of the computer used. 
 Pittman's paper was eight pages long and five of those contained a FORTRAN 
computer program.  In the remaining three pages he presented a very concise 
development of two recurrence relationships and how they can be used to solve the 
direct and inverse problems of the geodesic on an ellipsoid (more about this later).  His 
paper, a masterpiece of brevity, contained a single reference and an acknowledgement 
to Clifford J. Mugnier – then a lecturer in the Department of Civil Engineering, 
University of New Orleans – for numerous discussions.  Unlike other published 
methods which have been discussed and developed in detail over the years, Pittman's 
method seems to have received no further treatment to our knowledge in the academic 
literature, excepting brief mentions in bibliographies and reference lists.  Our purpose, 
in this paper, is to explain Pittman's elegant method as well as provide some useful 
information about the properties of the geodesic on an ellipsoid. 

The Direct and Inverse problems of the geodesic on an ellipsoid 
 In geodesy, the geodesic is a unique curve on the surface of an ellipsoid defining 
the shortest distance between two points.  A geodesic will cut meridians of an ellipsoid 
at angles α , known as azimuths and measured clockwise from north 0º to .  Figure 
1 shows a geodesic curve C between two points A 

360D

( ),A Aφ λ  and B ( ,B B )φ λ  on an 
ellipsoid.  ,φ λ  are geodetic latitude and longitude respectively and an ellipsoid is taken 
to mean a surface of revolution created by rotating an ellipse about its minor axis, NS. 
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Fig. 1: Geodesic curve on an ellipsoid  
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 The geodesic curve C of length s from A to B has a forward azimuth ABα  
measured at A and a reverse azimuth BAα  measured at B and AB BAα α≠ .  The direct 
problem on an ellipsoid is: given latitude and longitude of A and azimuth ABα  and 
geodesic distance s, compute the latitude and longitude of B and the reverse azimuth 

BAα .  The inverse problem is: given the latitudes and longitudes of A and B, compute 
the forward and reverse azimuths ABα , BAα  and the geodesic distance s. 
 The geodesic is one of several curves of interest in geodesy.  Other curves are: (i) 
normal section curves that are plane curves containing the normal at one of the terminal 
points; in Figure 1 there would be two normal section curves joining A and B and both 
would be of different lengths and also, both longer than the geodesic; (ii) curve of 
alignment that is the locus of all points  where the normal section plane through  
contains the terminal points of the line; and (iii) great elliptic arcs that are plane curves 
containing the terminal points of the line and the centre of the ellipsoid.  Normal section 
curves, curves of alignment and great elliptic arcs are all longer than the geodesic and 
Bowring (1972) gives equations for the differences in length between these curves and 
the geodesic. 

kP kP

Some ellipsoid relationships 
 The size and shape of an ellipsoid is defined by one of three pairs of parameters: 
(i)  where a and b are the semi-major and semi-minor axes lengths of an ellipsoid 
respectively, or (ii)  where f is the flattening of an ellipsoid, or (iii)  where  
is the square of the first eccentricity of an ellipsoid.  The ellipsoid parameters  
are related by the following equations 

,a b
,a f 2,a e 2e

2, , ,a b f e

 ( ) (
2 2 2

2
2 21 ; 1 ; 1 2a b b a b b )f b a f e f f

a a a a
− −

= = − = − = = − = −  (1) 

The second eccentricity e  of an ellipsoid is also of use and ′

 ( ) ( )
( )

2 2 2
2

22 2

2
1 1

f fa b ee
b e f

−−′ = = =
− −

 (2) 

 In Figure 1, the normals to the surface at A and B intersect the rotational axis of 
the ellipsoid (NS line) at  and  making angles AH BH ,A Bφ φ  with the equatorial plane of 
the ellipsoid.  These are the latitudes of A and B respectively.  The longitudes ,A Bλ λ  are 
the angles between the Greenwich meridian plane and the meridian planes  and 

 containing the normals through A and B.  
AONAH

BONBH φ  and λ  are curvilinear coordinates 
and meridians of longitude (curves of constant λ ) and parallels of latitude (curves of 
constant φ ) are parametric curves on the ellipsoidal surface.  Planes containing the 
normal to the ellipsoid intersect the surface creating elliptical sections known as normal 
sections.  Amongst the infinite number of possible normal sections at a point, each 
having a certain radius of curvature, two are of interest: (i) the meridian section, 
containing the axis of revolution of the ellipsoid and having the least radius of 
curvature, denoted by ρ  (rho), and (ii) the prime vertical section, perpendicular to the 
meridian plane and having the greatest radius of curvature, denoted by ν  (nu). 
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ρ ν 1

φφ

−
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 (3) 

 
 In the development that follows, use 
will be made of relationships that can be 
obtained from the differential rectangle on 
the ellipsoid shown in Figure 2.  Here P 
and Q are two points on the surface 
connected by a curve of length ds with 
azimuth α  at P.  The meridians λ  and 

dλ λ+ , and parallels φ  and dφ φ+  form 
a differential rectangle on the surface of 
the ellipsoid. 

P

Q

•

•
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Fig. 2: Differential rectangle on ellipsoid From Figure 2 the following 
relationships can be obtained 

 sin cos    and   cosds d ds dα ν φ λ α ρ= φ=

k

 (4) 

Mathematical definition of a geodesic 
 A curve drawn on a surface so that its osculating plane at any point on the surface 
contains the normal to the surface is a geodesic (Lauf 1983).  This definition, including 
a definition of the osculating plane, can be explained briefly by the following. 
 A point P on a curve (on a surface) has a position vector 

 where i,j,k are unit vectors in the directions of the x,y,z 
Cartesian coordinate axes and t is some scalar parameter.  As t varies then the vector r 
sweeps out the curve C on the surface, hence the distance s along the curve is a function 

of t, given via 

( ) ( ) ( ) ( )t x t y t z t= + +r i j

( )ds d t
dt dt

= r .  Differentiating the vector r with respect to s gives a unit 

tangent vector t and differentiating t with respect to s gives the curvature vector , 
perpendicular to t.  n is the principal normal vector, 

κn
κ  (kappa) is the curvature and 

1ρ
κ

=  is the radius of curvature and also the radius of the osculating (kissing) circle 

touching P. 
 The osculating plane at P contains both t and n (and the osculating circle), and 
when this plane also contains the normal to the surface then the curvature  is least and κ
ρ  is a maximum; this is Meunier's theorem (Lauf 1983), a fundamental theorem of 
surfaces.  Therefore, if P and Q are very close and both lie on the surface and in the 
osculating plane, then the distance ds between them is the shortest possible distance on 
the suface. 
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The characteristic equation of a geodesic 
 The mathematical definition of a geodesic does little to help us develop solutions 
to the problem of computing distances of geodesics on an ellipsoid.  It does lead to the 
characteristic equation of a geodesic, and this equation is the basis of all solutions to 
computing geodesic distances.  This equation 

 cos sin constantν φ α =  (5) 

is known as Clairaut's equation in honour of the French mathematical physicist Alexis-
Claude Clairaut (1713-1765).  In a paper in 1733 titled Determination géométric de la 
perpendicular à la méridienne tracée par M. Cassini, ... Clairaut made an elegant study 
of the geodesics of surfaces of revolution and stated his theorem embodied in the 
equation above (Struik 1933).  His paper also included the property already pointed out 
by Johann Bernoulli (1667-1748): the osculating plane of the geodesic is normal to the 
surface (DSB 1971) 
 The characteristic equation of a geodesic shows that the geodesic on the ellipsoid 
has the intrinsic property that at any point, the product of the radius cosr ν φ=  of the 
parallel of latitude and the sine of the azimuth, sinα , of the geodesic at that point is a 
constant.  This means that as r decreases in higher latitudes, in both the northern and 
southern hemispheres, sinα  changes until it reaches a maximum or minimum of 1± .  
Such a point is known as a vertex and the latitude φ  will take maximum value 0φ . 
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Fig. 3: Schematic diagram of the oscillation of a geodesic on an ellipsoid 

 

 Thus the geodesic oscillates over the surface of the ellipsoid between two 
parallels of latitude having a maximum in the Northern and Southern Hemispheres and 
crossing the equator at nodes.  As we will demonstrate later, due to the eccentricity of 
the ellipsoid, the geodesic will not repeat after a complete revolution. 
 Figure 3 shows a schematic diagram of the oscillation of a geodesic on an 
ellipsoid.  P is a point on a geodesic that crosses the equator at A, heading in a north-
easterly direction reaching a maximum northerly latitude maxφ  at the vertex  (north), 
then descends in a south-easterly direction crossing the equator at B, reaching a 
maximum southerly latitude 

0P

minφ  at  (south), then ascends in a north-easterly 
direction crossing the equator again at 

0P
A′ .  This is one complete revolution of the 

geodesic, but Aλ ′  does not equal Aλ  due to the eccentricity of the ellipsoid.  Hence we 
say that the geodesic curve does not repeat after a complete revolution. 
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EQUATIONS FOR COMPUTATION ALONG GEODESICS 
 Using Clairaut's equation and simple differential relationships, expressions for 
distances s and longitude differences λ∆  (see Figure 3) between P on a geodesic and 
the vertex  can be obtained.  These expressions are in the form of elliptic integrals, 
which by their nature do not have exact (or closed) solutions. 

0P

 Expanding the integrands into infinite series, integrating term-by-term and then 
truncating to a finite number of terms is the usual technique to obtain working solutions 
for s and λ∆  (e.g., Thomas 1970).  In this section, we show how this method can be 
simplified by using recurrence relationships to generate solutions to the integrals in the 
series.  Our relationships are slightly different from Pittman (1986) and our notation is a 
little different but in all other respects, we have followed his elegant approach. 

Relationships between parametric latitude ψ and geodetic latitude Φ 
 Development of formulae is simplified if parametric latitude ψ  is used rather 
than geodetic latitude φ .  The connections between the two latitudes can be obtained 
from the following relationships. 
 Figure 4 shows a portion of a meridian 
NPE of an ellipsoid having semi-major axis 

 and semi-minor axis OE a= ON b= .  P is a 
point on the ellipsoid and Q is a point on an 
auxiliary circle centred on O of radius a.  P and 
Q have the same perpendicular distance from the 
axis of revolution ON.  The normal to the 
ellipsoid at P cuts the major axis at an angle φ  
(the geodetic latitude) and intersects the 
rotational axis at H and the distance PH ν= .  
The angle QOE ψ=  is the parametric latitude.  
 The Cartesian equation of the ellipse is 

2 2

2 2 1w z
a b

+ =  and the Cartesian equation of the 

auxiliary circle is .  We may re-
arrange both equations so that  is on the left-hand side of the equals sign giving 

2 2w z+ = 2a
2w

2
2 2

2

aw a z
b

= − 2 2 (ellipse) and 2 2w a z= −  (circle).  Now, since the w-coordinates of P 

and Q are the same then 
2

2 2 2
2

2
P Q

aa z a
b

− = − z  which leads to P Q
bz z
a

= . 
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Fig. 4: Meridian section of ellipsoid

 Using this relationship 

 cos     and     sinw OM a z MP bψ ψ= = = =  (6) 

and differentiating equations (6) with respect to ψ  gives sin , cosdw dza b
d d

ψ ψ
ψ ψ

= − =  

and the chain rule gives cotdz dz d b
dw d dw a

ψ ψ
ψ

= = − . 
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Now by definition, dz
dw

 is the gradient of the tangent and from Figure 4 we may write 

( )tan 90 cotdz
dw

φ φ= − − = −D .  Equating the two expressions for dz dw  gives a 

relationship between ψ  and φ  as 

 ( )tan tan 1 tanb f
a

ψ φ= = − φ  (7) 

From equation (6) and Figure 4, cos cosw a ψ ν φ= =  and using equation (3) gives 

 
( )1 22 2

coscos
1 sine

φψ
φ

=
−

 (8) 

Alternatively, using the trigonometric identity 2 2sin cos 1A A+ = , equation (8) can be 
written as 

 
( )1 22 2

sinsin
1 cose

ψφ
ψ

=
−

 (9) 

The latitudes Φ0 and ψ0 of the geodesic vertex 
Denoting the latitude of the vertex as 0φ  (a maximum), Clairaut's equation (5) gives 

 0 0cos constant cos sinν φ ν φ α= =  (10) 
Denoting the parametric latitude of the vertex as 0ψ  and using cos cosa ψ ν= φ  from 
before, equation (10) becomes 0cos cos sina aψ ψ α=  and 0ψ  is defined as 

 0cos cos sinψ ψ α=  (11) 
Squaring both sides of equation (11) and using again the identity  we 
can obtain the azimuth 

2 2sin cos 1A A+ =
α  of a geodesic as 

 
2 2

0cos cos
cos

cos
ψ ψ

α
ψ
−

=  (12) 

From equation (11) we see that if the azimuth α  of a geodesic is known at P having 
parametric latitude ψ , the parametric latitude 0ψ  of the vertex  can be computed.  
Conversely, given 

0P
ψ  and 0ψ  of points P and  the azimuth of the geodesic between 

them may be computed from equation (12). 
0P

In the following sections, two differential equations; one for ds
dψ

 and the other for d
d
λ
ψ

, 

will be developed that will enable solutions for the geodesic distance s and the 
longitude difference λ∆  between P and the vertex . 0P
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Differential equations for distance ds
dψ

 and longitude difference d
d
λ
ψ

  

From equation (9) we may write ( )2 2 2sin 1 cos sine 2ψ ψ= − φ  and differentiating 
implicitly and re-arranging gives 

 
( )
( )

2 2

2 2

1 sin sin cos

1 cos sin cos

ed
d e

φ ψ ψφ
ψ ψ φ φ

−
=

−
 (13) 

Using the chain rule and equation (4) gives an expression for the derivative ds
dψ

 as 

 
( )
( )

2 2

2 2

1 sin sin cos
cos 1 cos sin cos

eds ds d
d d d e

φ ψ ψφ ρ
ψ φ ψ α ψ φ φ

−
= =

−
 (14) 

Using equations (7), (8), (9) and the fact that 
2

2
21 be

a
− = , we may write 

 
( )

( )

1 22 2

1 22 2
0

1 cos
cos

cos cos

eds a
d

ψ
ψ

ψ ψ ψ

−
=

−
 (15) 

Similarly, the chain rule and equations (4) and (15) gives 

 
( )

( )

1 22 2

1 22 2
0

1 cossin cos
cos cos cos

ed d ds a
d ds d

ψλ λ α ψ
ψ ψ ν φ ψ ψ

−
= =

−
 (16) 

Using equation (10) and the relationship cos cosa ψ ν φ= , we may write 

 
( )

( )

1 22 2
0

1 22 2
0

1 coscos
cos cos cos

ed
d

ψψλ
ψ ψ ψ ψ

−
=

−
 (17) 

Equations (15) and (17) are the basic differential equations that will yield solutions for 
distance s and longitude difference λ∆  along the geodesic curve between P and the 
vertex . 0P

Formula for computing geodesic distance s between P and the vertex P0

Equation (15) can be simplified by letting sinu ψ=  and 0 sinu 0ψ= , so that 

cosdu
d

ψ
ψ

=  and , hence 2 2 2
0 0cos cos u uψ ψ− = − 2

 
( )
( )

1 22 2

1 22 2
0

1 coseds dua
d d u u

ψ

ψ ψ

−
=

−
 (18) 
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The chain rule gives 
( )
( )

1 22 2

1 22 2
0

1 cosa eds ds du
d ddu u u

ψ
ψ ψ

−
= =

−
 but using 2 2cos 1 sinψ ψ= −  

and equations (1) and (2) we are able to obtain, after some manipulation 

 
( )
( )

1 22

1 22 2
0

1b uds
du u u

ε+
=

−
 (19) 

where .  The geodesic distance s between P and the vertex  is given by ( )2eε ′= 0P

 
( )
( )

0
1 22

1 22 2
0

1p u

p u

p
s b dp

u p

ε=

=

+
=

−
∫  (20) 

where 0sin sinpψ ψ≤ ≤ .  Equation (20) can be simplified by use of the binomial series 
and the numerator of the integrand is given by 

 ( ) ( )1
2

1 22

0

1
n

n
n

p B pε
∞

=

+ =∑ 2ε  (21) 

where 
1
2
nB  are binomial coefficients computed from the recurrence relationship 

 
1 1
2 2

1
3 2 ,    1  and  1

2n n
nB B n B

n −

−
= ≥

1
2
0 =  (22) 

Equation (20) can now be written as 

( ) ( )
0 0

1 1
2 2

2
2

1 2 1 22 2 2 20 0 00 0

1u u n
n n n n

n n
n n nu u

ps b B p dp b B dp b B I
u p u p

ε ε
∞ ∞ ∞

= = =

= =
− −

∑ ∑ ∑∫ ∫
1
2
n nε=  (23) 

where 
( )

0 2

1 22 2
0

u n

n
u

pI dp
u p

=
−

∫ ,    for   (24) 0n ≥

 The solution of the integral nI  is fundamental to the computation of the distance s 
along the geodesic between P and , and the usual technique is to find solutions for 
each integral 

0P

nI  and expand equation (23) into a finite series; e.g. Thomas (1970, pp. 
33-34).  Pittman's (1986) approach, outlined below, was to developed the integral nI  as 
a recurrence equation having the general form 1 1n n n n 1I a b I− − −= +  where the coefficients 

 and  are functions of 1na − 1nb − 0,  and n ψ ψ  and an initial value of 0I  is a function of 

0 and ψ ψ  only. 

 Now 
( ) ( )

( )
0 0 02 1 22 1 2 1 2 2

01 2 1 22 2 2 2
0 0

u u un
n n

n
u u u

p p dI dp p dp p u p dp
dpu p u p

− −−
= = − = − −

− −
∫ ∫ ∫  

and using integration by parts (e.g., Ayres 1972) the integral nI  becomes 
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( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( )

0

0

1 2 1 22 1 2 2 2 2 2 2
0 0

2 21 22 1 2 2 2 2
0 0 1 22 2

0

1 22 1 2 2 2
0 0 1

2 1

2 1

2 1

p u
n n

n
p u

u n
n

u

n
n n

I p u p u p n p dp

pu u u n u p dp
u p

u u u n u I I

=
− −

=

−
−

−
−

⎡ ⎤= − − − − −⎢ ⎥⎣ ⎦

= − + − −
−

⎡ ⎤= − + − −⎣ ⎦

∫

∫

 (25) 
and 

 ( ) ( )1 22 1 2 2 2
0 0 1n2 2 1n

nn I u u u n u I−
−= − + − 1, 2,3,n     for  (26) = …

Let 
0

uU
u

=  so that , 0u Uu= ( )2 2 2 2
0 0 1u u u U− = −  giving 

 ( ) ( ) ( )1 22 1 2 2
0 0 02 1 2n

n 11n I Uu u U n u I−
n−= − + − 1, 2,3,n     for  (27) = …

Let 2
0

2 n
n n

n IJ
u

=  so that ( ) 2
0

1 2
0

2 1
n n

n u
J

u−

−
= 1nI −  and the recurrence formula for nI  becomes 

a simpler recurrence formula for  nJ

 
( )

2 1 2
1

2 11
2 1

n
n n

nJ U U J
n

−
−

−
= − +

−
2,3,n     for  (28) = …

with initial condition 

 21
1 2

0

2 1IJ U U
u 0I= = − +  (29) 

0I  has a simple result derived from equation (24) as follows: 

 ( ) [ ]( )
0 1 22

0 0 01 1
u

u

I u p u
−

= −∫ dp  (30) 

and with the transformation 0 0cos ,  sinp u dp d uθ θ θ= = −  and [ ]2 2
01 1 cp u os θ− = −  

 ( )

0

0

0
0

arccos

1 arccos arccos
u
u

uI d
u

θ

θ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

⎛ ⎞
= − = =⎜ ⎟

⎝ ⎠
∫ U  (31) 

Using these results, the distance s along the geodesic between P and the vertex  is 0P

 

1
2

1 1 1
2 2 2

2
0 0

1

2 2 4 3 6
0 0 1 1 0 2 2 0 3 3

0 1 2 3

1 1
2

2 4 6

n n
n n

n
s b I u B J

n
b b bbI u B J u B J u B J

D D D D

ε

ε ε ε

∞

=

⎧ ⎫
= +⎨ ⎬

⎩ ⎭

= + + + +

= + + + +

∑

"

"  (32) 
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Formula for computing difference in longitude ∆λ between P and P0

Using the binomial series we may write equation (17) as 

 ( )
( )

1
2

2 1
2

0 1 22 20 0

coscos 1
cos cos

n
n n

n
n

d e B
d
λ ψψ
ψ ψ ψ

−∞

=

= −
−

∑  (33) 

and the difference in longitude between P and the vertex  is 0P

 ( )
0

1
22

0
0

cos 1 n n
n n

n

d d
d

ψ

θ ψ

λλ θ ψ
θ

∞

==

∆ = = −∑∫ e B L  (34) 

where the integral  is  nL

 
( )

0 2

1 22 2
0

cos ,    0
cos cos cos

n

nL
ψ

θ ψ

θ θ
θ θ ψ=

=
−

∫ d n ≥  (35) 

Again, let sinu ψ= , 0 sinu 0ψ=  and put sinp θ= .  Then secd dpθ θ= , 
2cos 1 2pθ = − , and with 

 
( ) ( ) ( )

2 22 12
2 2

cos 1cos cos 1
cos cos 1

n n
n np

d d dp
p

θθ θ θ θ
θ θ

−−
= = = −

−
p dp  

and 

 ( ) ( )( ) ( )1 21 2 1 22 2 2 2 2 2
0 0cos cos 1 sin 1 sin u pθ ψ θ ψ− = − − − = −0  

giving 

 
( )
( )

0
12

1 22 2
0

1
,    1

nu

n
u

p
L dp

u p

−
−

=
−

∫ n ≥

1 2mB p

 (36) 

Using the binomial series, the numerator of the integrand can be expanded into a 

polynomial , where the binomial coefficients ( ) ( )
112

0

1 1
nn m n

m
m

p
−− −

=

− = −∑ 1n
mB −  are 

given by 

 1 1
1     for 2,3, 4,n n

m m
n mB B m

m
− −

−

−
= = …  (37) 

with an initial value 1
1 1nB n− = −  and noting that 1

0 1nB − = . 
Using these results, equation (36) becomes 

 ( )
( )

( )
0 21 1

1
1 22 20 00

1
u mn n

m n
n m

m mu

p 11 m n
m mL B dp

u p

− −
−

= =

= − = −
−

∑ ∑∫ B I−  (38) 

where 
( )

0 2

1 22 2
0

u m

m
u

pI dp
u p

=
−

∫ ,    for   (39) 0m ≥

 11



and equation (39) is the same as equation (24) except for a change of index variable. 
 Using this similarity and the expressions above, the longitude difference given by 
equation (34) can be expressed as 

 ( ) ( )1
2

1
2

0 0
1 0

cos 1 1
n

n mn
n m

n m

L e B Bλ ψ
∞ −

−

= =

⎧ ⎫∆ = + − −⎨
⎩ ⎭

∑ ∑ 1n
mI ⎬  (40) 

Equation (40) can expanded as 

 
( )

( ) ( )

1 1
2 2

1
2

2 2
0 0 1 0

2

1
2 1

2 1

cos 1

1 1

n n
n

n

n
n mn n

n m
n m

L e B e B I

e B B I

λ ψ
∞

=

∞ −
−

= =

⎧ ⎡ ⎤
∆ = + − + −⎨ ⎢ ⎥

⎣⎩
⎫

+ − − ⎬
⎭

∑

∑ ∑ m

⎦  (41) 

and then simplified by use of the binomial series, where 

 ( ) ( ) ( ) ( )1 1 1
2 2 2

1 22 2 2 2
1

0 1 2

1 1 1 1 1 1n nn n
n n

n n n

e e B e B e B
∞ ∞ ∞

= = =

− = − = + − = − + −∑ ∑ ∑
1
22n n
ne B  (42) 

The terms in [  of equation (41) are the last two terms on the right-hand side of 
equation (42) and using this equivalence gives 

]"

 

( ) ( ) ( )

( ) ( ) ( )

1
2

1
2

1
2 2 1

0 0 0
2 1

1
2 2 21

0 0 0 02
2 1

cos 1 1 1 1

1
cos 1 1 1

n
n mn n

n m m
n m

mn
n n m

n
n m

L e I e B B I

1n
m mL e I e B u B J

m

λ ψ

ψ

∞ −
−

= =

∞ −
−

= =

⎧ ⎫∆ = + − − + − −⎨ ⎬
⎩ ⎭
⎧ ⎫−⎪ ⎪= + − − + −⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ∑

∑ ∑  (43) 

where 0I  is obtained from equation (31) and  are given by equation (28), noting that 

as before 

mJ

2
0

2
m mm

mJ I
u

= . 

A simple expression for  is obtained from equation (35) as follows 0L

 
( ) ( )

0 0 2

0 1 2 1 22 2 2 2 2
0 0

1 sec

cos cos cos sin tan cos 0

L d d
ψ ψ

θ ψ θ ψ

θθ θ
θ θ ψ ψ θ ψ= =

= =
− −

∫ ∫  (44) 

Putting 0cot tanx ψ θ=  then 2
0tan cosd dxθ ψ= θ  and 

 ( )
( )

2
2 2 2 2 2 0

0 0 0 2
0

2 2 2
0 0

2 2
0

cossin tan cos sin 1 tan
sin

sin 1 tan cot

sin 1 x

ψψ θ ψ ψ θ
ψ

ψ θ ψ

ψ

⎛ ⎞
− = −⎜ ⎟

⎝ ⎠

= −

= −

 

so that 

 

0

1
0

0 2
tan0
tan

tan
sin 1x

dxL
xψ

ψ

ψ
ψ

=

=
−

∫  (45) 
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since 
2

2

arcsin
arccos1

xdx
xx π

⎧
= ⎨ −− ⎩

∫ , then using the second result gives 

 

0

1

0 0 02
tan 0
tan

tansec sec arccos
tan1

x

dxL
xψ

ψ

ψψ ψ
ψ

=

⎛ ⎞
= = ⎜

− ⎝ ⎠
∫ ⎟  (46) 

Equation (40) can be simplified further to give the longitude difference λ∆  between P 
and the vertex  as 0P

 { }0 0 1 2 3cos M M M Mλ ψ∆ = + + + +"  (47) 

where ( )
( )1

2

0

2
0

21
2

for 0

1 1 for 

1 for

n

n n
n n

L n

M e I

B e K n

⎧

1

 2

n

=
⎪
⎪= − − =⎨
⎪
⎪ − ≥⎩

 (48) 

and 
( )1

2 1
0

1

1
   for 2,3,4,

mn
m n

n m m
m

K u B J n
m

−
−

=

−
=∑ …=  (49) 

A GEODESIC ON AN ELLIPSOID DOES NOT REPEAT AFTER A SINGLE 
REVOLUTION 
Earlier, it was mentioned that due to the eccentricity of the ellipsoid, the geodesic will 
not repeat after a complete revolution.  Here is a demonstration of that fact. 
When P is at the node A of Figure 3 then 4λ λ∆ = ∆  and using equation (17) we have 

 ( ) ( )
( )

0
1 22 2

4 0 1 22 2
0 0

1 cos
4 4cos

cos cos cos

e
d

ψ

θ

θ
λ ψ

θ θ ψ=

−
∆ =

−
∫ θ

)

 (50) 

Since this integral is difficult to evaluate, we instead determine upper and lower bounds 
for the quantity ( 44 λ∆  by using the bounds of the integration variable θ .  This allows 
certain terms within the integral to be disposed of and a simplified integral evaluated. 
 
For 00 θ ψ≤ ≤ , the bounds on the numerator of the integrand are 

( ) ( ) ( )1 2 1 2 1 22 2 2 2 2
01 1 cos 1 cose e eθ− ≤ − ≤ − ψ  so that on the one hand 

 

( ) ( )
( )

( )
( )

( )

0
1 22 2

0
4 0 1 22 2

0 0

1 22 2
0 0 0 0

1 22 2 1
0 0 2

1 22 2
0

1 cos
4 4cos

cos cos cos

4cos 1 cos

4cos 1 cos sec

2 1 cos

e
d

e L

e

e

ψ

θ

ψ

ψ

0

λ ψ θ
θ θ ψ

ψ ψ

ψ ψ π ψ

π ψ

=

=

−
∆ ≤

−

= −

= −

= −

∫

 (51) 
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while on the other hand 

 

( ) ( )
( )

( )

0
1 22

4 0 1 22 2
0 0

1 22

1
4 4cos

cos cos cos

2 1

e
d

e

ψ

θ

λ ψ θ
θ θ ψ

π

=

−
∆ ≥

−

= −

∫

 (52) 

Combining these inequalities gives the bounds for the quantity ( )44 λ∆  as 

 ( ) ( ) ( )1 2 1 22 2
42 1 4 2 1 cose eπ λ π− ≤ ∆ ≤ − 2

0ψ  (53) 

Therefore, after a single revolution, ( )44 2λ π∆ <  when .  Note that when 00 ψ< <D 90D

0 0ψ = D  the geodesic is an arc of the equator (a circle) and when 0 90ψ = D  the geodesic 
is an arc of the meridian (an ellipse). 
 

NUMERICAL RESULTS FOR DISTANCE AND LONGITUDE EQUATIONS 
Equations (32) and (47) for computing distance s and longitude difference λ∆  between 
P and the vertex  are relatively simple summations of terms.  To test the number of 
terms required for accurate answers, a geodesic was chosen with an azimuth 

 at P having latitude 

0P

43 12 36α ′ ′= D ′ 9 35 24φ ′ ′′= D  on the ellipsoid of the Geodetic 
Reference System 1980 (GRS80) (Moritz 1980), defined by 6378137 metresa =  and 

1 298.257 222101f = . 
 

( )
( )
[ ]0

0 0

Numerical constants for GRS80 ellipsoid and geodesic
1 6356752.314140356 metres

arctan 1 tan 0.166826262923 radians

arccos cos sin 0.829602797993 radians
sin 0.166053515348; sin 0.73

b a f

f

u u

ψ φ

ψ ψ α
ψ ψ

= − =

= − =⎡ ⎤⎣ ⎦
= =

= = = =

0
0 0

0 0
0

7663250899
sin 0.225107479796; arccos 1.343742980976 radians
sin

tan 0.154125311675; sec arccos 2.097333540996 radians
tan

uU I U
u

V L V

ψ
ψ

ψ ψ
ψ

= = = = =

= = = =
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Table 1:  Ellipsoid and geodesic constants and binomial coefficients for 
equations (32) and (47) 

n 2ne  nε  
2
0

nu  
1
2
nB  

1  6.694380022901e-003  6.739496775479e-003 0.544147071727  0.500000000000 
2  4.481472389101e-005  4.542081678669e-005 0.296096035669 -0.125000000000 
3  3.000067923478e-007  3.061134482735e-007 0.161119790759  0.062500000000 
4  2.008359477428e-009  2.063050597570e-009 0.087672862339 -0.039062500000 
5  1.344472156450e-011  1.390392284997e-011 0.047706931312  0.027343750000 
6  9.000407545482e-014  9.370544321391e-014 0.025959586974 -0.020507812500 
7  6.025214847044e-016  6.315275323850e-016 0.014125833235  0.016113281250 
8  4.033507790574e-018  4.256177768135e-018 0.007686530791 -0.013092041016 

 

Table 2:  Recurrence formula values and distance components for equation (32) 

n 
nJ  nD  

1 1.563072838216  8.541841303930e+006 8541841.303930 m 
2 2.355723441968  9.109578467516e+003 9109.5784675 
3 2.945217495733 -6.293571169346e+000 -6.2935712 
4 3.436115617261  9.618619108010e-003 0.0096186 
5 3.865631515581 -1.929070816523e-005 -0.0000193 
6 4.252194740421  4.456897529564e-008 0.0000000 
7 4.606544305836 -1.123696751599e-010 -0.0000000 
8 4.935583185013  3.006580650377e-013 0.0000000 
 sum  8.550944598425e+006 s = 8550944.598425 m 

 

Table 3:  Recurrence formula values and longitude components for equation (47) 

n 
nJ  nM  

0    2.097333540996e+000 
1 1.563072838216  -4.505315819380e-003 
2 2.355723441968   2.382298926901e-006 
3 2.945217495733   1.267831357153e-008 
4 3.436115617261   6.525291638252e-011 
5 3.865631515581   3.431821056093e-013 
6 4.252194740421   1.852429353592e-015 
7 4.606544305836   1.023576994037e-017 
8 4.935583185013   5.769507252421e-020 

 sum   2.092830620219e+000 

( )0cos 1.413013969112 radians

80.959736823113 degrees

80 57 35.052563

sumλ ψ∆ = ≅

=

′ ′′= D

 
Inspection of these numerical values indicates than an upper limit of  in the 
summations is more than sufficient for accuracies of 0.000001 metre in distances and 
0.000001 second of arc for longitude differences.  [Results for s and 

8N =

λ∆  can be 
confirmed using Vincenty's equations (Vincenty 1975) that have been programmed in a 
Microsoft™ Excel workbook that can be downloaded from the website of Geoscience 
Australia at http://www.ga.gov.au/] 
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 It should be noted here that the distance and longitude equations [equations (32) 
and (47)] are not themselves, solutions to the direct or inverse problems.  Instead, they 
are the basic tools, which if used in certain ways, enable the solution to those problems. 
 In a computer program, equations (32) and (47) would be embedded in a function 
that returned s and λ∆  given the ellipsoid parameters ( ),a f , parametric latitudes 

( 0, )ψ ψ  and the upper limit of summations ( )N .  A brief explanation of how such a 
function might be used is given below. 

USING THE DISTANCE AND LONGITUDE EQUATIONS TO COMPUTE THE 
DIRECT AND INVERSE PROBLEM 
 

equator •••

•

•

•

•
•

•

•

node node node

vertex

vertex

P1

P1P2

P2

P0

s1 s4

s2

s3

s

φmax

φmin

φ1
∆λ

∆λ

∆λ

1

2

4

λ1 λ0

A B A'

A

α1 α12

α2

α21
=

 
 

Fig. 5: Schematic diagram of a geodesic between  and  on an ellipsoid 1P 2P
 

Direct solution 
The key here is to use the distance equation in an iterative computation of 2sinψ .  Once 
this is known, then 2 2 2,  and 1φ λ α  follow.  The steps in the computation are: 
 
1. Test the azimuth to determine whether the geodesic is heading towards or away 
from the nearest vertex , noting that  will be in the same hemisphere as . 0P 0P 1P
2. Compute 1ψ  and 0ψ ; then use the distance and longitude equations to compute  

and 
1s

1λ∆  between  and , as well as 1P 0P 0λ . (see Fig. 5). 
3. With sin 0u ψ= = , compute  and 4s 4λ∆  between the node and . 0P

 16



4. Compute .  If  then  is 

after  and closer to another vertex 

1 0
2

1 0

  if geodesic is heading towards 
  if geodesic is heading away from 

s s P
s

s s P
−⎧

= ⎨ +⎩
2 0s > 2P

0P 0P′  in which case  is reduced by multiples of 
 until  and the number of vertices n determined (vertices are  apart).  

If  then  is before .  (Note that in Fig. 5, 

2s

42s 2s s< 4 42s

2 0s < 2P 0P 2 0s <  and  is before ) 2P 0P
5. Compute 2ψ  by iteration.  An approximate value 2ψ ′  is found from equations (32) 

by taking the first term only;  hence 0
0

sinarccos
sin

s I
b

ψ
ψ

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
 

 and 2
2 0sin sin cos s

b
ψ ψ ⎛ ⎞′ = ⎜ ⎟

⎝ ⎠
. 

 Now a re-arrangement of the differential equation (19) gives 
2 2
0

21
u udsdu

b uε
−

=
+

 

where 2sinu ψ ′= ,  and 2ds s s′= − 2 2s′  is computed from the distance equation with 
the approximate parametric latitude 2ψ ′ .  Equation (19), linking ds and du, is the 
basis of the iterative solution for 2sinψ  (and hence 2φ ). 

6. After computing 2ψ  the longitude difference 2λ∆  is computed and depending on 
the number of vertices and the direction of the geodesic, 2λ  is determined.  The 
azimuth 2α  follows from Clairaut's equation and the reverse azimuth 21α  obtained. 

Inverse solution 
This is the more difficult of the two solutions since 0ψ  is unknown and must be 
determined by iteration, using approximations for 1,  and s 2α α  obtained by 
approximating the ellipsoid with a sphere and using spherical trigonometry.  The steps 
in the computation are: 
 
1. Convert longitudes of  and  to east longitudes in the range  

and determine a longitude difference 
1P 2P 1 20 , 36λ λ< <D D0

λ∆  in the range .  180 180λ− ≤ ∆ ≤D D λ±∆  
corresponding to east/west direction of the geodesic from . 1P

2. Compute parametric latitudes 1ψ  and 2ψ  then use these and λ∆  as latitudes and 
longitude difference on a sphere to compute spherical distance σ  and spherical 
angles 1β  and 2β .  These can be used to determine approximations of s and 12α . 

3. Compute 0ψ  by iteration.  Approximations 1λ′∆  and 2λ′∆  can be obtained from 

equation (47) noting that 0 0
0

tansec arccos
tan

M ψψ
ψ

⎛ ⎞
= ⎜

⎝ ⎠
⎟  and ignoring terms 

 1 2 3, , ,M M M …

 This gives 1
1

0

tanarccos
tan

ψλ
ψ

⎛ ⎞
′∆ = ⎜ ⎟

⎝ ⎠
 and 2

2
0

tanarccos
tan

ψλ
ψ

⎛ ⎞
′∆ = ⎜ ⎟

⎝ ⎠
, and 
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 ( ) 1 2
0 4

0 0

tan tanarccos arccos
tan tan

f ψ ψψ λ λ λ
ψ ψ

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪′ ′= ∆ − ∆ = ± ± ± ∆ − ∆⎨ ⎬⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

λ  where the ±  

signs are associated with the east/west direction of the geodesic. 
 0ψ  can be found using Newton's iterative method (Williams 1972) 

 ( ) ( ) ( )
( )

0
0 01

0
n n

f
f
ψ

ψ ψ
ψ+

= −
′

 (54) 

 where ( 0f )ψ′  is the derivative of ( )0f ψ .  An initial value of 0ψ  can be computed 
from equation (11). 

4. Once 0ψ  is known then 1 1 2, ; ,s s 2λ λ∆ ∆  and 4 ,s 4λ∆  can be computed from the 
distance and longitude equations and s obtained.  The forward and reverse azimuths 
can be found from Clairaut's equation (5). 

CONCLUSION 
 Pittman's (1986) recurrence relationships for evaluating integrals allow beautifully 
compact equations for distance s and longitude difference λ∆  along a geodesic between 
P and the vertex .  These equations can be easily translated into a computer program 
function returning s and 

0P
λ∆  given a, f, u and .  Using such a function, algorithms (as 

outlined above), can be constructed to solve the direct and inverse problems on the 
ellipsoid.  Pittman's (1986) paper (which included FORTRAN computer code) has a 
concise development of the necessary equations and algorithms.  The paper here has a 
more detailed development of the recurrence relationships (with a slightly different 
formulation) as well as additional information on the definition and properties of a 
geodesic. 

0u

 Interestingly, Pittman's (1986) method is entirely different to other approaches 
that fall (roughly) into two groups: (i) numerical integration techniques and (ii) series 
expansion of integrals; the latter of these with a history of development extending back 
to Bessel's (1826) method.  Numerical integration, a technique made practical with the 
arrival of computers in the mid to late 20th century, is relatively modern.  So too is 
Pittman's method. 
 To our knowledge, this is the first paper (since the original) discussing his elegant 
method; a method that has much to recommend it, and one that we hope might become 
the object of study in undergraduate surveying courses and discussion in the geodetic 
literature. 
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