

R.E. DEAKIN and M.N. HUNTER

School of Mathematical and Geospatial Sciences
RMIT University
Melbourne, AUSTRALIA
January 2010

FOREWORD

These notes are the second part of an introduction to ellipsoidal geometry related to geodesy. They are mainly concerned with the computation of distance and direction between points on a reference ellipsoid. The Earth's terrestrial surface is highly irregular and unsuitable for any mathematical computations, instead an ellipsoid - a surface of revolution created by rotating an ellipse about its minor axis - is adopted and points on the Earth's surface are projected onto the ellipsoid, via a normal to the ellipsoid. All computations are made using these projected points on this reference ellipsoid.

These notes are intended for undergraduate students studying courses in surveying, geodesy and map projections. The derivations of equations given herein are detailed, and in some cases elementary, but they do convey the vital connection between geodesy and the mathematics taught to undergraduate students.

These notes are a collection of papers written by the authors on the topic of computation of distance and azimuth between points on the reference ellipsoid. There are five lines or curves of interest in geodesy: the geodesic which is the curve of shortest length; the normal section curve; the curve of alignment; the great elliptic arc; and the loxodrome. The most important is of course the geodesic since it is the shortest distance between two points, but the other curves have their uses in navigation (the loxodrome) and in field surveying (normal section and curve of alignment).

The methods of computation outlined in these papers have been developed with the computer in mind - perhaps with the exception of F. W. Bessel's paper of 1826 - and most have MATLAB functions that demonstrate the application of the methods.

There is a certain amount of repetition in the papers as they are separate documents intended to give the reader an overview of the particular geodetic problem and then a detailed solution with computer examples of algorithms. So the student will see repeated treatments of the ellipsoid and associated formula as well as various solutions of the direct and inverse problems of geodesy. But, there may be something useful within the detail for the interested reader.

TABLE OF CONTENTS

pages

1. THE CALCULATION OF LONGITUDE AND LATITUDE FROM GEODETIC MEASUREMENTS 11
This is an English translation of Über die Berechnung dergeographischen Längen und Brieten aus geodätischenVermessungen, Astronomicische Nachrichten (AstronomicalNotes) 4(86), 241-254, 1826 by F. W. Bessel. This paper could beregarded as the first practical (and modern) treatment ofcomputation using the geodesic. Bessel's method, with slightvariation is still used today.
2. GEODESICS ON AN ELLIPSOID - BESSEL'S METHOD 66
This paper gives a detailed derivation of equations for the solution of the direct and inverses problems on the ellipsoid. Bessel's method as presented here is slightly different from the original but leads to Rainsford's equations and Vincenty's modifications. Vincenty's equations are commonly used for geodesic computation.
3. GEODESICS ON AN ELLIPSOID - PITTMAN'S METHOD 19
An alternative to Bessel's method (Vincenty's equations) that uses recurrence relationships to solve the direct and inverse problems. These methods are unusual but they give extremely good accuracies over any length of line anywhere on the ellipsoid.

TABLE OF CONTENTS (continued)

pages
4. THE NORMAL SECTION CURVE ON AN ELLIPSOID 53
5. THE CURVE OF ALIGNMENT ON AN ELLIPSOID 20
6. THE GREAT ELLIPTIC ARC ON AN ELLIPSOID 19
7. THE LOXODROME ON AN ELLIPSOID 20

The calculation of longitude and latitude from geodesic measurements*

F. W. Bessel
Königsberg Observatory
(Originally published: October 1825; translated: August 13, 2009)

1. INTRODUCTION

Consider a geodesic line between two points A and B on the surface of the Earth. Given the position of A, the length of the line and its azimuth at A, we wish to determine the position of B and the azimuth of the line there. This problem occurs so frequently that I undertook to construct tables to simplify the computation. In order to explain the method clearly, I start by deriving the fundamental properties of geodesic lines on a spheroid of revolution. Even though aspects of this derivation may already be well known, the benefit of having the entire development presented together outweighs the cost of repeating it. ${ }^{1}$

2. THE CHARACTERISTIC EQUATION FOR A GEODESIC

Take two points A and B on the surface on a spheroid ${ }^{2}$ of revolution joined by some specified curve. Consider two neighboring points on the curve with latitudes ϕ and $\phi+d \phi$ and longitudes relative to A of w and $w+d w$ (measuring east positive). Let the distance between them be $d s$, the azimuth of line directed toward A be α (measured clockwise from north),
*This is an English translation of Über die Berechnung der geographischen Längen und Breiten aus geodätischen Vermessungen Astronomische Nachrichten 4(86), 241-254 (1826), doi 10.1002/asna. 18260041601 The paper also appears in Abhandlungen von Friedrich Wilhelm Bessel, Vol. 3 pp. 514 (W. Engelmann, Leipzig, 1876). The translation has been prepared and edited by Charles F. F. Karney \{ckarney @sarnoff.com > and Rodney E. Deakin rod.deakin@rmit.edu.au , with the assistance of Max Hunter and Stephan Brunner. The mathematical notation has been updated to conform to current conventions and, in a few places, the equations have been rearranged for clarity. Several errors have been corrected, a figure has been included, and the tables have been recomputed. A transcription of the original paper with the updated mathematical notation and with the corrections is available at arXiv:0908.1823 A contemporary, but partial, translation into English appeared in Quart. Jour. Roy. Inst. 21(41), 138-152 (1826).
${ }^{1}$ In Secs. 2, 4 Bessel gives a concise summary of the work of several other authors, notably, Clairaut, du Séjour, Legendre, and Oriani. Bessel's contributions, which start in Sec. 5 consist of his methods for expanding the distance and longitude integrals and his compilation of tables to provide a practical method for computing geodesics. Two sentences have been omitted from this translation of the introduction. In one, Bessel refers to two letters he published earlier in the Astronomische Nachrichten which do not, however, have a direct bearing on the present work. In the other, he criticizes "du Séjour's method," but without providing details; in any case, such criticism is misplaced because du Séjour had died over 30 years earlier and Bessel does not cite more recent work.
2 "Spheroid" here is used in the sense of a shape approximating a sphere. Sections 2 and 3 treat the case of a rotationally symmetric earth. In Sec. 4 Bessel specializes to a rotationally symmetric ellipsoid.
the radius of the circle of latitude be r, and the meridional radius of curvature by R; then we find ${ }^{3}$

$$
\begin{align*}
d s \cos \alpha & =-R d \phi=\frac{d r}{\sin \phi} \tag{1}\\
d s \sin \alpha & =-r d w
\end{align*}
$$

which gives

$$
d s=\sqrt{R^{2} d \phi^{2}+r^{2} d w^{2}} .
$$

If we write p for $d \phi / d w$ and U for $\sqrt{R^{2} p^{2}+r^{2}}$, this becomes

$$
d s=U d w
$$

The distance along the curve between the two points A and B is therefore

$$
s=\int U d w
$$

where the integration is from A to B. If the curve is the geodesic or shortest path, then the relation between ϕ and w must be such that the integral is a minimum. If we perturb this relation so that ϕ is replaced by $\phi+z$ where z is an arbitrary function of w which vanishes at the end points (because these points lie on both curves), then the perturbed length,

$$
s^{\prime}=\int U^{\prime} d w
$$

must be larger than s for all z.
Expanding $U(\phi, p)$ in a Taylor series, we obtain ${ }^{4}$

$$
U^{\prime}=U+\frac{\partial U}{\partial \phi} z+\frac{\partial U}{\partial p} \frac{d z}{d w}+\ldots
$$

and therefore we have

$$
s^{\prime}=s+\int\left(\frac{\partial U}{\partial \phi} z+\frac{\partial U}{\partial p} \frac{d z}{d w}\right) d w+\ldots
$$

where we have explicitly included terms only up to first order in z. For s to be a minimum, we require that

$$
\int\left(\frac{\partial U}{\partial \phi} z+\frac{\partial U}{\partial p} \frac{d z}{d w}\right) d w+\ldots \geq 0
$$

[^0]for all z. Since this must also hold if z is replaced by $-z$ and since we can take z so small that the first order terms are bigger that the sum of all the higher order terms (except if the first order terms vanish), it follows that the condition that s be minimum is
$$
\int\left(\frac{\partial U}{\partial \phi} z+\frac{\partial U}{\partial p} \frac{d z}{d w}\right) d w=0
$$

Integrating the second term by parts to give $z(\partial U / \partial p)-$ $\int z[d(\partial U / \partial p) / d w] d w$ and remembering that z vanishes at the end points, we obtain

$$
\int z\left\{\frac{\partial U}{\partial \phi}-\frac{d}{d w}\left(\frac{\partial U}{\partial p}\right)\right\} d w=0
$$

Since this integral must vanish for arbitrary z, we find ${ }^{5}$

$$
\frac{\partial U}{\partial \phi}-\frac{d}{d w}\left(\frac{\partial U}{\partial p}\right)=0
$$

or, multiplying by $d \phi / d w=p$,

$$
\frac{\partial U}{\partial \phi} \frac{d \phi}{d w}+\frac{\partial U}{\partial p} \frac{d p}{d w}-\frac{d p}{d w} \frac{\partial U}{\partial p}-p \frac{d}{d w}\left(\frac{\partial U}{\partial p}\right)=0
$$

which on integrating with respect to w becomes 6

$$
U-p\left(\frac{d U}{d p}\right)=\text { const. }
$$

Substituting $\sqrt{r^{2}+R^{2} p^{2}}$ for U, we obtain ${ }^{7}$

$$
\frac{r}{\sqrt{1+\left(R^{2} / r^{2}\right) p^{2}}}=-r \sin \alpha=\text { const. }
$$

which is the well known characteristic equation of the geodesic.

If the azimuth of the geodesic at A (in the direction of B) is α^{\prime} and the distance of A from the rotation axis is r^{\prime}, we have

$$
r^{\prime} \sin \left(\alpha^{\prime}+180^{\circ}\right)=r \sin \alpha
$$

or

$$
\begin{equation*}
r^{\prime} \sin \alpha^{\prime}=-r \sin \alpha \tag{2}
\end{equation*}
$$

3. THE AUXILIARY SPHERE

Let the maximum distance of the spheroid to the rotation axis be a, so that r and r^{\prime} are less than or equal to a; we can then write ${ }^{8}$

$$
r^{\prime}=a \cos u^{\prime}, \quad r=a \cos u
$$

[^1]

Figure 1 Spherical triangles on the auxiliary sphere. $E A B$ is the geodesic, N is the pole; $E F G$ is the equator; and $N E, N A F$, and $N B G$ are meridians.
and equation (2) becomes

$$
\begin{equation*}
\cos u^{\prime} \sin \alpha^{\prime}=-\cos u \sin \alpha \tag{3}
\end{equation*}
$$

This equation relates two sides of a spherical triangle, ${ }^{9} 90^{\circ}-$ u^{\prime} and $90^{\circ}-u$, and their opposite angles, $360^{\circ}-\alpha$ and α^{\prime}. The third side σ and its opposite angle ω will appear in the following calculations giving elegant expressions for the joint variations of s, u and w. In particular, using the well known differential formulas of spherical trigonometry, we find ${ }^{10}$

$$
\begin{aligned}
d u & =-\cos \alpha d \sigma \\
\cos u d \omega & =-\sin \alpha d \sigma
\end{aligned}
$$

Substituting these in equations (1) and expressing r in terms of u gives

$$
\begin{align*}
d s & =a \frac{\sin u}{\sin \phi} d \sigma \\
d w & =\frac{\sin u}{\sin \phi} d \omega \tag{4}
\end{align*}
$$

4. THE EQUATIONS FOR A GEODESIC ON AN ELLIPSOID

I now assume that the meridian is an ellipse with equatorial semi-axis a, polar semi-axis b, and eccentricity $e=$ $\sqrt{a^{2}-b^{2}} / a .{ }^{11}$ The equation for an ellipse expressed in terms

[^2]of cartesian coordinates is
$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

Differentiating this and setting $d y / d x=-\cot \phi$, we obtain

$$
\frac{x \sin \phi}{a^{2}}-\frac{y \cos \phi}{b^{2}}=0
$$

eliminating y between these equations then gives

$$
x=\frac{a \cos \phi}{\sqrt{1-e^{2} \sin ^{2} \phi}}
$$

The quantity x is the same as $r=a \cos u$, which gives the relationships between ϕ and u,

$$
\begin{array}{ll}
\cos u=\frac{\cos \phi}{\sqrt{1-e^{2} \sin ^{2} \phi}}, & \cos \phi=\frac{\cos u \sqrt{1-e^{2}}}{\sqrt{1-e^{2} \cos ^{2} u}} \\
\sin u=\frac{\sin \phi \sqrt{1-e^{2}}}{\sqrt{1-e^{2} \sin ^{2} \phi}}, & \sin \phi=\frac{\sin u}{\sqrt{1-e^{2} \cos ^{2} u}} \\
\tan u=\tan \phi \sqrt{1-e^{2}}, & \tan \phi=\frac{\tan u}{\sqrt{1-e^{2}}}
\end{array}
$$

and

$$
\frac{\sin u}{\sin \phi}=\sqrt{1-e^{2} \cos ^{2} u}
$$

Substituting this into (4), we obtain the differential equations for a geodesic on an ellipsoid

$$
\begin{align*}
d s & =a \sqrt{1-e^{2} \cos ^{2} u} d \sigma \\
d w & =\sqrt{1-e^{2} \cos ^{2} u} d \omega \tag{5}
\end{align*}
$$

5. THE DISTANCE INTEGRAL

To integrate the first of these differential equations, I use the three relations between $u^{\prime}, u, \alpha^{\prime}, \alpha$ and $\sigma,{ }^{12}$

$$
\begin{align*}
\sin u & =\sin u^{\prime} \cos \sigma+\cos u^{\prime} \cos \alpha^{\prime} \sin \sigma \\
-\cos u \cos \alpha & =-\sin u^{\prime} \sin \sigma+\cos u^{\prime} \cos \alpha^{\prime} \cos \sigma \tag{6}\\
-\cos u \sin \alpha & =\cos u^{\prime} \sin \alpha^{\prime}
\end{align*}
$$

It is convenient to write these in terms of the auxiliary angles m and M defined by ${ }^{13}$

$$
\begin{align*}
\sin u^{\prime} & =\cos m \sin M, \\
\cos u^{\prime} \cos \alpha^{\prime} & =\cos m \cos M, \tag{7}\\
\cos u^{\prime} \sin \alpha^{\prime} & =\sin m .
\end{align*}
$$

[^3]Equations (6) then become ${ }^{14}$

$$
\begin{align*}
\sin u & =\cos m \sin (M+\sigma) \\
\cos u \cos \alpha & =-\cos m \cos (M+\sigma) \tag{8}\\
\cos u \sin \alpha & =-\sin m
\end{align*}
$$

This gives

$$
\cos ^{2} u=1-\cos ^{2} m \sin ^{2}(M+\sigma)
$$

and the equation for $d s$ becomes

$$
\begin{equation*}
d s=a \sqrt{1-e^{2}} \sqrt{1+k^{2} \sin ^{2}(M+\sigma)} d \sigma \tag{9}
\end{equation*}
$$

where

$$
k=\frac{e \cos m}{\sqrt{1-e^{2}}}
$$

This differential equation may be integrated in terms of the elliptic integrals introduced by Legendre. ${ }^{15}$ Because the tools to compute these special functions are not yet sufficiently versatile, ${ }^{16}$ we instead develop a series solution which converges rapidly because e^{2} is so small. We readily achieve this by decomposing the term under the square root into two complex factors, namely ${ }^{17}$

$$
\begin{aligned}
& d s=a \frac{\sqrt{1-e^{2}}}{1-\epsilon} d \sigma \times \\
& \quad \sqrt{1-\epsilon \exp (2 i(M+\sigma))} \sqrt{1-\epsilon \exp (-2 i(M+\sigma))},
\end{aligned}
$$

where

$$
\epsilon=\frac{\sqrt{1+k^{2}}-1}{\sqrt{1+k^{2}}+1}, \quad k=\frac{2 \sqrt{\epsilon}}{1-\epsilon}
$$

Expanding the two factors in the radicals in infinite series and multiplying the results gives ${ }^{18}$

$$
\begin{aligned}
d s= & a \frac{\sqrt{1-e^{2}}}{1-\epsilon} d \sigma[A-2 B \cos 2(M+\sigma) \\
& -2 C \cos 4(M+\sigma)-2 D \cos 6(M+\sigma)-\ldots]
\end{aligned}
$$

[^4]where A, B, C, \ldots are given by
\[

$$
\begin{aligned}
A= & 1+\left(\frac{1}{2}\right)^{2} \epsilon^{2}+\left(\frac{1 \cdot 1}{2 \cdot 4}\right)^{2} \epsilon^{4}+\left(\frac{1 \cdot 1 \cdot 3}{2 \cdot 4 \cdot 6}\right)^{2} \epsilon^{6}+\ldots \\
B= & \frac{1}{2} \epsilon-\frac{1 \cdot 1}{2 \cdot 4} \frac{1}{2} \epsilon^{3}-\frac{1 \cdot 1 \cdot 3}{2 \cdot 4 \cdot 6} \frac{1 \cdot 1}{2 \cdot 4} \epsilon^{5} \\
& \quad-\frac{1 \cdot 1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 8} \frac{1 \cdot 1 \cdot 3}{2 \cdot 4 \cdot 6} \epsilon^{7}-\ldots, \\
C= & \frac{1 \cdot 1}{2 \cdot 4} \epsilon^{2}-\frac{1 \cdot 1 \cdot 3}{2 \cdot 4 \cdot 6} \frac{1}{2} \epsilon^{4}-\frac{1 \cdot 1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 8} \frac{1 \cdot 1}{2 \cdot 4} \epsilon^{6} \\
& \quad-\frac{1 \cdot 1 \cdot 3 \cdot 5 \cdot 7}{2 \cdot 4 \cdot 6 \cdot 8 \cdot 10} \frac{1 \cdot 1 \cdot 3}{2 \cdot 4 \cdot 6} \epsilon^{8}-\ldots, \\
D= & \frac{1 \cdot 1 \cdot 3}{2 \cdot 4 \cdot 6} \epsilon^{3}-\frac{1 \cdot 1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 8} \frac{1}{2} \epsilon^{5}-\frac{1 \cdot 1 \cdot 3 \cdot 5 \cdot 7}{2 \cdot 4 \cdot 6 \cdot 8 \cdot 10} \frac{1 \cdot 1}{2 \cdot 4} \epsilon^{7} \\
& \quad-\frac{1 \cdot 1 \cdot 3 \cdot 5 \cdot 7 \cdot 9}{2 \cdot 4 \cdot 6 \cdot 8 \cdot 10 \cdot 12} \frac{1 \cdot 1 \cdot 3}{2 \cdot 4 \cdot 6} \epsilon^{9}-\ldots
\end{aligned}
$$
\]

etc.
Integrating the equation for $d s$ starting at $\sigma=0$, we obtain

$$
\begin{align*}
s=\frac{b}{1-\epsilon}[A \sigma & -\frac{2}{1} B \cos (2 M+\sigma) \sin \sigma \\
& -\frac{2}{2} C \cos (4 M+2 \sigma) \sin 2 \sigma \\
& -\frac{2}{3} D \cos (6 M+3 \sigma) \sin 3 \sigma \\
& -\ldots] . \tag{10}
\end{align*}
$$

6. SOLVING THE DISTANCE EQUATION

The series (10) gives the distance s between A and B in terms of $u^{\prime}, \alpha^{\prime}$, and σ; if, however, s and α^{\prime} have been measured and u^{\prime} is known from the latitude at A, then σ is obtained by solving (10). The latitude of B and the azimuth of the geodesic there are found from (8). Equation (10) can be solved either by reverting the series or by successive approximation-the latter way is however the simplest if the tables I have compiled are used.

I write ${ }^{19}$

$$
\begin{array}{r}
\sigma=\frac{\alpha}{b} s+\beta \cos (2 M+\sigma) \sin \sigma+\gamma \cos (4 M+2 \sigma) \sin 2 \sigma \\
+\delta \cos (6 M+3 \sigma) \sin 3 \sigma+\ldots, \tag{11}
\end{array}
$$

where

$$
\begin{aligned}
& \alpha=\frac{648000}{\pi} \frac{1-\epsilon}{A} \\
& \beta=\frac{648000}{\pi} \frac{2 B}{A} \\
& \gamma=\frac{648000}{\pi} \frac{C}{A} \\
& \delta=\frac{648000}{\pi} \frac{2 D}{3 A}
\end{aligned}
$$

etc.

[^5]The tables give the logarithms ${ }^{20}$ of α, β, and γ as a function of the argument

$$
\log k=\log \frac{e \cos m}{\sqrt{1-e^{2}}}
$$

By this choice, the variation of $\log \beta$ and $\log \gamma$ are very close to two and four times that of the argument, which simplifies interpolation into the table. ${ }^{21}$

We take $\alpha s / b$ as the first approximation of σ, substitute this into the second term to obtain a second approximation, with which we recalculate the second term and add the third. The convergence of the series is sufficiently fast that, even if the argument is $\overline{1} .1$ (which is only possible if the flattening of the ellipsoid, $1-b / a$, exceeds $\frac{1}{128}$), the approximation never needs to be carried further in order to keep the errors in σ under $0.001^{\prime \prime}$. The term involving δ does not exceed $0.0005^{\prime \prime}$ at this value of the argument.

7. ACCURACY OF THE TABLES

The values of $\log \alpha$ in the table are given to 8 decimal places. ${ }^{22}$ An error of half a unit of the last place results in an error of only $0.0005^{\prime \prime}$ or 0.008 toise over a distance corresponding to $\sigma=12^{\circ} 4^{\prime}$ or 700000 toises. ${ }^{23}$ Similarly, I retain only sufficient digits in the tabulation of $\log \beta$ to ensure that the error in this term is less than $0.0005^{\prime \prime}$; for this purpose, I use 6 digits at the end of the table and fewer digits for smaller values of the argument. The third term never exceeds $0.17^{\prime \prime}$, even at the end of the table; therefore I include only 3 decimal places for $\log \gamma$. Thus the errors are $0.001^{\prime \prime}$ for distances up to 700000 toises; even if the distance is of the order of a quarter meridian (i.e., $\sigma=90^{\circ}$), the error is less than $0.01^{\prime \prime}$.

8. AN EXAMPLE

In order to illustrate the use of the tables, I consider the results from the great survey by von Müffling. ${ }^{24}$ Relative to

[^6]Seeberg (point A), the distance and azimuth to Dunkirk (point B) are 25

$$
\begin{aligned}
\log s & =5.47830314 \\
\alpha^{\prime} & =274^{\circ} 21^{\prime} 3.18^{\prime \prime}
\end{aligned}
$$

I assume the latitude of the Observatory at Seeberg to be $\phi^{\prime}=50^{\circ} 56^{\prime} 6.7^{\prime \prime}$ and the ellipsoid parameters to be $\log b=$ $6.51335464, \log e=\overline{2} .9054355 .{ }^{26}$

From $\tan u^{\prime}=\sqrt{1-e^{2}} \tan \phi^{\prime}$, we find

$$
\begin{aligned}
\log \tan \phi^{\prime} & =0.09062665 \\
\log \sqrt{1-e^{2}} & =\overline{1} .99859060 \\
\log \tan u^{\prime} & =\overline{0.08921725 ;} \quad u^{\prime}=50^{\circ} 50^{\prime} 39.057^{\prime \prime}
\end{aligned}
$$

Given u^{\prime} and α^{\prime}, we can compute $M, \cos m$ and $\sin m$ from equations (7): ${ }^{27}$

$$
\begin{array}{rlr}
\log \sin u^{\prime} & =\overline{1} .88954351 \\
\log \cos u^{\prime} & =\overline{1} .80032627 \\
\log \cos \alpha^{\prime} & =\overline{2} .88003733 \\
\log \sin \alpha^{\prime} & =\overline{1} .99874662(-) \\
\log (\cos m \sin M) & =\overline{\overline{1}} .88954351 & \\
\log (\cos m \cos M) & =\overline{2} .68036360 \\
\log \sin m & =\overline{1} .79907289(-) \\
M & =\overline{86^{\circ} 27^{\prime} 53.949^{\prime \prime} ;} & 2 M=172^{\circ} 55^{\prime} 47.9^{\prime \prime} \\
\log \cos m & =\overline{1} .89037063 & 4 M=345^{\circ} 51^{\prime} 36^{\prime \prime}
\end{array}
$$

The argument in the tables, $\log \left(\left(e / \sqrt{1-e^{2}}\right) \cos m\right)$, is

$$
\begin{aligned}
\log \frac{e}{\sqrt{1-e^{2}}} & =\overline{2} .906845 \\
\log \cos m & =\overline{1} .890371 \\
\text { Argument } & =\overline{2} .797216
\end{aligned}
$$

Looking up $\log \alpha$ in the tables, and calculating $\alpha s / b$ gives 28

$$
\begin{aligned}
\log \alpha & =5.31399892 \\
\operatorname{colog} b & =\overline{7} .48664536 \\
\log s & =5.47830314 \\
\log \frac{\alpha s}{b} & =\overline{4.27894742 ;} \quad \frac{\alpha}{b} s=5^{\circ} 16^{\prime} 48.481^{\prime \prime}
\end{aligned}
$$

[^7]Adopting this as the first approximation to the value of σ, we obtain the second by adding the first term in the series (11),

$$
\begin{aligned}
\log \beta & =2.30594 \\
\log \cos (2 M+\sigma) & =\overline{1} .99979(-) \\
\log \sin \sigma & =\frac{\overline{2} .96391}{1.26964(-)}=-18.61^{\prime \prime}
\end{aligned}
$$

We now update the value of this term with the second approximation of $\sigma=5^{\circ} 16^{\prime} 48.5^{\prime \prime}-18.6^{\prime \prime}=5^{\circ} 16^{\prime} 29.9^{\prime \prime}$ and so obtain as the third approximation:

$$
\begin{aligned}
\log \beta & =2.30594 \\
\log \cos (2 M+\sigma) & =\overline{1} .99979(-) \\
\log \sin \sigma & =\overline{2} .96348
\end{aligned}
$$

$$
1.26921(-)=-18.587^{\prime \prime}
$$

$$
\log \gamma=\overline{2} .394
$$

$$
\log \cos (4 M+2 \sigma)=\overline{1} .999
$$

$$
\log \sin 2 \sigma=\overline{1} .263
$$

$$
\overline{3} .656=+0.005^{\prime \prime}
$$

Gathering the terms in (11) gives $\sigma=5^{\circ} 16^{\prime} 48.481^{\prime \prime}-$ $18.587^{\prime \prime}+0.005^{\prime \prime}=5^{\circ} 16^{\prime} 29.899^{\prime \prime}$ and so, finally, we determine α, u and ϕ from equations (8),

$$
\begin{aligned}
M+\sigma & =91^{\circ} 44^{\prime} 23.848^{\prime \prime} \\
\log \sin (M+\sigma) & =\overline{1} .99979971 \\
\log (-\cos (M+\sigma)) & =\overline{2} .48234932 \\
\log \cos m & =\overline{1} .89037063 \\
\log (-\sin m) & =\overline{1} .79907289 \\
\log \sin u & =\overline{\overline{1}} .89017034 \\
\log (\cos u \cos \alpha) & =\overline{2} .37271995 \\
\log (\cos u \sin \alpha) & =\overline{1} .79907289 \\
\log \cot \alpha & =\overline{\overline{2} .57364706 ;} \quad \alpha=87^{\circ} 51^{\prime} 15.523^{\prime \prime} \\
\log \cos u & =\overline{1} .79937750 \\
\log \tan u & =0.09079284 \\
\operatorname{colog} \sqrt{1-e^{2}} & =0.00140940 \\
\log \tan \phi & =\overline{0.09220224 ;} \quad \phi=51^{\circ} 2^{\prime} 12.719^{\prime \prime} .
\end{aligned}
$$

In this example, I carried out the trigonometric calculations to 8 decimals; however the tables of $\log \alpha, \log \beta$, and $\log \gamma$ in fact allow α and ϕ to be determined slightly more accurately than this. If only standard 7-figure logarithm tables are available, the last digits in the tabulated values of $\log \alpha, \log \beta$, and $\log \gamma$ may be neglected.

9. THE LONGITUDE INTEGRAL

We turn now to the determination of the longitude difference w by integrating (5),

$$
d w=\sqrt{1-e^{2} \cos ^{2} u} d \omega
$$

This integral contains two separate constants m and e, which cannot be combined. Thus it not possible to construct tables to allow a rigorous solution of this problem which are valid for arbitrary $e .{ }^{29}$ However, we can achieve our goal by sacrificing strict rigor and by making an approximation which results in errors which are inconsequential in our application.

We start by writing

$$
d w=d \omega-\left(1-\sqrt{1-e^{2} \cos ^{2} u}\right) d \omega
$$

and substitute in the second term

$$
d \omega=\frac{\sin \alpha^{\prime} \cos u^{\prime}}{\cos ^{2} u} d \sigma
$$

On integrating, we obtain

$$
w=\omega-\sin \alpha^{\prime} \cos u^{\prime} \int \frac{1-\sqrt{1-e^{2} \cos ^{2} u}}{\cos ^{2} u} d \sigma
$$

Let us write

$$
\frac{1-\sqrt{1-e^{2} \cos ^{2} u}}{\cos ^{2} u}=\frac{e^{2}}{2}\left(1+e^{2} p \cos ^{2} u\right)^{q}(1+y)
$$

in other words, we set

$$
\begin{aligned}
& 1+y=\frac{2\left(1-\sqrt{1-e^{2} \cos ^{2} u}\right)}{e^{2} \cos ^{2} u\left(1+e^{2} p \cos ^{2} u\right)^{q}} \\
& =\frac{1+\frac{1}{4} e^{2} \cos ^{2} u+\frac{1}{8} e^{4} \cos ^{4} u+\frac{5}{64} e^{6} \cos ^{6} u+\ldots}{\binom{1+q p e^{2} \cos ^{2} u+\frac{q(q-1)}{1 \cdot 2} p^{2} e^{4} \cos ^{4} u}{+\frac{q(q-1)(q-2)}{1 \cdot 2 \cdot 3} p^{3} e^{6} \cos ^{6} u+\ldots}}
\end{aligned}
$$

The first three terms in the denominator and in the numerator are equal, provided that

$$
p=-\frac{3}{4}, \quad q=-\frac{1}{3}
$$

which gives

$$
\begin{aligned}
1+y & =\frac{1+\frac{1}{4} e^{2} \cos ^{2} u+\frac{1}{8} e^{4} \cos ^{4} u+\frac{5}{64} e^{6} \cos ^{6} u+\ldots}{1+\frac{1}{4} e^{2} \cos ^{2} u+\frac{1}{8} e^{4} \cos ^{4} u+\frac{7}{96} e^{6} \cos ^{6} u+\ldots} \\
& =1+\frac{1}{192} e^{6} \cos ^{6} u+\ldots
\end{aligned}
$$

[^8]From this, we see that neglecting y results in an error of or$\operatorname{der} e^{8}$ or an error in w of $\frac{1}{384} e^{8} \sigma$. This would not be discernible even in the calculation of long geodesics to 10 decimal places. ${ }^{30}$

Thus, for the present purposes, we may take $y \approx 0$ enabling us to tabulate the integral in a way that is valid for all e.

10. SERIES EXPANSION FOR LONGITUDE

Introducing this approximation, we have

$$
\begin{aligned}
w & \approx \omega-\frac{e^{2}}{2} \sin m \int \frac{d \sigma}{\sqrt[3]{1-\frac{3}{4} e^{2} \cos ^{2} u}} \\
& =\omega-\frac{e^{2}}{2} \sin m \int \frac{d \sigma}{\sqrt[3]{1-\frac{3}{4} e^{2}+\frac{3}{4} e^{2} \cos ^{2} m \sin ^{2}(M+\sigma)}}
\end{aligned}
$$

If we set

$$
k^{\prime}=\frac{\sqrt{\frac{3}{4}} e \cos m}{\sqrt{1-\frac{3}{4} e^{2}}}
$$

we can express the integral in the second term as

$$
\int \frac{d \sigma}{\sqrt[3]{1-\frac{3}{4} e^{2}} \sqrt[3]{1+k^{\prime 2} \sin ^{2}(M+\sigma)}}
$$

Following the same procedure used in expanding the integral for $d s$ in Sec. 5, we introduce ϵ^{\prime} defined by ${ }^{31}$

$$
\epsilon^{\prime}=\frac{\sqrt{1+k^{\prime 2}}-1}{\sqrt{1+k^{\prime 2}}+1}, \quad k^{\prime}=\frac{2 \sqrt{\epsilon^{\prime}}}{1-\epsilon^{\prime}}
$$

and separate the integrand into two complex factors,

$$
\int \frac{\sqrt[3]{\left(1-\epsilon^{\prime}\right)^{2} /\left(1-\frac{3}{4} e^{2}\right)} d \sigma}{\sqrt[3]{1-\epsilon^{\prime} \exp (2 i(M+\sigma))} \sqrt[3]{1-\epsilon^{\prime} \exp (-2 i(M+\sigma))}}
$$

If we expand these in infinite series, the product becomes ${ }^{32}$

$$
\begin{array}{r}
\frac{2}{\sqrt[3]{1-\frac{3}{4} e^{2}}} \int\left(\alpha^{\prime}+\beta^{\prime} \cos 2(M+\sigma)+2 \gamma^{\prime} \cos 4(M+\sigma)\right. \\
\left.+3 \delta^{\prime} \cos 6(M+\sigma)+\ldots\right) d \sigma
\end{array}
$$

[^9]where ${ }^{33}$
\[

$$
\begin{aligned}
\alpha^{\prime}= & \frac{1}{2} \sqrt[3]{\left(1-\epsilon^{\prime}\right)^{2}}\left[1+\left(\frac{1}{3}\right)^{2} \epsilon^{\prime 2}+\left(\frac{1 \cdot 4}{3 \cdot 6}\right)^{2} \epsilon^{\prime 4}+\ldots\right] \\
\beta^{\prime}= & \frac{1}{1} \sqrt[3]{\left(1-\epsilon^{\prime}\right)^{2}}\left[\frac{1}{3} \epsilon^{\prime}+\frac{1 \cdot 4}{3 \cdot 6} \frac{1}{3} \epsilon^{\prime 3}+\frac{1 \cdot 4 \cdot 7}{3 \cdot 6 \cdot 9} \frac{1 \cdot 4}{3 \cdot 6} \epsilon^{\prime 5}+\ldots\right] \\
\gamma^{\prime}= & \frac{1}{2} \sqrt[3]{\left(1-\epsilon^{\prime}\right)^{2}}\left[\frac{1 \cdot 4}{3 \cdot 6} \epsilon^{\prime 2}+\frac{1 \cdot 4 \cdot 7}{3 \cdot 6 \cdot 9} \frac{1}{3} \epsilon^{\prime 4}\right. \\
& \left.\quad+\frac{1 \cdot 4 \cdot 7 \cdot 10}{3 \cdot 6 \cdot 9 \cdot 12} \frac{1 \cdot 4}{3 \cdot 6} \epsilon^{\prime 6}+\ldots\right] \\
\delta^{\prime}= & \frac{1}{3} \sqrt[3]{\left(1-\epsilon^{\prime}\right)^{2}}\left[\frac{1 \cdot 4 \cdot 7}{3 \cdot 6 \cdot 9} \epsilon^{\prime 3}+\frac{1 \cdot 4 \cdot 7 \cdot 10}{3 \cdot 6 \cdot 9 \cdot 12} \frac{1}{3} \epsilon^{\prime 5}\right. \\
& \left.+\frac{1 \cdot 4 \cdot 7 \cdot 10 \cdot 13}{3 \cdot 6 \cdot 9 \cdot 12 \cdot 15} \frac{1 \cdot 4}{3 \cdot 6} \epsilon^{\prime 7}+\ldots\right]
\end{aligned}
$$
\]

etc.
Integrating from $\sigma=0$ then gives

$$
\left.\begin{array}{c}
w \approx \omega-\frac{e^{2} \sin m}{\sqrt[3]{1-\frac{3}{4} e^{2}}}\left(\alpha^{\prime} \sigma+\beta^{\prime} \cos (2 M+\sigma) \sin \sigma\right. \\
+\gamma^{\prime} \cos (4 M+2 \sigma) \sin 2 \sigma \\
+ \tag{12}
\end{array} \delta^{\prime} \cos (6 M+3 \sigma) \sin 3 \sigma+\ldots\right) .
$$

11. COMPUTING THE LONGITUDE DIFFERENCE

The first two coefficients of this series are given in the 4th and 5th columns of the tables ${ }^{34}$ as functions of the argument

$$
\log k^{\prime}=\log \left(\frac{\sqrt{\frac{3}{4}} e}{\sqrt{1-\frac{3}{4} e^{2}}} \cos m\right)
$$

The convergence is commensurate with the 3 first columns of the tables. We calculate ω using one of the formulas for spherical triangles (Sec. 3), either ${ }^{35}$

$$
\sin \omega=\frac{\sin \sigma \sin \alpha^{\prime}}{\cos u}=\frac{-\sin \sigma \sin \alpha}{\cos u^{\prime}}=\frac{\sin \sigma \sin m}{\cos u \cos u^{\prime}}
$$

or 36

$$
\begin{aligned}
\tan \frac{1}{2} \omega & =\frac{\sin \frac{1}{2}\left(u^{\prime}-u\right)}{\cos \frac{1}{2}\left(u^{\prime}+u\right)} \cot \frac{1}{2}\left(\alpha^{\prime}+\alpha\right) \\
& =\frac{\cos \frac{1}{2}\left(u^{\prime}-u\right)}{\sin \frac{1}{2}\left(u^{\prime}+u\right)} \cot \frac{1}{2}\left(\alpha^{\prime}-\alpha\right)
\end{aligned}
$$

[^10]and evaluate w by means of the tables.
I will continue with the example in Sec. 8 and calculate the longitude difference between Dunkirk and Seeberg using this prescription. Solving the spherical triangle for ω gives
\[

$$
\begin{aligned}
\log \sin \sigma & =\overline{2} .96348383 \\
\log (-\sin \alpha) & =\overline{1} .99969539(-) \\
\operatorname{colog} \cos u^{\prime} & =0.19967373 \\
\log \sin \omega & =\overline{\overline{1} .16285295(-) ; \quad \omega=-8^{\circ} 21^{\prime} 57.741^{\prime \prime}}
\end{aligned}
$$
\]

The argument for the last two columns of the tables is $\log \left(\left(\sqrt{\frac{3}{4}} e / \sqrt{1-\frac{3}{4} e^{2}}\right) \cos m\right)$, giving

$$
\begin{aligned}
\log \frac{\sqrt{\frac{3}{4}} e}{\sqrt{1-\frac{3}{4} e^{2}}} & =\overline{2} .844022 \\
\log \cos m & =\overline{1} .890371 \\
\text { Argument } & =\overline{2} .734393
\end{aligned}
$$

Computing the terms in the series (12) gives

$$
\begin{aligned}
\log \alpha^{\prime} & =\overline{1} .698758 \\
\log (-\sin m) & =\overline{1} .799073 \\
\log \frac{e^{2}}{\sqrt[3]{1-\frac{3}{4} e^{2}}}= & \overline{3} .811575 \\
\log \sigma & =\frac{4.278523}{1.587929}=+38.719^{\prime \prime}
\end{aligned}
$$

and

$$
\begin{aligned}
\log \beta^{\prime} & =1.703 \\
\log (-\sin m)= & \overline{1} .799 \\
\log \frac{e^{2}}{\sqrt[3]{1-\frac{3}{4} e^{2}}}= & \overline{3} .812 \\
\log (\cos (2 M+\sigma) \sin \sigma)= & \overline{2} .963(-) \\
& \overline{\overline{2} .277}(-)=-0.019^{\prime \prime}
\end{aligned}
$$

The sum of both terms is $+38.700^{\prime \prime}$, and adding this to ω, we find the longitude difference,

$$
w=-8^{\circ} 21^{\prime} 19.041^{\prime \prime}
$$

12. CONCLUSION

This illustration of the use of these tables shows that the accuracy of the calculation is limited not by the neglect of terms of high order in the eccentricity, but by the number of decimal places included. The steps in the calculation are, for the most part, the same as for a spherical earth; in order to account for the earth's ellipticity one needs, in addition, only to solve equation (11) and to evaluate the series (12). Since this approach is sufficiently convenient even for routine use, it is unnecessary to use an approximate method which is valid only for small distances.
(The tables are shown on the following pages.)

TABLES for computing geodesics 1.

Arg	$\log \alpha$	- Δ	$\log \beta$	Δ	$\log \gamma \quad \Delta$	$\log \alpha^{\prime}$	- Δ	$\log \beta^{\prime}$	Δ
$\overline{4} .4$	5.31442513	1	$\overline{3} .5124$	2000		$\overline{1} .698970$	0	$\overline{3} .035$	200
$\overline{4} .5$	5.31442512	0	$\overline{3} .7124$	2000		$\overline{1} .698970$	0	$\overline{3} .235$	200
$\overline{4} .6$	5.31442512	1	$\overline{3} .9124$	2000		1.698970	0	$\overline{3} .435$	200
$\overline{4} .7$	5.31442511	2	$\overline{2} .1124$	2000		$\overline{1} .698970$	0	$\overline{3} .635$	200
$\overline{4} .8$	5.31442509	3	$\overline{2} .3124$	2000		$\overline{1} .698970$	0	$\overline{3} .835$	200
$\overline{4} .9$	5.31442506	4	$\overline{2} .5124$	2000		$\overline{1} .698970$	0	$\overline{2} .035$	200
$\overline{3} .0$	5.31442502	6	$\overline{2} .7124$	2000		$\overline{1} .698970$	0	$\overline{2} .235$	200
$\overline{3} .1$	5.31442496	10	$\overline{2} .9124$	2000		$\overline{1} .698970$	0	$\overline{2} .435$	200
$\overline{3} .2$	5.31442486	16	$\overline{1} .1124$	2000		$\overline{1} .698970$	0	$\overline{2} .635$	200
$\overline{3} .3$	5.31442470	25	$\overline{1} .3124$	2000		1.698970	0	$\overline{2} .835$	200
$\overline{3} .4$	5.31442445	40	$\overline{1} .5124$	2000		$\overline{1} .698970$	1	$\overline{1} .035$	200
$\overline{3} .50$	5.31442405	5	$\overline{1} .7124$	200		$\overline{1} .698969$	0	$\overline{1} .235$	20
$\overline{3} .51$	5.31442400	6	$\overline{1} .7324$	200		$\overline{1} .698969$	0	$\overline{1} .255$	20
$\overline{3} .52$	5.31442394	5	1.7524	200		$\overline{1} .698969$	0	$\overline{1} .275$	20
$\overline{3} .53$	5.31442389	6	$\overline{1} .7724$	200		$\overline{1} .698969$	0	$\overline{1} .295$	20
$\overline{3} .54$	5.31442383	6	$\overline{1} .7924$	200		$\overline{1} .698969$	0	$\overline{1} .315$	20
$\overline{3} .55$	5.31442377	7	$\overline{1} .8124$	200		$\overline{1} .698969$	0	$\overline{1} .335$	20
$\overline{3} .56$	5.31442370	7	$\overline{1} .8324$	200		$\overline{1} .698969$	0	$\overline{1} .355$	20
$\overline{3} .57$	5.31442363	7	$\overline{1} .8524$	200		$\overline{1} .698969$	0	$\overline{1} .375$	20
$\overline{3} .58$	5.31442356	7	$\overline{1} .8724$	200		$\overline{1} .698969$	0	$\overline{1} .395$	20
$\overline{3} .59$	5.31442349	8	$\overline{1} .8924$	200		$\overline{1} .698969$	0	$\overline{1} .415$	20
$\overline{3} .60$	5.31442341	8	$\overline{1} .9124$	200		$\overline{1} .698969$	0	$\overline{1} .435$	20
$\overline{3} .61$	5.31442333	8	$\overline{1} .9324$	200		$\overline{1} .698969$	0	$\overline{1} .455$	20
$\overline{3} .62$	5.31442325	9	$\overline{1} .9524$	200		$\overline{1} .698969$	0	$\overline{1} .475$	20
$\overline{3} .63$	5.31442316	10	1. 1.9724	200		$\overline{1} .698969$	0	$\overline{1} .495$	20
$\overline{3} .64$	5.31442306	9	$\overline{1} .9924$	200		$\overline{1} .698969$	0	$\overline{1} .515$	20
$\overline{3} .65$	5.31442297	11	0.0124	200		$\overline{1} .698969$	1	$\overline{1} .535$	20
$\overline{3} .66$	5.31442286	10	0.0324	200		$\overline{1} .698968$	0	$\overline{1} .555$	20
$\overline{3} .67$	5.31442276	11	0.0524	200		$\overline{1} .698968$	0	$\overline{1} .575$	20
$\overline{3} .68$	5.31442265	12	0.0724	200		$\overline{1} .698968$	0	$\overline{1} .595$	20
$\overline{3} .69$	5.31442253	12	0.0924	200		$\overline{1} .698968$	0	$\overline{1} .615$	20
$\overline{3} .70$	5.31442241	13	0.1124	200		$\overline{1} .698968$	0	1. 635	20
$\overline{3} .71$	5.31442228	14	0.1324	200		$\overline{1} .698968$	0	$\overline{1} .655$	20
$\overline{3} .72$	5.31442214	14	0.1524	200		$\overline{1} .698968$	0	$\overline{1} .675$	20
$\overline{3} .73$	5.31442200	15	0.1724	200		$\overline{1} .698968$	0	$\overline{1} .695$	20
$\overline{3} .74$	5.31442185	15	0.1924	200		$\overline{1} .698968$	0	$\overline{1} .715$	20
$\overline{3} .75$	5.31442170	16	0.2124	200		$\overline{1} .698968$	0	$\overline{1} .735$	20
$\overline{3} .76$	5.31442154	17	0.2324	200		$\overline{1} .698968$	1	$\overline{1} .755$	20
$\overline{3} .77$	5.31442137	18	0.2524	200		$\overline{1} .698967$	0	$\overline{1} .775$	20
$\overline{3} .78$	5.31442119	18	0.2724	200		$\overline{1} .698967$	0	$\overline{1} .795$	20
$\overline{3} .79$	5.31442101	20	0.2924	200		$\overline{1} .698967$	0	$\overline{1} .815$	20
$\overline{3} .80$	5.31442081	20	0.3124	200		$\overline{1} .698967$	0	$\overline{1} .835$	20
$\overline{3} .81$	5.31442061	22	0.3324	200		$\overline{1} .698967$	0	$\overline{1} .855$	20
$\overline{3} .82$	5.31442039	22	0.3524	200		$\overline{1} .698967$	0	$\overline{1} .875$	20
$\overline{3} .83$	5.31442017	23	0.3724	200		$\overline{1} .698967$	0	$\overline{1} .895$	20
$\overline{3} .84$	5.31441994	25	0.3924	200		$\overline{1} .698967$	1	$\overline{1} .915$	20
$\overline{3} .85$	5.31441969	25	0.4124	200		$\overline{1} .698966$	0	1.935	20
$\overline{3} .86$	5.31441944	27	0.4324	200		$\overline{1} .698966$	0	$\overline{1} .955$	20
$\overline{3} .87$	5.31441917	28	0.4524	200		$\overline{1} .698966$	0	$\overline{1} .975$	20
$\overline{3} .88$	5.31441889	30	0.4724	200		$\overline{1} .698966$	0	$\overline{1} .995$	20
$\overline{3} .89$	5.31441859	31	0.4924	200		$\overline{1} .698966$	1	0.015	20
$\overline{3} .90$	5.31441828		0.5124			$\overline{1} .698965$		0.035	

TABLES for computing geodesics 2.

Arg	$\log \alpha$	- Δ	$\log \beta$	Δ	$\log \gamma$	Δ	$\log \alpha^{\prime}$	- Δ	$\log \beta^{\prime}$	Δ
$\overline{3} .90$	5.31441828	32	0.51235	2000			$\overline{1} .698965$	0	0.035	20
$\overline{3} .91$	5.31441796	34	0.53235	2000			$\overline{1} .698965$	0	0.055	20
$\overline{3} .92$	5.31441762	35	0.55235	2000			$\overline{1} .698965$	0	0.075	20
$\overline{3} .93$	5.31441727	37	0.57235	2000			$\overline{1} .698965$	0	0.095	20
$\overline{3} .94$	5.31441690	39	0.59235	2000			$\overline{1} .698965$	1	0.115	20
$\overline{3} .95$	5.31441651	41	0.61235	2000			$\overline{1} .698964$	0	0.135	20
$\overline{3} .96$	5.31441610	42	0.63235	2000			$\overline{1} .698964$	0	0.155	20
$\overline{3} .97$	5.31441568	45	0.65235	2000			$\overline{1} .698964$	1	0.175	20
$\overline{3} .98$	5.31441523	47	0.67235	1999			$\overline{1} .698963$	0	0.195	20
$\overline{3} .99$	5.31441476	48	0.69234	2000			$\overline{1} .698963$	0	0.215	20
$\overline{2} .00$	5.31441428	52	0.71234	2000			$\overline{1} .698963$	1	0.235	20
$\overline{2} .01$	5.31441376	53	0.73234	2000			$\overline{1} .698962$	0	0.255	20
$\overline{2} .02$	5.31441323	56	0.75234	2000			$\overline{1} .698962$	0	0.275	20
$\overline{2} .03$	5.31441267	59	0.77234	2000			$\overline{1} .698962$	1	0.295	20
$\overline{2} .04$	5.31441208	61	0.79234	2000			1. 698961	0	0.315	20
$\overline{2} .05$	5.31441147	65	0.81234	2000			$\overline{1} .698961$	1	0.335	20
$\overline{2} .06$	5.31441082	67	0.83234	2000			$\overline{1} .698960$	0	0.355	20
$\overline{2} .07$	5.31441015	71	0.85234	1999			$\overline{1} .698960$	0	0.375	20
$\overline{2} .08$	5.31440944	74	0.87233	2000			$\overline{1} .698960$	1	0.395	20
$\overline{2} .09$	5.31440870	77	0.89233	2000			$\overline{1} .698959$	0	0.415	20
$\overline{2} .10$	5.31440793	81	0.91233	2000			$\overline{1} .698959$	1	0.435	20
$\overline{2} .11$	5.31440712	85	0.93233	2000			$\overline{1} .698958$	1	0.455	20
$\overline{2} .12$	5.31440627	89	0.95233	2000			$\overline{1} .698957$	0	0.475	20
$\overline{2} .13$	5.31440538	93	0.97233	1999			$\overline{1} .698957$	1	0.495	20
$\overline{2} .14$	5.31440445	98	0.99232	2000			$\overline{1} .698956$	0	0.515	20
$\overline{2} .15$	5.31440347	102	1.01232	2000			$\overline{1} .698956$	1	0.535	20
$\overline{2} .16$	5.31440245	107	1.03232	2000			$\overline{1} .698955$	1	0.555	20
$\overline{2} .17$	5.31440138	112	1.05232	2000			$\overline{1} .698954$	1	0.575	20
$\overline{2} .18$	5.31440026	117	1.07232	1999			$\overline{1} .698953$	0	0.595	20
$\overline{2} .19$	5.31439909	123	1.09231	2000			$\overline{1} .698953$	1	0.615	20
$\overline{2} .20$	5.31439786	128	1.11231	2000			$\overline{1} .698952$	1	0.635	20
$\overline{2} .21$	5.31439658	135	1.13231	2000			$\overline{1} .698951$,	0.655	20
$\overline{2} .22$	5.31439523	141	1.15231	1999			$\overline{1} .698950$	1	0.675	20
$\overline{2} .23$	5.31439382	147	1.17230	2000			$\overline{1} .698949$	1	0.695	20
$\overline{2} .24$	5.31439235	155	1.19230	2000			$\overline{1} .698948$	1	0.715	20
$\overline{2} .25$	5.31439080	162	1.21230	1999	$\overline{4} .207$	40	$\overline{1} .698947$	1	0.735	20
$\overline{2} .26$	5.31438918	169	1.23229	2000	$\overline{4} .247$	40	$\overline{1} .698946$	1	0.755	20
$\overline{2} .27$	5.31438749	177	1.25229	2000	$\overline{4} .287$	40	$\overline{1} .698945$	1	0.775	20
$\overline{2} .28$	5.31438572	186	1.27229	1999	$\overline{4} .327$	40	$\overline{1} .698944$	2	0.795	20
$\overline{2} .29$	5.31438386	195	1.29228	2000	$\overline{4} .367$	40	$\overline{1} .698942$	1	0.815	20
$\overline{2} .30$	5.31438191	203	1.31228	1999	$\overline{4} .407$	40	$\overline{1} .698941$	1	0.835	20
$\overline{2} .31$	5.31437988	213	1.33227	2000	$\overline{4} .447$	40	$\overline{1} .698940$	2	0.855	20
$\overline{2} .32$	5.31437775	224	1.35227	2000	$\overline{4} .487$	40	$\overline{1} .698938$	1	0.875	20
$\overline{2} .33$	5.31437551	234	1.37227	1999	$\overline{4} .527$	40	$\overline{1} .698937$	2	0.895	20
$\overline{2} .34$	5.31437317	244	1.39226	2000	$\overline{4} .567$	40	$\overline{1} .698935$	1	0.915	20
$\overline{2} .35$	5.31437073	257	1.41226	1999	$\overline{4} .607$	40	$\overline{1} .698934$	2	0.935	20
$\overline{2} .36$	5.31436816	268	1.43225	2000	$\overline{4} .647$	40	$\overline{1} .698932$	2	0.955	20
$\overline{2} .37$	5.31436548	281	1.45225	1999	$\overline{4} .687$	40	$\overline{1} .698930$	2	0.975	20
$\overline{2} .38$	5.31436267	295	1.47224	1999	$\overline{4} .727$	40	$\overline{1} .698928$	2	0.995	20
$\overline{2} .39$	5.31435972	308	1.49223	2000	$\overline{4} .767$	40	$\overline{1} .698926$	2	1.015	20
$\overline{2} .40$	5.31435664		1.51223		$\overline{4} .807$		$\overline{1} .698924$		1.035	

TABLES for computing geodesics 3.

Arg	$\log \alpha$	- Δ	$\log \beta$	Δ	$\log \gamma$	Δ	$\log \alpha^{\prime}$	- Δ	$\log \beta^{\prime}$	Δ
$\overline{2} .40$	5.31435664	323	1.51223	1999	$\overline{4} .807$	40	$\overline{1} .698924$	2	1.035	20
$\overline{2} .41$	5.31435341	338	1.53222	1999	$\overline{4} .847$	40	$\overline{1} .698922$	2	1.055	20
$\overline{2} .42$	5.31435003	353	1.55221	2000	$\overline{4} .887$	40	$\overline{1} .698920$	2	1.075	20
$\overline{2} .43$	5.31434650	371	1.57221	1999	$\overline{4} .927$	40	$\overline{1} .698918$	3	1.095	20
$\overline{2} .44$	5.31434279	388	1.59220	1999	$\overline{4} .967$	40	$\overline{1} .698915$	2	1.115	20
$\overline{2} .45$	5.31433891	406	1.61219	1999	$\overline{3} .007$	40	$\overline{1} .698913$	3	1.135	20
$\overline{2} .46$	5.31433485	425	1.63218	2000	$\overline{3} .047$	40	$\overline{1} .698910$	3	1.155	20
$\overline{2} .47$	5.31433060	446	1.65218	1999	$\overline{3} .087$	40	$\overline{1} .698907$	3	1.175	20
$\overline{2} .48$	5.31432614	466	1.67217	1999	$\overline{3} .127$	40	$\overline{1} .698904$	3	1.195	20
$\overline{2} .49$	5.31432148	489	1.69216	1999	$\overline{3} .167$	40	$\overline{1} .698901$	3	1.215	20
$\overline{2} .50$	5.31431659	511	1.71215	1999	$\overline{3} .207$	40	$\overline{1} .698898$	4	1.235	20
$\overline{2} .51$	5.31431148	535	1.73214	1999	$\overline{3} .247$	40	$\overline{1} .698894$	3	1.255	20
$\overline{2} .52$	5.31430613	561	1.75213	1999	$\overline{3} .287$	40	1. 6988891	4	1.275	20
$\overline{2} .53$	5.31430052	587	1.77212	1998	$\overline{3} .327$	40	$\overline{1} .698887$	4	1.295	20
$\overline{2} .54$	5.31429465	615	1.79210	1999	$\overline{3} .367$	40	$\overline{1} .698883$	4	1.315	20
$\overline{2} .55$	5.31428850	644	1.81209	1999	$\overline{3} .407$	40	$\overline{1} .698879$	4	1.335	20
$\overline{2} .56$	5.31428206	674	1.83208	1999	$\overline{3} .447$	40	$\overline{1} .698875$	5	1.355	20
$\overline{2} .57$	5.31427532	705	1.85207	1998	$\overline{3} .487$	40	$\overline{1} .698870$	5	1.375	20
$\overline{2} .58$	5.31426827	739	1.87205	1999	$\overline{3} .527$	40	$\overline{1} .698865$	4	1.395	20
$\overline{2} .59$	5.31426088	774	1.89204	1998	$\overline{3} .567$	40	$\overline{1} .698861$	6	1.415	20
$\overline{2} .60$	5.31425314	810	1.91202	1998	$\overline{3} .607$	39	$\overline{1} .698855$	5	1.435	20
$\overline{2} .61$	5.31424504	848	1.93200	1999	$\overline{3} .646$	40	$\overline{1} .698850$	6	1.455	20
$\overline{2} .62$	5.31423656	889	1.95199	1998	$\overline{3} .686$	40	$\overline{1} .698844$	6	1.475	20
$\overline{2} .63$	5.31422767	930	1.97197	1998	$\overline{3} .726$	40	$\overline{1} .698838$	6	1.495	20
$\overline{2} .64$	5.31421837	973	1.99195	1998	$\overline{3} .766$	40	$\overline{1} .698832$	6	1.515	20
$\overline{2} .65$	5.31420864	1020	2.01193	1998	$\overline{3} .806$	40	$\overline{1} .698826$	7	1.535	20
$\overline{2} .66$	5.31419844	1068	2.03191	1998	$\overline{3} .846$	40	$\overline{1} .698819$	7	1.555	20
$\overline{2} .67$	5.31418776	1118	2.05189	1998	$\overline{3} .886$	40	$\overline{1} .698812$	8	1.575	20
$\overline{2} .68$	5.31417658	1170	2.07187	1997	$\overline{3} .926$	40	$\overline{1} .698804$	7	1.595	20
$\overline{2} .69$	5.31416488	1226	2.09184	1998	$\overline{3} .966$	40	$\overline{1} .698797$	9	1.615	20
$\overline{2} .70$	5.31415262	1283	2.11182	1997	$\overline{2} .006$	40	$\overline{1} .698788$	8	1.635	19
$\overline{2} .71$	5.31413979	1344	2.13179	1998	$\overline{2} .046$	40	$\overline{1} .698780$	9	1.654	20
$\overline{2} .72$	5.31412635	1406	2.15177	1997	$\overline{2} .086$	40	$\overline{1} .698771$	9	1.674	20
$\overline{2} .73$	5.31411229	1473	2.17174	1997	$\overline{2} .126$	40	$\overline{1} .698762$	10	1.694	20
$\overline{2} .74$	5.31409756	1543	2.19171	1997	$\overline{2} .166$	40	$\overline{1} .698752$	11	1.714	20
$\overline{2} .75$	5.31408213	1615	2.21168	1997	$\overline{2} .206$	40	$\overline{1} .698741$	10	1.734	20
$\overline{2} .76$	5.31406598	1690	2.23165	1996	$\overline{2} .246$	40	$\overline{1} .698731$	12	1.754	20
$\overline{2} .77$	5.31404908	1771	2.25161	1997	$\overline{2} .286$	40	$\overline{1} .698719$	11	1.774	20
$\overline{2} .78$	5.31403137	1853	2.27158	1996	$\overline{2} .326$	40	$\overline{1} .698708$	13	1.794	20
$\overline{2} .79$	5.31401284	1941	2.29154	1996	$\overline{2} .366$	39	$\overline{1} .698695$	13	1.814	20
$\overline{2} .800$	5.31399343	1004	2.31150	998	$\overline{2} .405$	20	$\overline{1} .698682$	6	1.834	10
$\overline{2} .805$	5.31398339	1028	2.32148	998	$\overline{2} .425$	20	$\overline{1} .698676$	7	1.844	10
$\overline{2} .810$	5.31397311	1051	2.33146	998	$\overline{2} .445$	20	$\overline{1} .698669$	7	1.854	10
$\overline{2} .815$	5.31396260	1076	2.34144	998	$\overline{2} .465$	20	$\overline{1} .698662$	7	1.864	10
$\overline{2} .820$	5.31395184	1101	2.35142	998	$\overline{2} .485$	20	$\overline{1} .698655$	8	1.874	10
$\overline{2} .825$	5.31394083	1127	2.36140	997	$\overline{2} .505$	20	$\overline{1} .698647$	7	1.884	10
$\overline{2} .830$	5.31392956	1152	2.37137	998	$\overline{2} .525$	20	$\overline{1} .698640$	8	1.894	10
$\overline{2} .835$	5.31391804	1180	2.38135	998	$\overline{2} .545$	20	$\overline{1} .698632$	8	1.904	10
$\overline{2} .840$	5.31390624	1207	2.39133	997	$\overline{2} .565$	20	$\overline{1} .698624$	8	1.914	10
$\overline{2} .845$	5.31389417	1234	2.40130	998	$\overline{2} .585$	20	$\overline{1} .698616$	8	1.924	10
$\overline{2} .850$	5.31388183		2.41128		$\overline{2} .605$		$\overline{1} .698608$		1.934	

TABLES for computing geodesics 4.

Arg	$\log \alpha$	- Δ	$\log \beta$	Δ	$\log \gamma$	Δ	$\log \alpha^{\prime}$	- Δ	$\log \beta^{\prime}$	Δ
$\overline{2} .850$	5.31388183	1264	2.411279	9974	$\overline{2} .605$	20	$\overline{1} .698608$	8	1.934	10
$\overline{2} .855$	5.31386919	1293	2.421253	9974	$\overline{2} .625$	20	$\overline{1} .698600$	9	1.944	10
$\overline{2} .860$	5.31385626	1323	2.431227	9974	$\overline{2} .645$	20	$\overline{1} .698591$	9	1.954	10
$\overline{2} .865$	5.31384303	1353	2.441201	9973	$\overline{2} .665$	20	$\overline{1} .698582$	9	1.964	10
$\overline{2} .870$	5.31382950	1385	2.451174	9972	$\overline{2} .685$	20	$\overline{1} .698573$	9	1.974	10
$\overline{2} .875$	5.31381565	1417	2.461146	9972	$\overline{2} .705$	20	$\overline{1} .698564$	10	1.984	10
$\overline{2} .880$	5.31380148	1450	2.471118	9971	$\overline{2} .725$	20	$\overline{1} .698554$	9	1.994	10
$\overline{2} .885$	5.31378698	1484	2.481089	9970	$\overline{2} .745$	20	$\overline{1} .698545$	10	2.004	10
$\overline{2} .890$	5.31377214	1518	2.491059	9970	$\overline{2} .765$	20	$\overline{1} .698535$	10	2.014	9
$\overline{2} .895$	5.31375696	1553	2.501029	9969	$\overline{2} .785$	19	$\overline{1} .698525$	11	2.023	10
$\overline{2} .900$	5.31374143	1590	2.510998	9968	$\overline{2} .804$	20	$\overline{1} .698514$	10	2.033	10
$\overline{2} .905$	5.31372553	1626	2.520966	9968	$\overline{2} .824$	20	1.698504	11	2.043	10
$\overline{2} .910$	5.31370927	1664	2.530934	9966	$\overline{2} .844$	20	$\overline{1} .698493$	11	2.053	10
$\overline{2} .915$	5.31369263	1702	2.540900	9966	$\overline{2} .864$	20	$\overline{1} .698482$	11	2.063	10
$\overline{2} .920$	5.31367561	1742	2.550866	9965	$\overline{2} .884$	20	$\overline{1} .698471$	12	2.073	10
$\overline{2} .925$	5.31365819	1783	2.560831	9965	$\overline{2} .904$	20	$\overline{1} .698459$	12	2.083	10
$\overline{2} .930$	5.31364036	1824	2.570796	9963	$\overline{2} .924$	20	$\overline{1} .698447$	12	2.093	10
$\overline{2} .935$	5.31362212	1866	2.580759	9963	$\overline{2} .944$	20	1.698435	12	2.103	10
$\overline{2} .940$	5.31360346	1909	2.590722	9962	$\overline{2} .964$	20	$\overline{1} .698423$	13	2.113	10
$\overline{2} .945$	5.31358437	1953	2.600684	9961	$\overline{2} .984$	20	1.698410	13	2.123	10
$\overline{2} .950$	5.31356484	1999	2.610645	9960	1.004	20	$\overline{1} .698397$	13	2.133	10
$\overline{2} .955$	5.31354485	2045	2.620605	9959	1. 024	20	$\overline{1} .698384$	14	2.143	10
$\overline{2} .960$	5.31352440	2093	2.630564	9958	$\overline{1} .044$	20	$\overline{1} .698370$	14	2.153	10
$\overline{2} .965$	5.31350347	2141	2.640522	9957	1. 064	19	1.698356	14	2.163	10
$\overline{2} .970$	5.31348206	2191	2.650479	9956	1. 083	20	$\overline{1} .698342$	15	2.173	10
$\overline{2} .975$	5.31346015	2241	2.660435	9956	1. 103	20	$\overline{1} .698327$	15	2.183	10
$\overline{2} .980$	5.31343774	2293	2.670391	9954	1. 123	20	1. 698312	15	2.193	10
$\overline{2} .985$	5.31341481	2347	2.680345	9953	$\overline{1} .143$	20	$\overline{1} .698297$	16	2.203	9
$\overline{2} .990$	5.31339134	2400	2.690298	9952	$\overline{1} .163$	20	$\overline{1} .698281$	15	2.212	10
$\overline{2} .995$	5.31336734	2457	2.700250	9951	$\overline{1} .183$	20	$\overline{1} .698266$	17	2.222	10
$\overline{1} .000$	5.31334277	2513	2.710201	9950	1. 203	20	$\overline{1} .698249$	17	2.232	10
$\overline{1} .005$	5.31331764	2571	2.720151	9948	1. 223	20	$\overline{1} .698232$	17	2.242	10
$\overline{1} .010$	5.31329193	2631	2.730099	9948	$\overline{1} .243$	20	$\overline{1} .698215$	17	2.252	10
$\overline{1} .015$	5.31326562	2691	2.740047	9946	1. 263	19	$\overline{1} .698198$	18	2.262	10
$\overline{1} .020$	5.31323871	2754	2.749993	9945	$\overline{1} .282$	20	$\overline{1} .698180$	18	2.272	10
$\overline{1} .025$	5.31321117	2818	2.759938	9943	1. 302	20	$\overline{1} .698162$	19	2.282	10
$\overline{1} .030$	5.31318299	2883	2.769881	9943	$\overline{1} .322$	20	$\overline{1} .698143$	19	2.292	10
$\overline{1} .035$	5.31315416	2949	2.779824	9941	1 1.342	20	$\overline{1} .698124$	20	2.302	10
$\overline{1} .040$	5.31312467	3018	2.789765	9939	1. 362	20	$\overline{1} .698104$	20	2.312	10
$\overline{1} .045$	5.31309449	3087	2.799704	9939	1. 382	20	$\overline{1} .698084$	20	2.322	10
$\overline{1} .050$	5.31306362	3159	2.809643	9936	$\overline{1} .402$	20	$\overline{1} .698064$	21	2.332	10
$\overline{1} .055$	5.31303203	3232	2.819579	9936	$\overline{1} .422$	20	$\overline{1} .698043$	22	2.342	9
$\overline{1} .060$	5.31299971	3306	2.829515	9934	$\overline{1} .442$	19	$\overline{1} .698021$	22	2.351	10
$\overline{1} .065$	5.31296665	3383	2.839449	9932	$\overline{1} .461$	20	$\overline{1} .697999$	22	2.361	10
1. 1.070	5.31293282	3460	2.849381	9931	$\overline{1} .481$	20	1. 697977	23	2.371	10
$\overline{1} .075$	5.31289822	3541	2.859312	9929	1. 501	20	$\overline{1} .697954$	24	2.381	10
$\overline{1} .080$	5.31286281	3623	2.869241	9928	$\overline{1} .521$	20	$\overline{1} .697930$	24	2.391	10
$\overline{1} .085$	5.31282658	3706	2.879169	9926	$\overline{1} .541$	20	$\overline{1} .697906$	25	2.401	10
$\overline{1} .090$	5.31278952	3791	2.889095	9924	$\overline{1} .561$	20	$\overline{1} .697881$	25	2.411	10
$\overline{1} .095$	5.31275161	3879	2.899019	9922	$\overline{1} .581$	19	$\overline{1} .697856$	26	2.421	10
$\overline{1} .100$	5.31271282		2.908941		$\overline{1} .600$		$\overline{1} .697830$		2.431	

GEODESICS ON AN ELLIPSOID - BESSEL'S METHOD

R. E. Deakin and M. N. Hunter
School of Mathematical \& Geospatial Sciences, RMIT University, GPO Box 2476 V , MELBOURNE, Australia
email: rod.deakin@rmit.edu.au
1st edition: January 2007
This edition with minor amendments: October 2009

Abstract

These notes provide a detailed derivation of the equations for computing the direct and inverse problems on the ellipsoid. These equations could be called Bessel's method and have a history dating back to F. W. Bessel's original paper on the topic titled: 'On the computation of geographical longitude and latitude from geodetic measurements', published in Astronomische Nachrichten (Astronomical Notes), Band 4 (Volume 4), Number 86, Speiten 241-254 (Columns 241-254), Altona 1826. The equations developed here are of a slightly different form than those presented by Bessel, but they lead directly to equations presented by Rainsford (1955) and Vincenty (1975) and the method of development closely follows that shown in Geometric Geodesy (Rapp, 1981). An understanding of the methods introduced in the following pages, in particular the evaluation of elliptic integrals by series expansion, will give the student an insight into other geodetic calculations.

INTRODUCTION

The direct and inverse problems on the ellipsoid are fundamental geodetic operations and can be likened to the equivalent operations of plane surveying; radiations (computing coordinates of points given bearings and distances radiating from a point of known coordinates) and joins (computing bearings and distances between points having known coordinates). In plane surveying, the coordinates are 2-Dimensional (2D) rectangular coordinates, usually designated East and North and the reference surface is a plane, either a local horizontal plane or a map projection plane.

In geodesy, the reference surface is an ellipsoid, the coordinates are latitudes and longitudes, directions are known as azimuths and distances are geodesic arc lengths.

Fig. 1: Geodesic curve on an ellipsoid
The geodesic is a unique curve on the surface of an ellipsoid defining the shortest distance between two points. A geodesic will cut meridians of an ellipsoid at angles α, known as azimuths and measured clockwise from north 0° to 360°. Figure 1 shows a geodesic curve C between two points $A\left(\phi_{A}, \lambda_{A}\right)$ and $B\left(\phi_{B}, \lambda_{B}\right)$ on an ellipsoid. ϕ, λ are latitude and longitude respectively and an ellipsoid is taken to mean a surface of revolution created by rotating an ellipse about its minor axis, $N S$. The geodesic curve C of length s from A to B has a forward azimuth $\alpha_{A B}$ measured at A and a reverse azimuth $\alpha_{B A}$ measured at B.

The direct problem on an ellipsoid is: given latitude and longitude of A and azimuth $\alpha_{A B}$ and geodesic distance s, compute the latitude and longitude of B and the reverse azimuth $\alpha_{B A}$.

The inverse problem is: given the latitudes and longitudes of A and B, compute the forward and reverse azimuths $\alpha_{A B}, \alpha_{B A}$ and the geodesic distance s.

Formula for computing geodesic distances and longitude differences between points connected by geodesic curves are derived from solutions of elliptic integrals and in Bessel's method, these elliptic integrals are solutions of equations connecting differential elements on the ellipsoid with corresponding elements on an auxiliary sphere. These integrals do not have direct solutions but instead are solved by expanding them into trigonometric series and integrating term-by-term. Hence the equations developed here are series-type
formula truncated at a certain number of terms that give millimetre precision for any length of line not exceeding 180° in longitude difference.

These formulae were first developed by Bessel (1826) who gave examples of their use using 10-place logarithms. A similar development is given in Handbuch der Vermessungskunde (Handbook of Geodesy) by Jordan/Eggert/Kneissl, 1958.

The British geodesist Hume Rainsford (1955) presented equations and computational methods for the direct and inverse problems that were applicable to machine computation of the mid 20th century. His formulae and iterative method for the inverse case were similar to Bessel's, although his equations contained different ellipsoid constants and geodesic curve parameters, but his equations for the direct case, different from Bessel's, were based on a direct technique given by G.T. McCaw (1932-33) which avoided iteration. For many years Rainsford's (and McCaw's) equations were the standard method of solving the direct and inverse problems on the ellipsoid when millimetre precision was required, even though they involved iteration and lengthy long-hand machine computation. In 1975, Thaddeus (Tom) Vincenty (1975-76), then working for the Geodetic Survey Squadron of the US Air Force, presented a set of compact nested equations that could be conveniently programmed on the then new electronic computers. His method and equations were based on Rainsford's inverse method combined with techniques developed by Professor Richard H. Rapp of the Ohio State University. Vincenty's equations for the direct and inverse problems on the ellipsoid have become a standard method of solution.

Vincenty's method (following on from Rainsford and Bessel) is not the only method of solving the direct and inverse problems on the ellipsoid. There are other techniques; some involving elegant solutions to integrals using recurrence relationships, e.g., Pittman (1986) and others using numerical integration techniques, e.g., Kivioja (1971) and Jank \& Kivioja (1980).

In this paper, we present a development following Rapp (1981) and based on Bessel's method which yields Rainsford's equations for the inverse problem. We then show how Vincenty's equations are obtained and how they are used in practice. In addition, certain ellipsoid relationships are given, the mathematical definition of a geodesic is discussed and the characteristic equation of a geodesic derived. The characteristic equation of a geodesic is fundamental to all solutions of the direct and inverse problems on the ellipsoid.

SOME ELLIPSOID RELATIONSHIPS

The size and shape of an ellipsoid is defined by one of three pairs of parameters: (i) a, b where a and b are the semi-major and semi-minor axes lengths of an ellipsoid respectively, or (ii) a, f where f is the flattening of an ellipsoid, or (iii) a, e^{2} where e^{2} is the square of the first eccentricity of an ellipsoid. The ellipsoid parameters a, b, f, e^{2} are related by the following equations

$$
\begin{align*}
& f=\frac{a-b}{a}=1-\frac{b}{a} \tag{1}\\
& b=a(1-f) \tag{2}\\
& e^{2}=\frac{a^{2}-b^{2}}{a^{2}}=1-\frac{b^{2}}{a^{2}}=f(2-f) \tag{3}\\
& 1-e^{2}=\frac{b^{2}}{a^{2}}=1-f(2-f)=(1-f)^{2} \tag{4}
\end{align*}
$$

The second eccentricity e^{\prime} of an ellipsoid is also of use and

$$
\begin{gather*}
e^{\prime 2}=\frac{a^{2}-b^{2}}{b^{2}}=\frac{a^{2}}{b^{2}}-1=\frac{e^{2}}{1-e^{2}}=\frac{f(2-f)}{(1-f)^{2}} \tag{5}\\
e^{2}=\frac{e^{\prime 2}}{1+e^{\prime 2}} \tag{6}
\end{gather*}
$$

In Figure 1 the normals to the surface at A and B intersect the rotational axis of the ellipsoid ($N S$ line) at H_{A} and H_{B} making angles ϕ_{A}, ϕ_{B} with the equatorial plane of the ellipsoid. These are the latitudes of A and B respectively. The longitudes λ_{A}, λ_{B} are the angles between the Greenwich meridian plane (a reference plane) and the meridian planes $O N A H_{A}$ and $O N B H_{B}$ containing the normals through A and $B . \quad \phi$ and λ are curvilinear coordinates and meridians of longitude (curves of constant λ) and parallels of latitude (curves of constant ϕ) are parametric curves on the ellipsoidal surface.

For a general point P on the surface of the ellipsoid (see Fig. 2), planes containing the normal to the ellipsoid intersect the surface creating elliptical sections known as normal sections. Amongst the infinite number of possible normal sections at a point, each having a certain radius of curvature, two are of interest: (i) the meridian section, containing the axis of revolution of the ellipsoid and having the least radius of curvature, denoted by ρ, and (ii) the prime vertical section, perpendicular to the meridian plane and having the greatest radius of curvature, denoted by ν.

$$
\begin{align*}
& \rho=\frac{a\left(1-e^{2}\right)}{\left(1-e^{2} \sin ^{2} \phi\right)^{\frac{3}{2}}}=\frac{a\left(1-e^{2}\right)}{W^{3}} \tag{7}\\
& \nu=\frac{a}{\left(1-e^{2} \sin ^{2} \phi\right)^{\frac{1}{2}}}=\frac{a}{W} \tag{8}\\
& W^{2}=1-e^{2} \sin ^{2} \phi \tag{9}
\end{align*}
$$

The centres of the radii of curvature of the prime vertical sections at A and B are at H_{A} and H_{B}, where H_{A} and H_{B} are the intersections of the normals at A and B and the rotational axis, and $\nu_{A}=P H_{A}, \nu_{B}=P H_{B}$. The centres of the radii of curvature of the meridian sections at A and B lie on the normals between P and H_{A} and P and H_{B}.

Alternative equations for the radii of curvature ρ and ν are given by

$$
\begin{align*}
& \rho=\frac{a^{2}}{b\left(1+e^{\prime 2} \cos ^{2} \phi\right)^{\frac{3}{2}}}=\frac{c}{V^{3}} \tag{10}\\
& \nu=\frac{a^{2}}{b\left(1+e^{\prime 2} \cos ^{2} \phi\right)^{\frac{1}{2}}}=\frac{c}{V} \tag{11}\\
& c=\frac{a^{2}}{b}=\frac{a}{1-f} \tag{12}\\
& V^{2}=1+e^{\prime 2} \cos ^{2} \phi \tag{13}
\end{align*}
$$

and c is the polar radius of curvature of the ellipsoid.
The latitude functions W and V are related as follows

$$
\begin{equation*}
W^{2}=\frac{V^{2}}{1+e^{\prime 2}} \quad \text { and } \quad W=\frac{V}{\left(1+e^{\prime 2}\right)^{\frac{1}{2}}}=\frac{b}{a} V \tag{14}
\end{equation*}
$$

Points on the ellipsoidal surface have curvilinear coordinates ϕ, λ and Cartesian coordinates x, y, z where the $x-z$ plane is the Greenwich meridian plane, the $x-y$ plane is the equatorial plane and the y - z plane is a meridian plane 90° east of the Greenwich meridian plane. Cartesian and curvilinear coordinates are related by

$$
\begin{align*}
& x=\nu \cos \phi \cos \lambda \\
& y=\nu \cos \phi \cos \lambda \tag{15}\\
& z=\nu\left(1-e^{2}\right) \sin \phi
\end{align*}
$$

Note that $\nu\left(1-e^{2}\right)$ is the distance along the normal from a point on the surface to the point where the normal cuts the equatorial plane.

THE DIFFERENTIAL RECTANGLE ON THE ELLIPSOID

The derivation of equations relating to the geodesic requires an understanding of the connection between differentially small quantities on the surface of the ellipsoid. These relationships can be derived from the differential rectangle, with diagonal $P Q$ in Figure 2 which shows P and Q on an ellipsoid, having semi-major axis a, flattening f, separated by differential changes in latitude $d \phi$ and longitude $d \lambda . P$ and Q are connected by a curve of length $d s$ making an angle α (the azimuth) with the meridian through P. The meridians λ and $\lambda+d \lambda$, and the parallels ϕ and $\phi+d \phi$ form a differential rectangle on the surface of the ellipsoid. The differential distances $d p$ along the parallel ϕ and $d m$ along the meridian λ are

$$
\begin{align*}
& d p=w d \lambda=\nu \cos \phi d \lambda \tag{16}\\
& d m=\rho d \phi \tag{17}
\end{align*}
$$

where ρ and ν are radii of curvature in the meridian and prime vertical planes respectively and $w=\nu \cos \phi$ is the perpendicular distance from the rotational axis.

Figure 2: Differential rectangle on the ellipsoid

The differential distance $d s$ is given by

$$
\begin{equation*}
d s=\sqrt{d p^{2}+d m^{2}}=\sqrt{(\nu \cos \phi d \lambda)^{2}+(\rho d \phi)^{2}} \tag{18}
\end{equation*}
$$

and so

$$
\frac{d s}{d \phi}=\sqrt{\nu^{2} \cos ^{2} \phi\left(\frac{d \lambda}{d \phi}\right)^{2}+\rho^{2}} \quad \text { or } \quad \frac{d s}{d \lambda}=\sqrt{\nu^{2} \cos ^{2} \phi+\rho^{2}\left(\frac{d \phi}{d \lambda}\right)^{2}}
$$

while

$$
\begin{equation*}
\sin \alpha=\nu \cos \phi \frac{d \lambda}{d s} \quad \text { and } \quad \cos \alpha=\rho \frac{d \phi}{d s} \tag{19}
\end{equation*}
$$

MATHEMATICAL DEFINITION OF A GEODESIC

Figure 3: Space curve C

A geodesic can be defined mathematically by considering concepts associated with space curves and surfaces. A space curve may be defined as the locus of the terminal points P of a position vector $\mathbf{r}(t)$ defined by a single scalar parameter t,

$$
\begin{equation*}
\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k} \tag{20}
\end{equation*}
$$

$\mathbf{i}, \mathbf{j}, \mathbf{k}$ are fixed unit Cartesian vectors in the directions of the x, y, z coordinate axes. As the parameter t varies the terminal point P of the vector sweeps out the space curve C.

Let s be the arc-length of C measured from some convenient point on C, so that $\frac{d s}{d t}=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}}$ or $s=\int \sqrt{\frac{d \mathbf{r}}{d t} \bullet \frac{d \mathbf{r}}{d t}} d t$. Hence s is a function of t and x, y, z are functions of s. Let Q, a small distance δs along the curve from P, have a position vector $\mathbf{r}+\delta \mathbf{r}$. Then $\delta \mathbf{r}=\overrightarrow{P Q}$ and $|\delta \mathbf{r}| \simeq|\delta s|$. Both when δs is positive or negative $\frac{\delta \mathbf{r}}{\delta s}$ approximates to a unit vector in the direction of s increasing and $\frac{d \mathbf{r}}{d s}$ is a tangent vector of unit length denoted by $\hat{\mathbf{t}}$; hence

$$
\begin{equation*}
\hat{\mathbf{t}}=\frac{d \mathbf{r}}{d s}=\frac{d x}{d s} \mathbf{i}+\frac{d y}{d s} \mathbf{j}+\frac{d z}{d s} \mathbf{k} \tag{21}
\end{equation*}
$$

Since $\hat{\mathbf{t}}$ is a unit vector then $\hat{\mathbf{t}} \bullet \hat{\mathbf{t}}=1$ and differentiating with respect to s leads to
$\hat{\mathbf{t}} \bullet \frac{d \hat{\mathbf{t}}}{d s}=0$ from which we deduce that $\frac{d \hat{\mathbf{t}}}{d s}$ is orthogonal to $\hat{\mathbf{t}}$ and write

$$
\begin{equation*}
\frac{d \hat{\mathbf{t}}}{d s}=\kappa \hat{\mathbf{n}}, \quad \kappa>0 \tag{22}
\end{equation*}
$$

$\frac{d \hat{\mathbf{t}}}{d s}$ is called the curvature vector $\mathbf{k}, \hat{\mathbf{n}}$ is a unit vector called the principal normal vector, κ the curvature and $\frac{1}{\kappa}=\rho$ is the radius of curvature. The circle through P, tangent to $\hat{\mathbf{t}}$ with this radius ρ is called the osculating circle. Also $\hat{\mathbf{n}} \bullet \frac{d \hat{\mathbf{t}}}{d s}=\kappa$; i.e., $\hat{\mathbf{n}}$ is the unit vector in the direction of \mathbf{k}. Let $\hat{\mathbf{b}}$ be a third unit vector defined by the vector cross product

$$
\begin{equation*}
\hat{\mathbf{b}}=\hat{\mathbf{t}} \times \hat{\mathbf{n}} \tag{23}
\end{equation*}
$$

thus $\hat{\mathbf{t}}, \hat{\mathbf{b}}$ and $\hat{\mathbf{n}}$ form a right-handed triad. Differentiating equation (23) with respect to s gives

$$
\frac{d \hat{\mathbf{b}}}{d s}=\frac{d}{d s}(\hat{\mathbf{t}} \times \hat{\mathbf{n}})=\frac{d \hat{\mathbf{t}}}{d s} \times \hat{\mathbf{n}}+\hat{\mathbf{t}} \times \frac{d \hat{\mathbf{n}}}{d s}=\kappa \hat{\mathbf{n}} \times \hat{\mathbf{n}}+\hat{\mathbf{t}} \times \frac{d \hat{\mathbf{n}}}{d s}=\hat{\mathbf{t}} \times \frac{d \hat{\mathbf{n}}}{d s}
$$

then

$$
\hat{\mathbf{t}} \bullet \frac{d \hat{\mathbf{b}}}{d s}=\hat{\mathbf{t}} \bullet\left(\hat{\mathbf{t}} \times \frac{d \hat{\mathbf{n}}}{d s}\right)=\frac{d \hat{\mathbf{n}}}{d s} \bullet(\hat{\mathbf{t}} \times \hat{\mathbf{t}})=0
$$

so that $\frac{d \hat{\mathbf{b}}}{d s}$ is orthogonal to $\hat{\mathbf{t}}$. But from $\hat{\mathbf{b}} \bullet \hat{\mathbf{b}}=1$ it follows that $\hat{\mathbf{b}} \bullet \frac{d \hat{\mathbf{b}}}{d s}=0$ so that $\frac{d \hat{\mathbf{b}}}{d s}$ is orthogonal to $\hat{\mathbf{b}}$ and so is in the plane containing $\hat{\mathbf{t}}$ and $\hat{\mathbf{n}}$. Since $\frac{d \hat{\mathbf{b}}}{d s}$ is in the plane of $\hat{\mathbf{t}}$ and $\hat{\mathbf{n}}$ and is orthogonal to $\hat{\mathbf{t}}$, it must be parallel to $\hat{\mathbf{n}}$. The direction of $\frac{d \hat{\mathbf{b}}}{d s}$ is opposite $\hat{\mathbf{n}}$ as it must be to ensure the cross product $\frac{d \hat{\mathbf{b}}}{d s} \times \hat{\mathbf{t}}$ is in the direction of $\hat{\mathbf{b}}$. Hence

$$
\begin{equation*}
\frac{d \hat{\mathbf{b}}}{d s}=-\tau \hat{\mathbf{n}}, \quad \tau>0 \tag{24}
\end{equation*}
$$

We call $\hat{\mathbf{b}}$ the unit binormal vector, τ the torsion, and $\frac{1}{\tau}$ the radius of torsion. $\hat{\mathbf{t}}, \hat{\mathbf{n}}$ and $\hat{\mathbf{b}}$ form a right-handed set of orthogonal unit vectors along a space curve.

The plane containing $\hat{\mathbf{t}}$ and $\hat{\mathbf{n}}$ is the osculating plane, the plane containing $\hat{\mathbf{n}}$ and $\hat{\mathbf{b}}$ is the normal plane and the plane containing $\hat{\mathbf{t}}$ and $\hat{\mathbf{b}}$ is the rectifying plane. Figure 4 shows these orthogonal unit vectors for a space curve.

Figure 4: The tangent $\hat{\mathbf{t}}$, principal normal $\hat{\mathbf{n}}$ and binormal $\hat{\mathbf{b}}$ to a space curve

Also $\hat{\mathbf{n}}=\hat{\mathbf{b}} \times \hat{\mathbf{t}}$ and the derivative with respect to s is

$$
\begin{equation*}
\frac{d \hat{\mathbf{n}}}{d s}=\frac{d}{d s}(\hat{\mathbf{b}} \times \hat{\mathbf{t}})=\frac{d \hat{\mathbf{b}}}{d s} \times \hat{\mathbf{t}}+\hat{\mathbf{b}} \times \frac{d \hat{\mathbf{t}}}{d s}=-\tau \hat{\mathbf{n}} \times \hat{\mathbf{t}}+\hat{\mathbf{b}} \times \kappa \hat{\mathbf{n}}=\tau \hat{\mathbf{b}}-\kappa \hat{\mathbf{t}} \tag{25}
\end{equation*}
$$

Equations (22), (24) and (25) are known as the Frenet-Serret formulae.

$$
\begin{align*}
& \frac{d \hat{\mathbf{t}}}{d s}=\kappa \hat{\mathbf{n}} \\
& \frac{d \hat{\mathbf{b}}}{d s}=-\tau \hat{\mathbf{n}} \tag{26}\\
& \frac{d \hat{\mathbf{n}}}{d s}=\tau \hat{\mathbf{b}}-\kappa \hat{\mathbf{t}}
\end{align*}
$$

These formulae, derived independently by the French mathematicians Jean-Frédéric Frenet (1816-1900) and Joseph Alfred Serret (1819-1885) describe the dynamics of a point moving along a continuous and differentiable curve in three-dimensional space. Frenet derived these formulae in his doctoral thesis at the University of Toulouse; the latter part of which was published as 'Sur quelques propriétés des courbes à double courbure', (Some properties of curves with double curvature) in the Journal de mathématiques pures et appliqués (Journal of pure and applied mathematics), Vol. 17, pp.437-447, 1852. Frenet also explained their use in a paper titled 'Théorèmes sur les courbes gauches' (Theorems on awkward curves) published in 1853. Serret presented an independent derivation of the same formulae in 'Sur quelques formules relatives à la théorie des courbes à double courbure' (Some formulas relating to the theory of curves with double curvature) published in the J. de Math. Vol. 16, pp.241-254, 1851 (DSB 1971).

A geodesic may be defined in the following manner:

A curve drawn on a surface so that its osculating plane at any point contains the normal to the surface at the point is a geodesic. It follows that the principal normal at any point on the curve is the normal to the surface and the geodesic is the shortest distance between two points on a surface.

Figure 5: The osculating plane of a geodesic
To understand that the geodesic is the shortest path on a surface requires the use of Meusnier's theorem, a fundamental theorem on the nature of surfaces. Jean-Baptiste-Marie-Charles Meusnier de la Place (1754-1793) was a French mathematician who, in a paper titled Mémoire sur la corbure des surfaces (Memoir on the curvature of surfaces), read at the Paris Academy of Sciences in 1776 and published in 1785, derived his theorem on the curvature, at a point of a surface, of plane sections with a common tangent (DSB 1971). His theorem can be stated as:

Between the radius ρ of the osculating circle of a plane slice C and the radius ρ_{N} of the osculating circle of a normal slice C_{N}, where both slices have the same tangent at P, there exists the relation

$$
\rho=\rho_{N} \cos \xi
$$

where ξ is the angle between the unit principal normals $\hat{\mathbf{n}}$ and $\hat{\mathbf{N}}$ to curves C and C_{N} at P.

In Figure 5, an infinitesimal arc $P Q$ of a geodesic coincides with the section of the surface S by a plane containing $\hat{\mathbf{t}}$ and $\hat{\mathbf{N}}$ where $\hat{\mathbf{N}}$ is a unit vector normal to the surface at P. This plane is a normal section plane through P and by Meusnier's theorem, the geodesic $\operatorname{arc} P Q$ is the arc of least curvature through P and Q; or the shortest distance on the surface between two adjacent points P and Q is along the geodesic through the points. In Figure 5, curve C (the arc $A P B$) will have a smaller radius of curvature at P than curve C_{N} the normal section arc $Q^{\prime} P Q$.

THE CHARACTERISTIC EQUATION OF A GEODESIC USING DIRECTION COSINES

Figure 6: Direction cosines
The characteristic equation of a geodesic can be derived from relationships between the direction cosines of the principal normal to a curve and the normal to the surface. In Figure $6, \mathbf{r}=r_{1} \mathbf{i}+r_{2} \mathbf{j}+r_{3} \mathbf{k}$ is a vector between two points in space having a magnitude $r=\sqrt{r_{1}^{2}+r_{2}^{2}+r_{3}^{2}} . \hat{\mathbf{r}}=\frac{\mathbf{r}}{r}=\frac{r_{1}}{r} \mathbf{i}+\frac{r_{2}}{r} \mathbf{j}+\frac{r_{3}}{r} \mathbf{k}$ is a unit vector and the scalar components $\frac{r_{1}}{r}=\cos \alpha, \frac{r_{2}}{r}=\cos \beta$ and $\frac{r_{3}}{r}=\cos \gamma . l=\cos \alpha, m=\cos \beta$ and $n=\cos \gamma$ are known as $\underline{\text { direction cosines }}$ and the unit vector can be expressed as $\hat{\mathbf{r}}=l \mathbf{i}+m \mathbf{j}+n \mathbf{k}$.

From equations (20) and (22) we may write the unit principal normal vector $\hat{\mathbf{n}}$ of a curve C as

$$
\begin{equation*}
\hat{\mathbf{n}}=\frac{1}{\kappa} \frac{d^{2} \mathbf{r}}{d s^{2}}=\frac{x^{\prime \prime}}{\kappa} \mathbf{i}+\frac{y^{\prime \prime}}{\kappa} \mathbf{j}+\frac{z^{\prime \prime}}{\kappa} \mathbf{k}=\rho x^{\prime \prime} \mathbf{i}+\rho y^{\prime \prime} \mathbf{j}+\rho z^{\prime \prime} \mathbf{k} \tag{27}
\end{equation*}
$$

where $\rho=\frac{1}{\kappa} . x^{\prime}=\frac{d x}{d s}$ and $x^{\prime \prime}=\frac{d^{2} x}{d s^{2}}$ are first and second derivatives with respect to arc length respectively and similarly for $y^{\prime}, z^{\prime}, y^{\prime \prime}, z^{\prime \prime}$.
The unit normal $\hat{\mathbf{N}}$ to the ellipsoid surface is $\hat{\mathbf{N}}=\frac{N_{1}}{\nu} \mathbf{i}+\frac{N_{2}}{\nu} \mathbf{j}+\frac{N_{3}}{\nu} \mathbf{k}$ where N_{1}, N_{2}, N_{3} are the Cartesian components of the normal vector $\overrightarrow{P H}$ and ν is the magnitude. $\frac{N_{1}}{\nu}=\cos \alpha$, $\frac{N_{2}}{\nu}=\cos \beta$ and $\frac{N_{3}}{\nu}=\cos \gamma$ are the direction cosines l, m and n. Note that the direction of the unit normal to the ellipsoid is towards the centre of curvature of normal sections passing through P.

Figure 7: The unit normal $\hat{\mathbf{N}}$ to the ellipsoid
The unit normal $\hat{\mathbf{N}}$ to the ellipsoid surface is given by

$$
\begin{equation*}
\hat{\mathbf{N}}=\left(\frac{-x}{\nu}\right) \mathbf{i}+\left(\frac{-y}{\nu}\right) \mathbf{j}+\left(\frac{-\nu \sin \phi}{\nu}\right) \mathbf{k} \tag{28}
\end{equation*}
$$

To ensure that the curve C is a geodesic, i.e., the unit principal normal $\hat{\mathbf{n}}$ to the curve must be coincident with the unit normal $\hat{\mathbf{N}}$ to the surface, the coefficients in equations (27) and (28) must be equal, thus

$$
\frac{-x}{\nu}=\rho x^{\prime \prime} ; \quad \frac{-y}{\nu}=\rho y^{\prime \prime} ; \quad \frac{-\nu \sin \phi}{\nu}=\rho z^{\prime \prime}
$$

This leads to

$$
\begin{equation*}
\frac{\rho x^{\prime \prime}}{x / \nu}=\frac{\rho y^{\prime \prime}}{y / \nu}=\frac{\rho z^{\prime \prime}}{\nu \sin \phi / \nu} \tag{29}
\end{equation*}
$$

From the first two equations of (29) we have $\rho x^{\prime \prime} \frac{\nu}{x}=\rho y^{\prime \prime} \frac{\nu}{y}$ giving the second-order differential equation (provided $\rho \nu \neq 0$)

$$
x y^{\prime \prime}-y x^{\prime \prime}=0
$$

which can be written as $\frac{d}{d s}\left(x y^{\prime}-y x^{\prime}\right)=0$ and so a first integral is

$$
\begin{equation*}
x y^{\prime}-y x^{\prime}=C \tag{30}
\end{equation*}
$$

where C is an arbitrary constant. Now, from equations (15), x and y are functions of ϕ and λ, and the chain rule gives

$$
\begin{align*}
x^{\prime} & =\frac{\partial x}{\partial \phi} \frac{d \phi}{d s}+\frac{\partial x}{\partial \lambda} \frac{d \lambda}{d s} \\
y^{\prime} & =\frac{\partial y}{\partial \phi} \frac{d \phi}{d s}+\frac{\partial y}{\partial \lambda} \frac{d \lambda}{d s} \tag{31}
\end{align*}
$$

Differentiating the first two equations of (15) with respect to ϕ, bearing in mind that ν is a function of ϕ gives

$$
\begin{aligned}
\frac{\partial x}{\partial \phi} & =-\nu \sin \phi \cos \lambda+\cos \phi \cos \lambda \frac{d \nu}{d \phi} \\
& =-\nu \sin \phi \cos \lambda+\cos \phi \cos \lambda \frac{a e^{2} \sin \phi \cos \phi}{\left(1-e^{2} \sin ^{2} \phi\right)^{\frac{3}{2}}}
\end{aligned}
$$

Using equation (8) and simplifying yields

$$
\frac{\partial x}{\partial \phi}=-\rho \sin \phi \cos \lambda
$$

Similarly

$$
\frac{\partial y}{\partial \phi}=-\nu \sin \phi \sin \lambda+\cos \phi \sin \lambda \frac{d \nu}{d \phi}=-\rho \sin \phi \sin \lambda
$$

Placing these results, together with the derivatives $\frac{\partial x}{\partial \lambda}$ and $\frac{\partial y}{\partial \lambda}$ into equations (31) gives

$$
\begin{aligned}
x^{\prime} & =-\rho \sin \phi \cos \lambda \frac{d \phi}{d s}-\nu \cos \phi \sin \lambda \frac{d \lambda}{d s} \\
y^{\prime} & =-\rho \sin \phi \sin \lambda \frac{d \phi}{d s}+\nu \cos \phi \cos \lambda \frac{d \lambda}{d s}
\end{aligned}
$$

These values of x^{\prime} and y^{\prime} together with x and y from equations (15) substituted into equation (30) gives

$$
\begin{equation*}
\nu^{2} \cos ^{2} \phi \frac{d \lambda}{d s}=C \tag{32}
\end{equation*}
$$

which can be re-arranged to give an expression for the differential distance $d s$

$$
d s=\frac{\nu^{2} \cos ^{2} \phi}{C} d \lambda
$$

$d s$ is also given by equation (18) and equating the two and simplifying gives the differential equation of the geodesic (Thomas 1952)

$$
\begin{equation*}
C^{2} \rho^{2} d \phi^{2}+\nu^{2} \cos ^{2} \phi\left(C^{2}-\nu^{2} \cos ^{2} \phi\right) d \lambda^{2}=0 \tag{33}
\end{equation*}
$$

From equation (19), $\sin \alpha=\nu \cos \phi \frac{d \lambda}{d s}$ and substituting into equation (32) gives the characteristic equation of the geodesic on the ellipsoid

$$
\begin{equation*}
\nu \cos \phi \sin \alpha=C \tag{34}
\end{equation*}
$$

Equation (34) is also known as Clairaut's equation in honour of the French mathematical physicist Alexis-Claude Clairaut (1713-1765). In a paper in 1733 titled Détermination géométrique de la perpendiculaire à la méridienne, tracée par M. Cassini, avec plusieurs methods d'en tirer la grandeur et la figure de la terre (Geometric determination of the perpendicular to the meridian, traced by Mr. Cassini, ... on the figure of the Earth.) Clairaut made an elegant study of the geodesics of quadrics of rotation. It included the property already pointed out by Johann Bernoulli: the osculating plane of the geodesic is normal to the surface (DSB 1971).

The characteristic equation of a geodesic shows that the geodesic on the ellipsoid has the intrinsic property that at any point, the product of the radius w of the parallel of latitude and the sine of the azimuth of the geodesic at that point is a constant. This means that as $w=\nu \cos \phi$ decreases in higher latitudes, in both the northern and southern hemispheres, $\sin \alpha$ increases until it reaches a maximum or minimum of ± 1, noting that the azimuth of a geodesic at a point will vary between 0° and 180° if the point is moving along a geodesic in an easterly direction or between 180° and 360° if the point is moving along a geodesic in a westerly direction. At the point when $\sin \alpha= \pm 1$, which is known as the vertex, w is a minimum and the latitude ϕ will be a maximum value ϕ_{0}, known as the geodetic latitude of the vertex. Thus the geodesic oscillates over the surface of the ellipsoid between two parallels of latitude having a maximum in the northern and southern hemispheres and crossing the equator at nodes; but as we will demonstrate later, due to the eccentricity of the ellipsoid the geodesic will not repeat after a complete cycle.

Figure 8: A single cycle of a geodesic on the Earth
Figures 8a, 8b and 8c show a single cycle of a geodesic on the Earth. This particular geodesic reaches maximum latitudes of approximately $\pm 45^{\circ}$ and has an azimuth of approximately 45° as it crosses the equator at longitude 0°.

Figure 9 shows a schematic representation of the oscillation of a geodesic on an ellipsoid. P is a point on a geodesic that crosses the equator at A, heading in a north-easterly direction reaching a maximum northerly latitude $\phi_{\max }$ at the vertex P_{0} (north), then descends in a south-easterly direction crossing the equator at B, reaching a maximum southerly latitude $\phi_{\min }$ at P_{0} (south), then ascends in a north-easterly direction crossing the equator again at A^{\prime}. This is one complete cycle of the geodesic, but $\lambda_{A^{\prime}}$ does not equal λ_{A} due to the eccentricity of the ellipsoid, hence we say that the geodesic curve does not repeat after a complete cycle.

Figure 9: Schematic representation of the oscillation of a geodesic on an ellipsoid

RELATIONSHIPS BETWEEN PARAMETRIC LATITUDE ψ AND GEODETIC LATITUDE ϕ

The development of formulae is simplified if parametric latitude ψ is used rather than geodetic latitude ϕ. The connection between the two latitudes can be obtained from the following relationships.

Figure 10 shows a portion of a meridian NPE of an ellipsoid having semi-major axis $O E=a$ and semiminor axis $O N=b . P$ is a point on the ellipsoid and P^{\prime} is a point on an auxiliary circle centred on O of radius $a . \quad P$ and P^{\prime} have the same perpendicular distance w from the axis of revolution $O N$. The normal to the ellipsoid at P cuts the major axis at an angle ϕ (the geodetic latitude) and intersects the rotational axis at H. The distance $P H=\nu$. The angle $P^{\prime} O E=\psi$ is the parametric latitude

Figure 10: Meridian section of ellipsoid The Cartesian equation of the ellipse and the auxiliary circle of Figure 10 are $\frac{w^{2}}{a^{2}}+\frac{z^{2}}{b^{2}}=1$ and $w^{2}+z^{2}=a^{2}$ respectively. Now, since the w-coordinate of P and P^{\prime} are the same then $a^{2}-\frac{a^{2}}{b^{2}} z_{P}^{2}=w_{P}^{2}=w_{P^{\prime}}^{2}=a^{2}-z_{P^{\prime}}^{2}$ which leads to $z_{P}=\frac{b}{a} z_{P^{\prime}}$. Using this relationship

$$
\begin{align*}
& w=O M=a \cos \psi \\
& z=M P=b \sin \psi \tag{35}
\end{align*}
$$

Note that writing equations (35) as $\frac{w}{a}=\cos \psi$ and $\frac{z}{b}=\sin \psi$ then squaring and adding gives $\frac{w^{2}}{a^{2}}+\frac{z^{2}}{b^{2}}=\cos ^{2} \psi+\sin ^{2} \psi=1$ which is the Cartesian equation of an ellipse.

From Figure 10

$$
\begin{equation*}
w=\nu \cos \phi=a \cos \psi \tag{36}
\end{equation*}
$$

and from the third of equations (15) $z=\nu\left(1-e^{2}\right) \sin \phi$, hence using equations (35) we may write

$$
\begin{align*}
& w=a \cos \psi=\nu \cos \phi \\
& z=b \sin \psi=\nu\left(1-e^{2}\right) \sin \phi \tag{37}
\end{align*}
$$

from which the following ratios are obtained

$$
\frac{z}{w}=\frac{b}{a} \tan \psi=\left(1-e^{2}\right) \tan \phi
$$

Since $e^{2}=\frac{a^{2}-b^{2}}{a^{2}}=1-\frac{b^{2}}{a^{2}}$ then $1-e^{2}=\frac{b^{2}}{a^{2}}$ and we may define parametric latitude ψ by

$$
\begin{equation*}
\tan \psi=\frac{b}{a} \tan \phi=\left(1-e^{2}\right)^{\frac{1}{2}} \tan \phi=(1-f) \tan \phi \tag{38}
\end{equation*}
$$

Alternatively, using equations (36) and (8) we may define the parametric latitude ψ by

$$
\begin{equation*}
\cos \psi=\frac{\cos \phi}{\left(1-e^{2} \sin ^{2} \phi\right)^{\frac{1}{2}}} \tag{39}
\end{equation*}
$$

or equivalently by

$$
\begin{equation*}
\sin \phi=\frac{\sin \psi}{\left(1-e^{2} \cos ^{2} \psi\right)^{\frac{1}{2}}} \tag{40}
\end{equation*}
$$

These three relationships are useful in the derivation of formulae for geodesic distance and longitude difference that follow.

THE LATITUDES ϕ_{0} AND ψ_{0} OF THE GEODESIC VERTEX

Now Clairaut's equation (34) is $\nu \cos \phi \sin \alpha=$ constant $=C$, where $\nu=\frac{a}{\left(1-e^{2} \sin ^{2} \phi\right)^{\frac{1}{2}}}$.
The term $\nu \cos \phi$ will be a minimum (and the latitude ϕ will be a maximum in the northern and southern hemispheres) when $|\sin \alpha|$ is a maximum of 1 , and this occurs when $\alpha=90^{\circ}$ or 270°. This point is known as the geodesic vertex.

Let $\nu_{0} \cos \phi_{0}$ be this smallest value, then

$$
\begin{equation*}
\nu_{0} \cos \phi_{0}=C=\nu \cos \phi \sin \alpha \tag{41}
\end{equation*}
$$

ϕ_{0} is called the maximum geodetic latitude and the value of ψ corresponding to ϕ_{0} is called the maximum parametric latitude and is denoted by ψ_{0}. Using this correspondence and equations (36) and (41) gives

$$
\begin{equation*}
a \cos \psi_{0}=\nu \cos \phi \sin \alpha=a \cos \psi \sin \alpha \tag{42}
\end{equation*}
$$

From this we may define the parametric latitude of the vertex ψ_{0} as

$$
\begin{equation*}
\cos \psi_{0}=\cos \psi \sin \alpha \tag{43}
\end{equation*}
$$

and the azimuth α of the geodesic as

$$
\begin{equation*}
\cos \alpha=\frac{\sqrt{\cos ^{2} \psi-\cos ^{2} \psi_{0}}}{\cos \psi} \tag{44}
\end{equation*}
$$

From equation (43) we see that if the azimuth α of a geodesic is known at a point P having parametric latitude ψ, the parametric latitude ψ_{0} of the vertex P_{0} can be computed. Conversely, given ψ and ψ_{0} of points P and P_{0} the azimuth of the geodesic between them may be computed from equation (44).

THE ELLIPSOID, THE AUXILIARY SPHERE AND THE DIFFERENTIAL EQUATIONS

The derivation of Bessel's formulae (or Rainsford's and Vincenty's equations) begins by developing relationships between the ellipsoid and a sphere. The sphere is an auxiliary surface and not an approximation of the ellipsoid; its radius therefore is immaterial and can be taken to be 1 (unit radius).

Figure 11a: The geodesic passing through P_{1} and P_{2} on the ellipsoid.

Figure 11b: The great circle passing through P_{1}^{\prime} and P_{2}^{\prime} on the auxiliary sphere.

Figure 11a shows a geodesic passing through P_{1} and P_{2} on an ellipsoid. The geodesic has azimuths α_{E} where it crosses the equator (a node), α_{1} and α_{2} at P_{1} and P_{2} respectively and reaches a maximum latitude at the vertex where its azimuth is $\alpha=90^{\circ}$. The length of the geodesic between P_{1} and P_{2} is s and the longitudes of P_{1} and P_{2} are λ_{1} and λ_{2}. Using equation (43) we may write

$$
\begin{equation*}
\cos \psi_{1} \sin \alpha_{1}=\cos \psi_{2} \sin \alpha_{2}=\cos \psi_{0} \tag{45}
\end{equation*}
$$

Figure 11b shows P_{1}^{\prime} and P_{2}^{\prime} on an auxiliary sphere (of unit radius) where latitudes on this sphere are defined to be equal to parametric latitudes on the ellipsoid. The geodesic, a great circle on a sphere, passing through P_{1}^{\prime} and P_{2}^{\prime} has azimuths A_{E} at the equator E, A_{1} and A_{2} at P_{1}^{\prime} and P_{2}^{\prime} respectively and $A=90^{\circ}$ at the vertex H. The length of the great circle between P_{1}^{\prime} and P_{2}^{\prime} is σ and the longitudes of P_{1}^{\prime} and P_{2}^{\prime} are ω_{1} and ω_{2}. Again, using equation (43), which holds for all geodesics (or great circles on auxiliary spheres) we may write

$$
\begin{equation*}
\cos \psi_{1} \sin A_{1}=\cos \psi_{2} \sin A_{2}=\cos \psi_{0} \tag{46}
\end{equation*}
$$

Now, since parametric latitudes are defined to be equal on the auxiliary sphere and the ellipsoid, equations (45) and (46) show that on these two surfaces $A=\alpha$, i.e., azimuths of great circles on the auxiliary sphere are equal to azimuths of geodesics on the ellipsoid.

Now, consider the differential rectangle on the ellipsoid and sphere shown in Figures 12a and 12 b below

Figure 12a: Differential rectangle on ellipsoid

Figure 12b: Differential rectangle on sphere

We have for the ellipsoid [see Figure 2 and equations (19)]

$$
\begin{align*}
d s \cos \alpha & =\rho d \phi \\
d s \sin \alpha & =\nu \cos \phi d \lambda \tag{47}
\end{align*}
$$

and for the sphere

$$
\begin{align*}
d \sigma \cos \alpha & =d \psi \\
d \sigma \sin \alpha & =\cos \psi d \omega \tag{48}
\end{align*}
$$

Dividing equations (47) by equations (48) gives

$$
\frac{d s \cos \alpha}{d \sigma \cos \alpha}=\frac{\rho d \phi}{d \psi} ; \quad \frac{d s \sin \alpha}{d \sigma \sin \alpha}=\frac{\nu \cos \phi d \lambda}{\cos \psi d \omega}
$$

and noting from equation (36) that $\nu \cos \phi=a \cos \psi$, then cancelling terms gives

$$
\begin{equation*}
\frac{d s}{d \sigma}=\rho \frac{d \phi}{d \psi}=a \frac{d \lambda}{d \omega} \tag{49}
\end{equation*}
$$

We may write these equations as two separate relationships

$$
\begin{align*}
& \frac{d s}{d \sigma}=\rho \frac{d \phi}{d \psi} \tag{50}\\
& \frac{d \lambda}{d \omega}=\frac{1}{a} \frac{d s}{d \sigma} \tag{51}
\end{align*}
$$

and if we can obtain an expression for $\frac{d \phi}{d \psi}$ then we may develop two relatively simple differential equations; one involving distance $\frac{d s}{d \sigma}$ (s ellipsoid and σ sphere) and the other involving longitude $\frac{d \lambda}{d \omega}$ (λ ellipsoid and ω sphere). Integration yields equations that will enable us to compute geodesic lengths s on the ellipsoid given great circle distances σ on an auxiliary sphere, and equations to compute longitude differences $\Delta \lambda$ on the ellipsoid given longitude differences $\Delta \omega$ on the auxiliary sphere.

An expression for $\frac{d \phi}{d \psi}$ can be determined as follows.
From equation (38) we have

$$
\tan \psi=\left(1-e^{2}\right)^{\frac{1}{2}} \tan \phi
$$

and differentiating with respect to ψ gives
and

$$
\begin{aligned}
\frac{d}{d \psi}(\tan \psi) & =\frac{d}{d \phi}\left\{\left(1-e^{2}\right)^{\frac{1}{2}} \tan \phi\right\} \frac{d \phi}{d \psi} \\
\sec ^{2} \psi & =\left(1-e^{2}\right)^{\frac{1}{2}} \sec ^{2} \phi \frac{d \phi}{d \psi}
\end{aligned}
$$

giving

$$
\begin{equation*}
\frac{d \phi}{d \psi}=\frac{1}{\left(1-e^{2}\right)^{\frac{1}{2}}} \frac{\cos ^{2} \phi}{\cos ^{2} \psi} \tag{52}
\end{equation*}
$$

Substituting equation (52) into equation (50) gives

$$
\begin{equation*}
\frac{d s}{d \sigma}=\frac{\rho}{\left(1-e^{2}\right)^{\frac{1}{2}}} \frac{\cos ^{2} \phi}{\cos ^{2} \psi} \tag{53}
\end{equation*}
$$

and substituting equation (53) into equation (51) gives

$$
\begin{equation*}
\frac{d \lambda}{d \omega}=\frac{\rho}{a\left(1-e^{2}\right)^{\frac{1}{2}}} \frac{\cos ^{2} \phi}{\cos ^{2} \psi} \tag{54}
\end{equation*}
$$

Now from equation (36) we may write

$$
\frac{\cos \phi}{\cos \psi}=\frac{a}{\nu} \quad \text { and } \quad \frac{\cos ^{2} \phi}{\cos ^{2} \psi}=\frac{a^{2}}{\nu^{2}}
$$

and using the relationships given in equations (4), (10), (11) and (12) we may write

$$
\begin{equation*}
\frac{\cos ^{2} \phi}{\cos ^{2} \psi}=\frac{a^{2}}{\nu^{2}}=\frac{b^{2} V^{2}}{a^{2}} ; \quad \frac{\rho}{\left(1-e^{2}\right)^{\frac{1}{2}}}=\frac{c}{V^{3}} \frac{a}{b}=\frac{a^{3}}{b^{2} V^{3}} ; \quad \frac{\rho}{a\left(1-e^{2}\right)^{\frac{1}{2}}}=\frac{a^{2}}{b^{2} V^{3}} \tag{55}
\end{equation*}
$$

Substituting these results into equations (53) and (54) gives
and

$$
\begin{align*}
\frac{d s}{d \sigma} & =\frac{a}{V} \tag{56}\\
\frac{d \lambda}{d \omega} & =\frac{1}{V} \tag{57}
\end{align*}
$$

Now from equation (13) we may write $V^{2}=1+e^{\prime 2} \cos ^{2} \phi$ and also from equation (55) we may write $\cos ^{2} \phi=\frac{b^{2} V^{2}}{a^{2}} \cos ^{2} \psi$. Using these gives

$$
V^{2}=1+e^{\prime 2} \frac{b^{2} V^{2}}{a^{2}} \cos ^{2} \psi
$$

Now using equations (4) and (5) gives

$$
\begin{aligned}
V^{2} & =1+\frac{e^{2}}{1-e^{2}}\left(1-e^{2}\right) V^{2} \cos ^{2} \psi \\
& =1+e^{2} V^{2} \cos ^{2} \psi
\end{aligned}
$$

and $V^{2}\left(1-e^{2} \cos ^{2} \psi\right)=1$ from which we obtain

$$
\begin{equation*}
V=\frac{1}{\left(1-e^{2} \cos ^{2} \psi\right)^{\frac{1}{2}}} \tag{58}
\end{equation*}
$$

Substituting equation (58) into equations (56) and (57) gives

$$
\begin{equation*}
\frac{d s}{d \sigma}=a\left(1-e^{2} \cos ^{2} \psi\right)^{\frac{1}{2}} \tag{59}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d \lambda}{d \omega}=\left(1-e^{2} \cos ^{2} \psi\right)^{\frac{1}{2}} \tag{60}
\end{equation*}
$$

Equations (59) and (60) are the two differential equations from which we obtain distance s and longitude difference $\omega-\lambda$.

FORMULA FOR COMPUTATION OF GEODESIC DISTANCE s

Figure 13: Geodesic on auxiliary sphere

Figure 13 shows P_{1}^{\prime} and P_{2}^{\prime} on an auxiliary sphere (of unit radius) where latitudes on this sphere are defined to be equal to parametric latitudes on the ellipsoid. The geodesic, a great circle on a sphere, passing through P_{1}^{\prime} and P_{2}^{\prime} has azimuths α_{E} at the equator E, α_{1} at $P_{1}^{\prime}, \alpha_{2}$ at P_{2}^{\prime} and $\alpha=90^{\circ}$ at the vertex H.

Note here that we have shown previously that for our auxiliary sphere, the azimuth of a great circle on the sphere is equal to the azimuth of the geodesic on the ellipsoid. The length of the great circle arc between P_{1}^{\prime} and P_{2}^{\prime} is σ and the longitudes of P_{1}^{\prime} and P_{2}^{\prime} are ω_{1} and ω_{2}. Also note that σ_{1} and σ_{2} are angular distances along the great circle from the node E to P_{1}^{\prime} and E to P_{2}^{\prime} respectively and the angular distance from E to the vertex H is $90^{\circ} . \psi_{1}, \psi_{2}$ and ψ_{0} are the parametric latitudes of P_{1}, P_{2} and the vertex respectively, and they are also the latitudes of $P_{1}^{\prime}, P_{2}^{\prime}$ and the vertex H on the auxiliary sphere.

From the spherical triangle $P_{1}^{\prime} N^{\prime} H$ with the rightangle at H, using the sine rule (for spherical trigonometry)

$$
\begin{array}{ll}
& \frac{\sin \alpha_{1}}{\sin \left(90^{\circ}-\psi_{0}\right)}=\frac{\sin \left(90^{\circ}\right)}{\sin \left(90^{\circ}-\psi_{1}\right)} \\
\text { or } \quad & \frac{\sin \alpha_{1}}{\cos \psi_{0}}=\frac{1}{\cos \psi_{1}} \\
\text { so } \quad & \sin \alpha_{1} \cos \psi_{1}=\cos \psi_{0}
\end{array}
$$

Note that equation (61) can also be obtained from equation (43) and at the equator where $\psi=90^{\circ}$ and $\cos \psi=1$ we have

$$
\begin{equation*}
\sin \alpha_{E}=\cos \psi_{0} \tag{62}
\end{equation*}
$$

Using Napier's Rules for circular parts in the right-angled spherical triangle $P_{1}^{\prime} N^{\prime} H$

$$
\begin{aligned}
\sin (\text { mid-part }) & =\text { product of } \tan (\text { adjacent-parts }) \\
\sin \left(90^{\circ}-\alpha_{1}\right) & =\tan \psi_{1} \tan \left(90^{\circ}-\sigma_{1}\right) \\
\cos \alpha_{1} & =\tan \psi_{1} \cot \sigma_{1} \\
& =\frac{\tan \psi_{1}}{\tan \sigma_{1}}
\end{aligned}
$$

and

$$
\begin{equation*}
\tan \sigma_{1}=\frac{\tan \psi_{1}}{\cos \alpha_{1}} \tag{63}
\end{equation*}
$$

Using Napier's Rules for circular parts in the right-angled spherical triangle $P_{2}^{\prime} N^{\prime} H$

$$
\begin{align*}
\sin (\text { mid-part }) & =\text { product of } \cos (\text { opposite-parts }) \\
\sin \psi_{2} & =\cos \left(90^{\circ}-\left(\sigma_{1}+\sigma\right)\right) \cos \left(90^{\circ}-\psi_{0}\right) \\
\sin \psi_{2} & =\sin \left(\sigma_{1}+\sigma\right) \sin \psi_{0} \tag{64}
\end{align*}
$$

Note: The subscript 2 can be dropped and we can just refer to a general point P^{\prime} and the distance from P_{1}^{\prime} to P^{\prime} is σ, hence

$$
\begin{equation*}
\sin \psi=\sin \left(\sigma_{1}+\sigma\right) \sin \psi_{0} \tag{65}
\end{equation*}
$$

Referring to equations (59) and (60), we need to develop an expression for $\cos ^{2} \psi$. This can be achieved in the following manner.

Squaring both sides of equation (65) and using the trigonometric identity
$\sin ^{2} \psi+\cos ^{2} \psi=1$ we have

$$
\sin ^{2} \psi=1-\cos ^{2} \psi=\sin ^{2}\left(\sigma_{1}+\sigma\right) \sin ^{2} \psi_{0}
$$

so that

$$
\begin{equation*}
\cos ^{2} \psi=1-\sin ^{2}\left(\sigma_{1}+\sigma\right) \sin ^{2} \psi_{0} \tag{66}
\end{equation*}
$$

Let

$$
\begin{equation*}
x=\sigma_{1}+\sigma \tag{67}
\end{equation*}
$$

and equation (66) becomes

$$
\begin{equation*}
\cos ^{2} \psi=1-\sin ^{2} x \sin ^{2} \psi_{0} \tag{68}
\end{equation*}
$$

We may now write equation (59) with $d x=d \sigma$ since σ_{1} is constant, as

$$
\begin{aligned}
d s & =a\left(1-e^{2} \cos ^{2} \psi\right)^{\frac{1}{2}} d \sigma \\
& =a\left(1-e^{2}\left[1-\sin ^{2} x \sin ^{2} \psi_{0}\right]\right)^{\frac{1}{2}} d x \\
& =a\left(1-e^{2}+e^{2} \sin ^{2} x \sin ^{2} \psi_{0}\right)^{\frac{1}{2}} d x
\end{aligned}
$$

Now using equations (4), (5) and (6)

$$
\begin{aligned}
d s & =a\left(\frac{1}{1+e^{\prime 2}}+\frac{e^{\prime 2}}{1+e^{\prime 2}} \sin ^{2} x \sin ^{2} \psi_{0}\right)^{\frac{1}{2}} d x \\
& =\frac{a}{\left(1+e^{\prime 2}\right)^{\frac{1}{2}}}\left(1+e^{\prime 2} \sin ^{2} x \sin ^{2} \psi_{0}\right)^{\frac{1}{2}} d x \\
& =b\left(1+e^{\prime 2} \sin ^{2} x \sin ^{2} \psi_{0}\right)^{\frac{1}{2}} d x
\end{aligned}
$$

Now, since $e^{\prime 2}$ is a constant for the ellipsoid and ψ_{0} is a constant for a particular geodesic we may write

$$
\begin{equation*}
u^{2}=e^{\prime 2} \sin ^{2} \psi_{0}=e^{\prime 2} \cos ^{2} \alpha_{E} \tag{69}
\end{equation*}
$$

where α_{E} is the azimuth of the geodesic at the node or equator crossing, and

$$
\begin{equation*}
d s=b\left(1+u^{2} \sin ^{2} x\right)^{\frac{1}{2}} d x \tag{70}
\end{equation*}
$$

The length of the geodesic arc s between P_{1} and P_{2} is found by integration as

$$
\begin{equation*}
s=b \int_{x=\sigma_{1}}^{x=\sigma_{1}+\sigma}\left(1+u^{2} \sin ^{2} x\right)^{\frac{1}{2}} d x \tag{71}
\end{equation*}
$$

where the integration terminals are $x=\sigma_{1}$ and $x=\sigma_{1}+\sigma$ remembering that at P_{1}^{\prime}, $\sigma=0$ and $x=\sigma_{1}$, and at $P_{2}^{\prime}, x=\sigma_{1}+\sigma$.

Equation (71) is an elliptic integral and does not have a simple closed-form solution.
However, the integrand $\left(1+u^{2} \sin ^{2} x\right)^{\frac{1}{2}}$ can be expanded in a series and then evaluated by term-by-term integration.

The integrand in equation (71) can be expanded by use of the binomial series

$$
\begin{equation*}
(1+x)^{\beta}=\sum_{n=0}^{\infty} B_{n}^{\beta} x^{n} \tag{72}
\end{equation*}
$$

An infinite series where n is a positive integer, β is any real number and the binomial coefficients B_{n}^{β} are given by

$$
\begin{equation*}
B_{n}^{\beta}=\frac{\beta(\beta-1)(\beta-2)(\beta-3) \cdots(\beta-n+1)}{n!} \tag{73}
\end{equation*}
$$

The binomial series (72) is convergent when $-1<x<1$. In equation (73) n ! denotes $\underline{\mathrm{n}}$ $\underline{\text { factorial }}$ and $n!=n(n-1)(n-2)(n-3) \cdots 3 \cdot 2 \cdot 1$. zero-factorial is defined as $0!=1$ and the binomial coefficient $B_{0}^{\beta}=1$.

In the case where β is a positive integer, say k, the binomial series (72) can be expressed as the finite sum

$$
\begin{equation*}
(1+x)^{k}=\sum_{n=0}^{k} B_{n}^{k} x^{n} \tag{74}
\end{equation*}
$$

where the binomial coefficients B_{n}^{k} in series (74) are given by

$$
\begin{equation*}
B_{n}^{k}=\frac{k!}{n!(k-n)!} \tag{75}
\end{equation*}
$$

The binomial coefficients $B_{n}^{\frac{1}{2}}$ for the series (72) are given by equation (73) with the following results for $n=0,1,2$ and 3

$$
\begin{array}{ll}
n=0 & B_{0}^{\frac{1}{2}}=1 \\
n=1 & B_{1}^{\frac{1}{2}}=\frac{1}{2} \\
n=2 & B_{2}^{\frac{1}{2}}=\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}=-\frac{1}{8} \\
n=3 & B_{3}^{\frac{1}{2}}=\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{3!}=\frac{1}{16}
\end{array}
$$

Inspecting the results above, we can see that the binomial coefficients $B_{n}^{\frac{1}{2}}$ form a sequence

$$
1, \frac{1}{2},-\frac{1 \cdot 1}{2 \cdot 4}, \frac{1 \cdot 1 \cdot 3}{2 \cdot 4 \cdot 6},-\frac{1 \cdot 1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 8}, \frac{1 \cdot 1 \cdot 3 \cdot 5 \cdot 7}{2 \cdot 4 \cdot 6 \cdot 8 \cdot 10},-\frac{1 \cdot 1 \cdot 3 \cdot 5 \cdot 7 \cdot 9}{2 \cdot 4 \cdot 6 \cdot 8 \cdot 10 \cdot 12}, \cdots
$$

Using these results

$$
\begin{align*}
\left(1+u^{2} \sin ^{2} x\right)^{\frac{1}{2}}=1 & +\frac{1}{2} u^{2} \sin ^{2} x-\frac{1 \cdot 1}{2 \cdot 4} u^{4} \sin ^{4} x+\frac{1 \cdot 1 \cdot 3}{2 \cdot 4 \cdot 6} u^{6} \sin ^{6} x \\
& -\frac{1 \cdot 1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 8} u^{8} \sin ^{8} x+\frac{1 \cdot 1 \cdot 3 \cdot 5 \cdot 7}{2 \cdot 4 \cdot 6 \cdot 8 \cdot 10} u^{10} \sin ^{10} x+\cdots \tag{76}
\end{align*}
$$

To simplify this expression, and make the eventual integration easier, the powers of $\sin x$ can be expressed in terms of multiple angles using the standard form

$$
\begin{align*}
\sin ^{2 n} x=\frac{1}{2^{2 n}}\binom{2 n}{n}+\frac{(-1)^{n}}{2^{2 n-1}} & \left\{\cos 2 n x-\binom{2 n}{1} \cos (2 n-2) x+\binom{2 n}{2} \cos (2 n-4) x\right. \\
& \left.-\binom{2 n}{3} \cos (2 n-6) x+\cdots(-1)^{n}\binom{2 n}{n-1} \cos 2 x\right\} \tag{77}
\end{align*}
$$

Using equation (77) and the binomial coefficients $B_{n}^{2 n}=\binom{2 n}{n}$ computed using equation (75) gives

$$
\begin{align*}
& \sin ^{2} x=\frac{1}{2}-\frac{1}{2} \cos 2 x \\
& \sin ^{4} x=\frac{3}{8}+\frac{1}{8} \cos 4 x-\frac{1}{2} \cos 2 x \\
& \sin ^{6} x=\frac{5}{16}-\frac{1}{32} \cos 6 x+\frac{3}{16} \cos 4 x-\frac{15}{32} \cos 2 x \\
& \sin ^{8} x=\frac{35}{128}+\frac{1}{128} \cos 8 x-\frac{1}{16} \cos 6 x+\frac{7}{32} \cos 4 x-\frac{7}{16} \cos 2 x \\
& \sin ^{10} x=\frac{63}{256}-\frac{1}{512} \cos 10 x+\frac{5}{256} \cos 8 x-\frac{45}{512} \cos 6 x+\frac{15}{64} \cos 4 x-\frac{105}{256} \cos 2 x \tag{78}
\end{align*}
$$

Substituting equations (78) into equation (76) and arranging according to $\cos 2 x, \cos 4 x$, etc, we obtain (Rapp 1981, p. 7-8)

$$
\begin{equation*}
\left(1+u^{2} \sin ^{2} x\right)^{\frac{1}{2}}=A+B \cos 2 x+C \cos 4 x+D \cos 6 x+E \cos 8 x+F \cos 10 x+\cdots \tag{79}
\end{equation*}
$$

where the coefficients A, B, C, etc., are

$$
\begin{array}{rrrr}
A & =1+\frac{1}{4} u^{2}-\frac{3}{64} u^{4}+\frac{5}{256} u^{6}-\frac{175}{16384} u^{8}+\frac{441}{65536} u^{10}-\cdots \\
B & = & -\frac{1}{4} u^{2}+\frac{1}{16} u^{4}-\frac{15}{512} u^{6}+\frac{35}{2048} u^{8}-\frac{735}{65536} u^{10} & +\cdots \\
C & = & -\frac{1}{64} u^{4}+\frac{3}{256} u^{6}-\frac{35}{4096} u^{8}+\frac{105}{16384} u^{10} & -\cdots \tag{80}\\
D & = & -\frac{1}{512} u^{6}+\frac{5}{2048} u^{8}-\frac{35}{131072} u^{10}+\cdots \\
E & = & -\frac{5}{16384} u^{8}+\frac{35}{65536} u^{10} & -\cdots \\
F & = & & -\frac{7}{131072} u^{10}+\cdots
\end{array}
$$

Substituting equation (79) into equation (71) gives

$$
\begin{equation*}
s=b \int_{\sigma_{1}}^{\sigma_{1}+\sigma}\{A+B \cos 2 x+C \cos 4 x+D \cos 6 x+E \cos 8 x+F \cos 10 x+\cdots\} d x \tag{81}
\end{equation*}
$$

or

$$
\begin{gather*}
\frac{s}{b}=A \int_{\sigma_{1}}^{\sigma_{1}+\sigma} d x+B \int_{\sigma_{1}}^{\sigma_{1}+\sigma} \cos 2 x d x+C \int_{\sigma_{1}}^{\sigma_{1}+\sigma} \cos 4 x d x+D \int_{\sigma_{1}}^{\sigma_{1}+\sigma} \cos 6 x d x \tag{82}\\
+E \int_{\sigma_{1}}^{\sigma_{1}+\sigma} \cos 8 x d x+F \int_{\sigma_{1}}^{\sigma_{1}+\sigma} \cos 10 x d x \cdots
\end{gather*}
$$

The evaluation of the integral

$$
\begin{equation*}
\int_{\sigma_{1}}^{\sigma_{1}+\sigma} \cos n x d x=\frac{1}{n}[\sin n x]_{\sigma_{1}}^{\sigma_{1}+\sigma}=\frac{1}{n}\left\{\sin n\left(\sigma_{1}+\sigma\right)-\sin n \sigma_{1}\right\} \tag{83}
\end{equation*}
$$

combined with the trigonometric identity

$$
\sin n X-\sin n Y=2 \cos \left[\frac{n}{2}(X+Y)\right] \sin \left[\frac{n}{2}(X-Y)\right]
$$

where $X=\sigma_{1}+\sigma$ and $Y=\sigma_{1}$ so that $X+Y=2 \sigma_{1}+\sigma$ and $X-Y=\sigma$ gives

$$
\begin{equation*}
\int_{\sigma_{1}}^{\sigma_{1}+\sigma} \cos n x d x=\frac{2}{n} \cos n \sigma_{m} \sin \frac{n}{2} \sigma \tag{84}
\end{equation*}
$$

Noting that

$$
\sin n\left(\sigma_{1}+\sigma\right)-\sin n \sigma_{1}=2 \cos \frac{n}{2}\left(2 \sigma_{1}+\sigma\right) \sin \frac{n}{2} \sigma
$$

and with $\sigma=\sigma_{2}-\sigma_{1}$, then $2 \sigma_{1}+\sigma=2 \sigma_{1}+\left(\sigma_{2}-\sigma_{1}\right)=\sigma_{1}+\sigma_{2}$
and putting

$$
\begin{equation*}
\sigma_{m}=\frac{\sigma_{1}+\sigma_{2}}{2} \tag{85}
\end{equation*}
$$

then

$$
\begin{equation*}
2 \sigma_{m}=2 \sigma_{1}+\sigma \tag{86}
\end{equation*}
$$

and

$$
\begin{equation*}
\sin n\left(\sigma_{1}+\sigma\right)-\sin n \sigma_{1}=2 \cos n \sigma_{m} \sin \frac{n}{2} \sigma \tag{87}
\end{equation*}
$$

Using this result, equation (82) becomes

$$
\begin{aligned}
\frac{s}{b}=A \sigma & +B\left(\cos 2 \sigma_{m} \sin \sigma\right)+C\left(\frac{1}{2} \cos 4 \sigma_{m} \sin 2 \sigma\right)+D\left(\frac{1}{3} \cos 6 \sigma_{m} \sin 3 \sigma\right) \\
& +E\left(\frac{1}{4} \cos 8 \sigma_{m} \sin 4 \sigma\right)+F\left(\frac{1}{5} \cos 10 \sigma_{m} \sin 5 \sigma\right)+\cdots
\end{aligned}
$$

or re-arranged as (Rapp 1981, equation 39, p. 9)

$$
\begin{align*}
s=b\{A \sigma & +B \cos 2 \sigma_{m} \sin \sigma+\frac{C}{2} \cos 4 \sigma_{m} \sin 2 \sigma+\frac{D}{3} \cos 6 \sigma_{m} \sin 3 \sigma \tag{88}\\
& \left.+\frac{E}{4} \cos 8 \sigma_{m} \sin 4 \sigma+\frac{F}{5} \cos 10 \sigma_{m} \sin 5 \sigma+\cdots\right\}
\end{align*}
$$

Equation (88) may be modified by adopting another set of constants; defined as

$$
\begin{equation*}
B_{0}=A ; \quad B_{2}=B ; \quad B_{4}=\frac{C}{2} ; \quad B_{6}=\frac{D}{3} ; \quad B_{8}=\frac{E}{4} ; \quad B_{10}=\frac{F}{5} \tag{89}
\end{equation*}
$$

to give

$$
\begin{align*}
s=b\left\{B_{0} \sigma\right. & +B_{2} \cos 2 \sigma_{m} \sin \sigma+B_{4} \cos 4 \sigma_{m} \sin 2 \sigma+B_{6} \cos 6 \sigma_{m} \sin 3 \sigma \\
& +B_{8} \cos 8 \sigma_{m} \sin 4 \sigma+B_{10} \cos 10 \sigma_{m} \sin 5 \sigma+\cdots \tag{90}\\
& \left.+B_{2 n} \cos 2 n \sigma_{m} \sin n \sigma+\cdots\right\}
\end{align*}
$$

where the coefficients $B_{0}, B_{2}, B_{4}, \ldots$ are

$$
\begin{array}{rrr}
B_{0}=1+\frac{1}{4} u^{2} & -\frac{3}{64} u^{4}+\frac{5}{256} u^{6}-\frac{175}{16384} u^{8} & +\frac{441}{65536} u^{10}-\cdots \\
B_{2}= & -\frac{1}{4} u^{2} & +\frac{1}{16} u^{4}-\frac{15}{512} u^{6} \\
B_{4}= & +\frac{35}{2048} u^{8} & -\frac{735}{65536} u^{10}+\cdots \\
B_{6}= & -\frac{1}{128} u^{4}+\frac{3}{512} u^{6} & -\frac{35}{8192} u^{8}+\frac{105}{32768} u^{10}-\cdots \\
B_{8}= & -\frac{1}{1536} u^{6} & +\frac{5}{6144} u^{8}-\frac{35}{393216} u^{10}+\cdots \\
B_{10}= & -\frac{5}{65536} u^{8}+\frac{35}{262144} u^{10}-\cdots \\
& & -\frac{7}{655360} u^{10}+\cdots
\end{array}
$$

Since each of these convergent series is alternating, an upper bound of the error committed in truncating the series is the first term omitted - keeping terms up to u^{8} only commits an error of order u^{10} - and equation (90) can be approximated by

$$
\begin{align*}
s=b\left\{B_{0} \sigma\right. & +B_{2} \cos 2 \sigma_{m} \sin \sigma+B_{4} \cos 4 \sigma_{m} \sin 2 \sigma+B_{6} \cos 6 \sigma_{m} \sin 3 \sigma \\
& \left.+B_{8} \cos 8 \sigma_{m} \sin 4 \sigma\right\} \tag{91}
\end{align*}
$$

where

$$
\begin{array}{rlrl}
B_{0} & =1+\frac{1}{4} u^{2} & -\frac{3}{64} u^{4}+\frac{5}{256} u^{6}-\frac{175}{16384} u^{8} \\
B_{2} & = & -\frac{1}{4} u^{2} & +\frac{1}{16} u^{4}-\frac{15}{512} u^{6} \\
B_{4} & = & \frac{35}{2048} u^{8} \tag{92}\\
B_{6}= & -\frac{1}{128} u^{4}+\frac{3}{512} u^{6} & -\frac{35}{8192} u^{8} \\
B_{8}= & & -\frac{1}{1536} u^{6} & +\frac{5}{6144} u^{8} \\
& -\frac{5}{65536} u^{8}
\end{array}
$$

The approximation (91) and the coefficients given by equations (92) are the same as Rainsford (1955, equations 18 and 19, p.15) and also Rapp (1981, equations 40 and 41, p. $9)$.

Equation (91) can be used in two ways which will be discussed in detail later. Briefly, however, the first way is in the direct problem - where s, u^{2} and σ_{1} are known - to solve iteratively for σ (and hence σ_{m} from $2 \sigma_{m}=2 \sigma_{1}+\sigma$; and $x=\sigma_{1}+\sigma$) by using NewtonRaphson iteration for the real roots of the equation $f(\sigma)=0$ given in the form of an iterative equation

$$
\begin{equation*}
\sigma_{(n+1)}=\sigma_{(n)}-\frac{f\left(\sigma_{(n)}\right)}{f^{\prime}\left(\sigma_{(n)}\right)} \tag{93}
\end{equation*}
$$

where n denotes the $n^{\text {th }}$ iteration and $f(\sigma)$ can be obtained from equation (91) as

$$
\begin{align*}
f(\sigma)=B_{0} \sigma & +B_{2} \cos 2 \sigma_{m} \sin \sigma+B_{4} \cos 4 \sigma_{m} \sin 2 \sigma+B_{6} \cos 6 \sigma_{m} \sin 3 \sigma \\
& +B_{8} \cos 8 \sigma_{m} \sin 4 \sigma-\frac{s}{b} \tag{94}
\end{align*}
$$

and the derivative $f^{\prime}(\sigma)=\frac{d}{d \sigma}\{f(\sigma)\}$ is given by

$$
\begin{equation*}
f^{\prime}(\sigma)=\left(1+u^{2} \sin ^{2} x\right)^{\frac{1}{2}} \tag{95}
\end{equation*}
$$

[Note here that $f(\sigma)$ is the result of integrating the function $\left(1+u^{2} \sin ^{2} x\right)^{\frac{1}{2}}$ with respect to $d x$; so then the derivative $f^{\prime}(\sigma)$ must be the original function.]

An initial value, $\sigma_{(1)}(\sigma$ for $n=1)$ can be computed from $\sigma_{(1)}=\frac{s}{B_{0} b}$ and the functions $f\left(\sigma_{(1)}\right)$ and $f^{\prime}\left(\sigma_{(1)}\right)$ evaluated from equations (94) and (95) using $\sigma_{(1)} . \sigma_{(2)}(\sigma$ for $n=2)$ can now be computed from equation (93) and this process repeated to obtain values $\sigma_{(3)}, \sigma_{(4)}, \ldots$. This iterative process can be concluded when the difference between $\sigma_{(n+1)}$ and $\sigma_{(n)}$ reaches an acceptably small value.

The second application of equation (91) is in the inverse problem where s is computed once σ has been determined by spherical trigonometry.

FORMULA FOR COMPUTATION OF LONGITUDE DIFFERENCE BETWEEN TWO POINTS ON A GEODESIC

Figure 14: Geodesic on auxiliary sphere
Figure 14 shows P_{1}^{\prime} and P_{2}^{\prime} on an auxiliary sphere (of unit radius) where latitudes on this sphere are defined to be equal to parametric latitudes on the ellipsoid. P_{i}^{\prime} and P_{i+1}^{\prime} are arbitrary points on the geodesic (a great circle) between P_{1}^{\prime} and P_{2}^{\prime} separated by the angular distance $d \sigma$.

Figure 15

Figure 15 shows the differential spherical triangle $P_{i}^{\prime} N^{\prime} P_{i+1}^{\prime}$ broken into two right-angled spherical triangles $P_{i}^{\prime} Q P_{i+1}^{\prime}$ and $Q N^{\prime} P_{i+1}^{\prime}$. The great circle arc $Q P_{i+1}^{\prime}$ is defined as $\cos \psi_{1} d \omega$, which is the differential arc length of the parallel of parametric latitude ψ_{1}. Approximating the spherical triangle $P_{i}^{\prime} Q P_{i+1}^{\prime}$ with a plane right-angled triangle gives $\cos \psi_{i} d \omega=d \sigma \sin \alpha_{i}$ and

$$
\begin{equation*}
d \omega=\frac{\sin \alpha_{i}}{\cos \psi_{i}} d \sigma \tag{96}
\end{equation*}
$$

From equation (43)

$$
\begin{equation*}
\sin \alpha_{i}=\frac{\cos \psi_{0}}{\cos \psi_{i}} \tag{97}
\end{equation*}
$$

and substituting equation (97) into (96) gives the relationship (dropping the subscript i)

$$
\begin{equation*}
d \omega=\frac{\cos \psi_{0}}{\cos ^{2} \psi} d \sigma \tag{98}
\end{equation*}
$$

Substituting equation (98) into equation (60) and re-arranging gives

$$
\begin{equation*}
d \lambda=\cos \psi_{0} \frac{\left(1-e^{2} \cos ^{2} \psi\right)^{\frac{1}{2}}}{\cos ^{2} \psi} d \sigma \tag{99}
\end{equation*}
$$

Subtracting equation (98) from equation (99) gives an expression for the difference between differentials of two measures of longitude; $d \omega$ on the auxiliary sphere and $d \lambda$ on the ellipsoid

$$
\begin{equation*}
d \lambda-d \omega=\cos \psi_{0}\left[\frac{\left(1-e^{2} \cos ^{2} \psi\right)^{\frac{1}{2}}}{\cos ^{2} \psi}-\frac{1}{\cos ^{2} \psi}\right] d \sigma \tag{100}
\end{equation*}
$$

Equation (100) can be simplified by expanding $\left(1-e^{2} \cos ^{2} \psi\right)^{\frac{1}{2}}$ using the binomial series (72)

$$
\left(1-e^{2} \cos ^{2} \psi\right)^{\frac{1}{2}}=\sum_{n=0}^{\infty} B_{n}^{\frac{1}{2}}\left(-e^{2} \cos ^{2} \psi\right)^{n}
$$

and from the previous development, the binomial coefficients $B_{n}^{\frac{1}{2}}$ form a sequence

$$
1, \frac{1}{2},-\frac{1 \cdot 1}{2 \cdot 4}, \frac{1 \cdot 1 \cdot 3}{2 \cdot 4 \cdot 6},-\frac{1 \cdot 1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 8}, \frac{1 \cdot 1 \cdot 3 \cdot 5 \cdot 7}{2 \cdot 4 \cdot 6 \cdot 8 \cdot 10},-\frac{1 \cdot 1 \cdot 3 \cdot 5 \cdot 7 \cdot 9}{2 \cdot 4 \cdot 6 \cdot 8 \cdot 10 \cdot 12}, \cdots
$$

Using these results

$$
\begin{align*}
\left(1-e^{2} \cos ^{2} \psi\right)^{\frac{1}{2}}=1 & -\frac{1}{2} e^{2} \cos ^{2} \psi-\frac{1 \cdot 1}{2 \cdot 4} e^{4} \cos ^{4} \psi-\frac{1 \cdot 1 \cdot 3}{2 \cdot 4 \cdot 6} e^{6} \cos ^{6} \psi \\
& -\frac{1 \cdot 1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 8} e^{8} \cos ^{8} \psi-\frac{1 \cdot 1 \cdot 3 \cdot 5 \cdot 7}{2 \cdot 4 \cdot 6 \cdot 8 \cdot 10} e^{10} \cos ^{10} \psi+\cdots \tag{101}
\end{align*}
$$

so that

$$
\begin{align*}
\frac{\left(1-e^{2} \cos ^{2} \psi\right)^{\frac{1}{2}}}{\cos ^{2} \psi}= & \frac{1}{\cos ^{2} \psi}-\frac{1}{2} e^{2}-\frac{1}{8} e^{4} \cos ^{2} \psi-\frac{1}{16} e^{6} \cos ^{4} \psi \\
& -\frac{5}{128} e^{8} \cos ^{6} \psi-\frac{7}{256} e^{10} \cos ^{8} \psi+\cdots \tag{102}
\end{align*}
$$

Now, subtracting $\frac{1}{\cos ^{2} \psi}$ from both sides of equation (102) gives a new equation whose left-hand-side is the term inside the brackets [] in equation (100), and using this result we may write equation (100) as

$$
\begin{align*}
d \lambda-d \omega=\cos \psi_{0} & \left\{-\frac{1}{2} e^{2}-\frac{1}{8} e^{4} \cos ^{2} \psi-\frac{1}{16} e^{6} \cos ^{4} \psi\right. \\
& \left.-\frac{5}{128} e^{8} \cos ^{6} \psi-\frac{7}{256} e^{10} \cos ^{8} \psi+\cdots\right\} d \sigma \tag{103}
\end{align*}
$$

which can be re-arranged as

$$
\begin{align*}
& d \omega-d \lambda-=\frac{e^{2}}{2} \cos \psi_{0}\left\{1+\frac{1}{4} e^{2} \cos ^{2} \psi+\frac{1}{8} e^{4} \cos ^{4} \psi\right. \\
& \tag{104}\\
& \left.\quad+\frac{5}{64} e^{6} \cos ^{6} \psi+\frac{7}{128} e^{8} \cos ^{8} \psi+\cdots\right\} d \sigma
\end{align*}
$$

From equations (65) and (67) we have $\sin \psi=\sin \left(\sigma_{1}+\sigma\right) \sin \psi_{0}$ and $x=\sigma_{1}+\sigma$ respectively, which gives $\sin \psi=\sin x \sin \psi_{0}$ and $\sin ^{2} \psi=\sin ^{2} x \sin ^{2} \psi_{0}=1-\cos ^{2} \psi$. This result can be re-arranged as

$$
\cos ^{2} \psi=1-\sin ^{2} \psi_{0} \sin ^{2} x
$$

Now $\cos ^{4} \psi=\left(1-\sin ^{2} \psi_{0} \sin ^{2} x\right)^{2}, \cos ^{6} \psi=\left(1-\sin ^{2} \psi_{0} \sin ^{2} x\right)^{3}, \cos ^{8} \psi=\left(1-\sin ^{2} \psi_{0} \sin ^{2} x\right)^{4}$, etc., and using the binomial series (74) we may write

$$
\begin{gathered}
\cos ^{4} \psi=1-2 \sin ^{2} \psi_{0} \sin ^{2} x+\sin ^{4} \psi_{0} \sin ^{4} x \\
\cos ^{6} \psi=1-3 \sin ^{2} \psi_{0} \sin ^{2} x+3 \sin ^{4} \psi_{0} \sin ^{4} x-\sin ^{6} \psi_{0} \sin ^{6} x \\
\cos ^{8} \psi=1-4 \sin ^{2} \psi_{0} \sin ^{2} x+6 \sin ^{4} \psi_{0} \sin ^{4} x-4 \sin ^{6} \psi_{0} \sin ^{6} x+\sin ^{8} \psi_{0} \sin ^{8} x
\end{gathered}
$$

Substituting these relationships into equation (104) and noting that $d x=d \sigma$ gives

$$
\begin{align*}
d \omega-d \lambda-= & \frac{e^{2}}{2} \cos \psi_{0}\left\{1+\frac{1}{4} e^{2}\left(1-\sin ^{2} \psi_{0} \sin ^{2} x\right)\right. \\
& +\frac{1}{8} e^{4}\left(1-2 \sin ^{2} \psi_{0} \sin ^{2} x+\sin ^{4} \psi_{0} \sin ^{4} x\right) \\
& +\frac{5}{64} e^{6}\left(1-3 \sin ^{2} \psi_{0} \sin ^{2} x+3 \sin ^{4} \psi_{0} \sin ^{4} x-\sin ^{6} \psi_{0} \sin ^{6} x\right) \\
& +\frac{7}{128} e^{8}\left(1-4 \sin ^{2} \psi_{0} \sin ^{2} x+6 \sin ^{4} \psi_{0} \sin ^{4} x\right. \\
& \left.\quad-4 \sin ^{6} \psi_{0} \sin ^{6} x+\sin ^{8} \psi_{0} \sin ^{8} x\right) \\
& +\cdots\} d x \tag{105}
\end{align*}
$$

Now, expressions for $\sin ^{2} x, \sin ^{4} x, \ldots$ have been developed previously and are given in equations (78). These even powers of $\sin x$ may be substituted into equation (105) to give

$$
\begin{align*}
& d \omega-d \lambda-=\frac{e^{2}}{2} \cos \psi_{0}\{ \left\{1+\frac{1}{4} e^{2}\left(1-\sin ^{2} \psi_{0}\left[\frac{1}{2}-\frac{1}{2} \cos 2 x\right]\right)\right. \\
&+ \frac{1}{8} e^{4}\left(1-2 \sin ^{2} \psi_{0}\left[\frac{1}{2}-\frac{1}{2} \cos 2 x\right]\right. \\
&\left.+\sin ^{4} \psi_{0}\left[\frac{3}{8}+\frac{1}{8} \cos 4 x-\frac{1}{2} \cos 2 x\right]\right) \\
&+\frac{5}{64} e^{6}\left(1-3 \sin ^{2} \psi_{0}\left[\frac{1}{2}-\frac{1}{2} \cos 2 x\right]\right. \\
&+3 \sin ^{4} \psi_{0}\left[\frac{3}{8}+\frac{1}{8} \cos 4 x-\frac{1}{2} \cos 2 x\right] \\
&\left.-\sin ^{6} \psi_{0}\left[\frac{5}{16}-\frac{1}{32} \cos 6 x+\frac{3}{16} \cos 4 x-\frac{15}{32} \cos 2 x\right]\right) \\
&+\frac{7}{128} e^{8}\left(1-4 \sin ^{2} \psi_{0}\left[\frac{1}{2}-\frac{1}{2} \cos 2 x\right]\right. \\
&+6 \sin ^{4} \psi_{0}\left[\frac{3}{8}+\frac{1}{8} \cos 4 x-\frac{1}{2} \cos 2 x\right] \\
&-4 \sin ^{6} \psi_{0}\left[\frac{5}{16}-\frac{1}{32} \cos 6 x+\frac{3}{16} \cos 4 x-\frac{15}{32} \cos 2 x\right] \\
&+\sin ^{8} \psi_{0}\left[\frac{35}{128}+\frac{1}{128} \cos 8 x-\frac{1}{16} \cos 6 x\right.
\end{align*}
$$

Expanding the components of equation (106) associated with the even powers of e we have

$$
\begin{align*}
& \frac{1}{4} e^{2}(1-\left.\frac{1}{2} \sin ^{2} \psi_{0}+\frac{1}{2} \sin ^{2} \psi_{0} \cos 2 x\right) \tag{107}\\
& \frac{1}{8} e^{4}(1- \sin ^{2} \psi_{0}+\sin ^{2} \psi_{0} \cos 2 x \\
&\left.+\frac{3}{8} \sin ^{4} \psi_{0}+\frac{1}{8} \sin ^{4} \psi_{0} \cos 4 x-\frac{1}{2} \sin ^{4} \psi_{0} \cos 2 x\right) \tag{108}\\
& \frac{5}{64} e^{6}\left(1-\sin ^{2} \psi_{0}+\sin ^{2} \psi_{0} \cos 2 x\right. \\
&+\frac{9}{8} \sin ^{4} \psi_{0}+\frac{3}{8} \sin ^{4} \psi_{0} \cos 4 x-\frac{3}{2} \sin ^{4} \psi_{0} \cos 2 x \\
&\left.-\frac{5}{16} \sin ^{6} \psi_{0}+\frac{1}{32} \sin ^{6} \psi_{0} \cos 6 x-\frac{3}{16} \sin ^{6} \psi_{0} \cos 4 x+\frac{15}{32} \sin ^{6} \psi_{0} \cos 2 x\right) \tag{109}\\
& \frac{7}{128} e^{8}\left(1-\sin ^{2} \psi_{0}+\sin ^{2} \psi_{0} \cos 2 x\right. \\
&+ \frac{9}{4} \sin ^{4} \psi_{0}+\frac{3}{4} \sin ^{4} \psi_{0} \cos 4 x-3 \sin ^{4} \psi_{0} \cos 2 x \\
&-\frac{5}{4} \sin ^{6} \psi_{0}+\frac{1}{8} \sin ^{6} \psi_{0} \cos 6 x-\frac{3}{4} \sin ^{6} \psi_{0} \cos 4 x \\
&+\frac{15}{8} \sin ^{6} \psi_{0} \cos 2 x \\
&+ \frac{35}{128} \sin ^{8} \psi_{0}+\frac{1}{128} \sin ^{8} \psi_{0} \cos 8 x-\frac{1}{16} \sin ^{8} \psi_{0} \cos 6 x \\
&+\left.\frac{7}{132} \sin ^{8} \psi_{0} \cos 4 x-\frac{7}{16} \sin ^{8} \psi_{0} \cos 2 x\right) \tag{110}
\end{align*}
$$

Gathering together the constant terms and the coefficients of $\cos 2 x, \cos 4 x, \cos 6 x$, etc. in equations (107) to (110), we can write equation (106) as

$$
\begin{equation*}
d \omega-d \lambda=\frac{e^{2}}{2} \cos \psi_{0}\left\{C_{0}+C_{2} \cos 2 x+C_{4} \cos 4 x+C_{6} \cos 6 x+C_{8} \cos 8 x+\cdots\right\} d x \tag{111}
\end{equation*}
$$

where the coefficients C_{0}, C_{2}, C_{4}, etc. are

$$
\begin{align*}
& C_{0}=1+\frac{1}{4} e^{2}+\frac{1}{8} e^{4}+\frac{5}{64} e^{6}+\frac{7}{128} e^{8}+\cdots \\
& -\left(\frac{1}{8} e^{2}+\frac{1}{8} e^{4}+\frac{15}{128} e^{6}+\frac{7}{64} e^{8}+\cdots\right) \sin ^{2} \psi_{0} \\
& +\left(\frac{3}{64} e^{4}+\frac{45}{512} e^{6}+\frac{63}{512} e^{8}+\cdots\right) \sin ^{4} \psi_{0} \\
& -\left(\frac{25}{1024} e^{6}+\frac{35}{512} e^{8}+\cdots\right) \sin ^{6} \psi_{0} \\
& +\left(\frac{245}{16384} e^{8}+\cdots\right) \sin ^{8} \psi_{0} \tag{112}\\
& C_{2}=\left(\frac{1}{8} e^{2}+\frac{1}{8} e^{4}+\frac{15}{128} e^{6}+\frac{7}{64} e^{8}+\cdots\right) \sin ^{2} \psi_{0} \\
& -\left(\frac{1}{16} e^{4}+\frac{15}{128} e^{6}+\frac{21}{128} e^{8}+\cdots\right) \sin ^{4} \psi_{0} \\
& +\left(\frac{75}{2048} e^{6}+\frac{105}{1024} e^{8}+\cdots\right) \sin ^{6} \psi_{0} \\
& +\left(\frac{49}{2048} e^{8}+\cdots\right) \sin ^{8} \psi_{0} \\
& \text { - }- \text {. } \tag{113}\\
& C_{4}=\left(\frac{1}{64} e^{4}+\frac{15}{512} e^{6}+\frac{21}{512} e^{8}+\cdots\right) \sin ^{4} \psi_{0} \\
& -\left(\frac{15}{1024} e^{6}+\frac{21}{512} e^{8}+\cdots\right) \sin ^{6} \psi_{0} \\
& +\left(\frac{49}{1096} e^{8}+\cdots\right) \sin ^{8} \psi_{0} \tag{114}\\
& C_{6}=\left(\frac{5}{2048} e^{6}+\frac{7}{1024} e^{8}+\cdots\right) \sin ^{6} \psi_{0} \\
& -\left(\frac{7}{2048} e^{8}+\cdots\right) \sin ^{8} \psi_{0} \\
& +\cdots \tag{115}\\
& C_{8}=\left(\frac{7}{16384} e^{8}+\cdots\right) \sin ^{8} \psi_{0}-\cdots \tag{116}
\end{align*}
$$

The longitude differences (spherical ω minus geodetic λ) are given by the integral

$$
\begin{equation*}
\Delta \omega-\Delta \lambda=\frac{e^{2}}{2} \cos \psi_{0} \int_{x=\sigma_{1}}^{x=\sigma_{1}+\sigma}\left\{C_{0}+C_{2} \cos 2 x+C_{4} \cos 4 x+C_{6} \cos 6 x+C_{8} \cos 8 x+\cdots\right\} d x \tag{117}
\end{equation*}
$$

where $\Delta \omega=\omega_{2}-\omega_{1}$ is the difference in longitudes of P_{1}^{\prime} and P_{2}^{\prime} on the auxiliary sphere and $\Delta \lambda=\lambda_{2}-\lambda_{1}$ is the difference in longitudes of P_{1} and P_{2} on the ellipsoid.

Equation (117) has a similar form to equation (81) and the solution of the integral in equation (117) can be achieved by the same method used to solve the integral in equation (81). Hence, similarly to equation (88) and also Rapp (1981 equation (55), p. 13)

$$
\begin{align*}
\Delta \omega-\Delta \lambda=\frac{e^{2}}{2} \cos \psi_{0}\{ & \left\{C_{0} \sigma+C_{2} \cos 2 \sigma_{m} \sin \sigma+\frac{C_{4}}{2} \cos 4 \sigma_{m} \sin 2 \sigma\right. \tag{118}\\
& \left.+\frac{C_{6}}{3} \cos 6 \sigma_{m} \sin 3 \sigma+\frac{C_{8}}{4} \cos 8 \sigma_{m} \sin 4 \sigma+\cdots\right\}
\end{align*}
$$

Rainsford (1955, p. 14, equations 10 and 11) has the differences in longitudes $\Delta \omega-\Delta \lambda$ as a function of the flattening f and the azimuth of the geodesic at the equator α_{E}; noting that from either equations (61) or (69) we may obtain the relationships

$$
\begin{gather*}
\sin \alpha_{E}=\cos \psi_{0} \tag{119}\\
1-\sin ^{2} \alpha_{E}=\sin ^{2} \psi_{0} \tag{120}
\end{gather*}
$$

Also, since $e^{2}=f(2-f)=2 f-f^{2}$, even powers of the eccentricity e can be expressed as functions of the flattening f

$$
\begin{align*}
& e^{2}=2 f-f^{2} \\
& e^{4}=4 f^{2}-4 f^{3}+f^{4} \tag{121}\\
& e^{6}=8 f^{3}-12 f^{4}+6 f^{5}-f^{6} \\
& e^{8}=16 f^{4}-32 f^{5}+24 f^{6}-8 f^{7}+f^{8}
\end{align*}
$$

Re-arranging equation (118) and using equation (119) gives

$$
\begin{align*}
\Delta \omega-\Delta \lambda=\sin \alpha_{E}\{ & \left\{\frac{e^{2}}{2} C_{0} \sigma+\frac{e^{2}}{2} C_{2} \cos 2 \sigma_{m} \sin \sigma+\frac{e^{2}}{4} C_{4} \cos 4 \sigma_{m} \sin 2 \sigma\right. \\
& \left.+\frac{e^{2}}{6} C_{6} \cos 6 \sigma_{m} \sin 3 \sigma+\frac{e^{2}}{8} C_{8} \cos 8 \sigma_{m} \sin 4 \sigma+\cdots\right\} \tag{122}
\end{align*}
$$

Now, with equations (112) and (120) the coefficient $\frac{e^{2}}{2} C_{0}$ can be written as

$$
\begin{align*}
\frac{e^{2}}{2} C_{0}= & \frac{e^{2}}{2}+\frac{1}{8} e^{4}+\frac{1}{16} e^{6}+\frac{5}{128} e^{8}+\cdots \\
& -\left(\frac{1}{16} e^{4}+\frac{1}{16} e^{6}+\frac{15}{256} e^{8} \cdots\right)\left(1-\sin ^{2} \alpha_{E}\right) \\
& +\left(\frac{3}{128} e^{6}+\frac{45}{1024} e^{8}+\cdots\right)\left(1-\sin ^{2} \alpha_{E}\right)^{2} \\
& -\left(\frac{25}{2048} e^{8}+\cdots\right)\left(1-\sin ^{2} \alpha_{E}\right)^{3} \\
& +\cdots \tag{123}
\end{align*}
$$

noting here that terms greater than e^{8} have been ignored.
Using equations (121) in equation (123) with the trigonometric identity $\cos ^{2} \alpha_{E}+\sin ^{2} \alpha_{E}=1$ gives

$$
\begin{align*}
\frac{e^{2}}{2} C_{0}= & f-\frac{7}{8} f^{5}+\cdots \\
& -\left(\frac{1}{4} f^{2}+\frac{1}{4} f^{3}+\frac{1}{4} f^{4}-\frac{3}{2} f^{5}+\cdots\right) \cos ^{2} \alpha_{E} \\
& +\left(\frac{3}{16} f^{3}+\frac{27}{64} f^{4}-\frac{81}{64} f^{5}+\cdots\right) \cos ^{4} \alpha_{E} \\
& -\left(\frac{25}{128} f^{4}-\frac{25}{64} f^{5}+\cdots\right) \cos ^{6} \alpha_{E} \\
& +\cdots \tag{124}
\end{align*}
$$

Now for any geodetic ellipsoid $e^{8} \simeq 2.01 \mathrm{e}-009$ and $f^{4} \simeq 1.26 \mathrm{e}-010$, and since terms greater than e^{8} have been ignored in the development of equation (123) then no additional errors will be induced by ignoring terms greater than f^{4} in equation (124). Hence we define

$$
\begin{align*}
\frac{e^{2}}{2} C_{0} \equiv f\{1 & -\frac{1}{4} f\left(1+f+f^{2}\right) \cos ^{2} \alpha_{E} \\
& +\frac{3}{16} f^{2}\left(1+\frac{9}{4} f\right) \cos ^{4} \alpha_{E} \\
& \left.-\frac{25}{128} f^{3} \cos ^{6} \alpha_{E}\right\} \tag{125}
\end{align*}
$$

Using similar reasoning we also define

$$
\begin{align*}
\frac{e^{2}}{2} C_{2} & \equiv f\left\{\frac{1}{4} f\left(1+f+f^{2}\right) \cos ^{2} \alpha_{E}-\frac{1}{4} f^{2}\left(1+\frac{9}{4} f\right) \cos ^{4} \alpha_{E}+\frac{75}{256} f^{3} \cos ^{6} \alpha_{E}\right\} \tag{126}\\
\frac{e^{2}}{4} C_{4} & \equiv f\left\{\frac{1}{32} f^{2}\left(1+\frac{9}{4} f\right) \cos ^{4} \alpha_{E}-\frac{15}{256} f^{3} \cos ^{6} \alpha_{E}\right\} \tag{127}\\
\frac{e^{2}}{6} C_{6} & \equiv f\left\{\frac{5}{768} f^{3} \cos ^{6} \alpha_{E}\right\} \tag{128}
\end{align*}
$$

Using equations (125) to (128) enables equation (122) to be approximated by

$$
\Delta \omega-\Delta \lambda=f \sin \alpha_{E}\left\{A_{0} \sigma+A_{2} \cos 2 \sigma_{m} \sin \sigma+A_{4} \cos 4 \sigma_{m} \sin 2 \sigma+A_{6} \cos 6 \sigma_{m} \sin 3 \sigma\right\}(129)
$$

where $\Delta \omega=\omega_{2}-\omega_{1}$ is the difference in longitudes of P_{1}^{\prime} and P_{2}^{\prime} on the auxiliary sphere and $\Delta \lambda=\lambda_{2}-\lambda_{1}$ is the difference in longitudes of P_{1} and P_{2} on the ellipsoid, and the coefficients are

$$
\begin{align*}
& A_{0}=1-\frac{1}{4} f\left(1+f+f^{2}\right) \cos ^{2} \alpha_{E}+\frac{3}{16} f^{2}\left(1+\frac{9}{4} f\right) \cos ^{4} \alpha_{E}-\frac{25}{128} f^{3} \cos ^{6} \alpha_{E} \\
& A_{2}=\frac{1}{4} f\left(1+f+f^{2}\right) \cos ^{2} \alpha_{E}-\frac{1}{4} f^{2}\left(1+\frac{9}{4} f\right) \cos ^{4} \alpha_{E}+\frac{75}{256} f^{3} \cos ^{6} \alpha_{E} \tag{130}\\
& A_{4}=\frac{1}{32} f^{2}\left(1+\frac{9}{4} f\right) \cos ^{4} \alpha_{E}-\frac{15}{256} f^{3} \cos ^{6} \alpha_{E} \\
& A_{6}=\frac{5}{768} f^{3} \cos ^{6} \alpha_{E}
\end{align*}
$$

The approximation (129) and the coefficients (130) are the same as Rainsford (1955, equations 10 and 11, p. 14) and also Rapp (1981, equation 56, p. 13).

Equation (129) can be used in two ways which will be discussed in detail later. Briefly, however, the first way is in the direct problem - after σ (and σ_{m} from $2 \sigma_{m}=2 \sigma_{1}+\sigma$) has been solved iteratively - to compute the difference $\Delta \omega-\Delta \lambda$. And in the inverse problem to compute the longitude difference iteratively.

VINCENTY'S MODIFICATIONS OF RAINSFORD'S EQUATIONS

In 1975, T. Vincenty (1975) produced other forms of equations (91) and (129) more suited to computer evaluation and requiring a minimum of trigonometric function evaluations. These equations may be obtained in the following manner.

Vincenty's modification of Rainsford's equation for distance

The starting point here is equation (91) [Rainsford's equation for distance] that can be rearranged as

$$
\begin{align*}
\sigma=\frac{s}{b B_{0}} & -\frac{B_{2}}{B_{0}} \cos 2 \sigma_{m} \sin \sigma-\frac{B_{4}}{B_{0}} \cos 4 \sigma_{m} \sin 2 \sigma-\frac{B_{6}}{B_{0}} \cos 6 \sigma_{m} \sin 3 \sigma \\
& -\frac{B_{8}}{B_{0}} \cos 8 \sigma_{m} \sin 4 \sigma \tag{131}
\end{align*}
$$

or

$$
\begin{equation*}
\sigma=\frac{s}{b B_{0}}+\Delta \sigma \tag{132}
\end{equation*}
$$

where

$$
\begin{align*}
\Delta \sigma= & -\frac{B_{2}}{B_{0}} \cos 2 \sigma_{m} \sin \sigma-\frac{B_{4}}{B_{0}} \cos 4 \sigma_{m} \sin 2 \sigma-\frac{B_{6}}{B_{0}} \cos 6 \sigma_{m} \sin 3 \sigma \\
& -\frac{B_{8}}{B_{0}} \cos 8 \sigma_{m} \sin 4 \sigma \tag{133}
\end{align*}
$$

Now, from equations (92) $B_{0}=1+\frac{1}{4} u^{2}-\frac{3}{64} u^{4}+\frac{5}{256} u^{6}-\frac{175}{16384} u^{8}=1+x$ and $\frac{1}{B_{0}}=(1+x)^{-1}$. Using a special case of the binomial series [equation (72) with $\beta=-1$ and with $|x|<1$]

$$
(1+x)^{-1}=1-x+x^{2}-x^{3}+x^{4}-\cdots
$$

allows us to write

$$
\begin{aligned}
\frac{1}{B_{0}}= & 1-\left(\frac{1}{4} u^{2}-\frac{3}{64} u^{4}+\cdots\right)+\left(\frac{1}{4} u^{2}-\frac{3}{64} u^{4}+\cdots\right)^{2}-\left(\frac{1}{4} u^{2}-\frac{3}{64} u^{4}+\cdots\right)^{3} \\
& +\left(\frac{1}{4} u^{2}-\frac{3}{64} u^{4}+\cdots\right)^{4}-\cdots \\
= & 1-\frac{1}{4} u^{2}+\frac{7}{64} u^{4}-\frac{15}{256} u^{6}+\frac{579}{16384} u^{8}-\cdots
\end{aligned}
$$

and using this result gives

$$
\begin{aligned}
\frac{B_{2}}{B_{0}} & =\left(-\frac{1}{4} u^{2}+\frac{1}{16} u^{4}-\frac{15}{512} u^{6}+\frac{35}{2048} u^{8}-\cdots\right)\left(1-\frac{1}{4} u^{2}+\frac{7}{64} u^{4}-\frac{15}{256} u^{6}+\frac{579}{16384} u^{8}-\cdots\right) \\
& =-\frac{1}{4} u^{2}+\frac{1}{8} u^{4}-\frac{37}{512} u^{6}+\frac{47}{1024} u^{8}-\cdots
\end{aligned}
$$

Similarly, the other ratios are obtained and

$$
\begin{array}{rr}
\frac{B_{2}}{B_{0}} & =-\frac{1}{4} u^{2} \\
\frac{B_{4}}{B_{0}} & =\frac{1}{8} u^{4}-\frac{37}{512} u^{6}+\frac{47}{1024} u^{8}-\cdots \\
\frac{B_{6}}{B_{0}} & =\frac{1}{128} u^{4}+\frac{1}{128} u^{6}-\frac{27}{4096} u^{8}+\cdots \tag{134}\\
\frac{B_{8}}{B_{0}}= & -\frac{1}{1536} u^{6}+\frac{1}{1024} u^{8}-\cdots \\
& -\frac{5}{65536} u^{8}+\cdots
\end{array}
$$

For a geodesic on the GRS80 ellipsoid, having $\alpha_{E}=0^{\circ}$ (which makes u^{2} a maximum) and with $\sigma=22.5^{\circ}, \sigma_{m}=22.5^{\circ}$ (which makes $\cos 8 \sigma_{m} \sin 4 \sigma=1$) the maximum value of the last term in equations (131) and (133) is $\frac{B_{8}}{B_{0}} \cos 8 \sigma_{m} \sin 4 \sigma=1.5739827 \mathrm{e}-013$ radians .

This is equivalent to an arc length of 0.000001 m on a sphere of radius 6378137 m . This term will be ignored and $\Delta \sigma$ is defined as

$$
\begin{equation*}
\Delta \sigma \equiv-\frac{B_{2}}{B_{0}} \cos 2 \sigma_{m} \sin \sigma-\frac{B_{4}}{B_{0}} \cos 4 \sigma_{m} \sin 2 \sigma-\frac{B_{6}}{B_{0}} \cos 6 \sigma_{m} \sin 3 \sigma \tag{135}
\end{equation*}
$$

Now, using the trigonometric identities

$$
\begin{array}{ll}
\sin 2 A=2 \sin A \cos A & \cos 2 A=2 \cos ^{2} A-1 \\
\sin 3 A=3 \sin A-4 \sin ^{3} A & \cos 3 A=4 \cos ^{3} A-3 \cos A
\end{array}
$$

then

$$
\begin{aligned}
& \cos 4 A=2 \cos ^{2} 2 A-1 \\
& \cos 6 A=4 \cos ^{3} 2 A-3 \cos 2 A
\end{aligned}
$$

and using these identities in equation (135) gives

$$
\begin{aligned}
\Delta \sigma= & -\frac{B_{2}}{B_{0}} \cos 2 \sigma_{m} \sin \sigma-\frac{B_{4}}{B_{0}}\left(2 \cos ^{2} 2 \sigma_{m}-1\right)(2 \sin \sigma \cos \sigma) \\
& -\frac{B_{6}}{B_{0}}\left(4 \cos ^{3} 2 \sigma_{m}-3 \cos 2 \sigma_{m}\right)\left(3 \sin \sigma-4 \sin ^{3} \sigma\right)
\end{aligned}
$$

which may be written as

$$
\begin{align*}
\Delta \sigma= & \sin \sigma\left\{-\frac{B_{2}}{B_{0}} \cos 2 \sigma_{m}-2 \frac{B_{4}}{B_{0}} \cos \sigma\left(2 \cos ^{2} 2 \sigma_{m}-1\right)\right. \tag{136}\\
& \left.-\frac{B_{6}}{B_{0}} \cos 2 \sigma_{m}\left(3-4 \sin ^{2} \sigma\right)\left(4 \cos ^{2} 2 \sigma_{m}-3\right)\right\}
\end{align*}
$$

Now

$$
\begin{align*}
& \left(\frac{-B_{2}}{B_{0}}\right)^{2}=\frac{1}{16} u^{4}-\frac{1}{16} u^{6}+\frac{53}{1024} u^{8}-\cdots \\
& \left(\frac{-B_{2}}{B_{0}}\right)^{3}=\quad \frac{1}{64} u^{6}-\frac{3}{128} u^{8}+\cdots \tag{137}
\end{align*}
$$

Comparing equations (137) with equations (134) we have

$$
\begin{aligned}
& -2\left(\frac{B_{4}}{B_{0}}\right)=\frac{1}{64} u^{4}-\frac{1}{64} u^{6}+\frac{54}{4096} u^{8} \\
& \frac{1}{4}\left(\frac{-B_{2}}{B_{0}}\right)^{2}=\frac{1}{64} u^{4}-\frac{1}{64} u^{6}+\frac{53}{4096} u^{8}
\end{aligned}
$$

and these two equations differ by $\frac{1}{4096} u^{8}$ which would be equivalent to a maximum error of $5.0367 \mathrm{e}-013$ radians or 0.000003 m on a sphere of radius 6378137 m . Ignoring this small difference, we define

$$
\begin{equation*}
-2\left(\frac{B_{4}}{B_{0}}\right) \equiv \frac{1}{4}\left(\frac{-B_{2}}{B_{0}}\right)^{2} \tag{138}
\end{equation*}
$$

Again, comparing equations (137) with equations (134) we have

$$
\begin{aligned}
-\left(\frac{B_{6}}{B_{0}}\right) & =\frac{1}{1536} u^{6}+\frac{1}{1024} u^{8} \\
\frac{1}{24}\left(\frac{-B_{2}}{B_{0}}\right)^{2} & =\frac{1}{1536} u^{6}+\frac{3}{3072} u^{8}
\end{aligned}
$$

and noting that $\frac{1}{1024} u^{8}=\frac{3}{3072} u^{8}$ we may say

$$
\begin{equation*}
-\left(\frac{B_{6}}{B_{0}}\right)=\frac{1}{24}\left(\frac{-B_{2}}{B_{0}}\right)^{3} \tag{139}
\end{equation*}
$$

Using equations (138) and (139) we may write equation (136) as

$$
\begin{aligned}
\Delta \sigma= & \sin \sigma\left\{\left(\frac{-B_{2}}{B_{0}}\right) \cos 2 \sigma_{m}+\frac{1}{4}\left(\frac{-B_{2}}{B_{0}}\right)^{2} \cos \sigma\left(2 \cos ^{2} 2 \sigma_{m}-1\right)\right. \\
& \left.+\frac{1}{24}\left(\frac{-B_{2}}{B_{0}}\right)^{3} \cos 2 \sigma_{m}\left(3-4 \sin ^{2} \sigma\right)\left(4 \cos ^{2} 2 \sigma_{m}-3\right)\right\}
\end{aligned}
$$

We may now express the great circle arc length σ as

$$
\begin{equation*}
\sigma=\frac{s}{b A^{\prime}}+\Delta \sigma \tag{140}
\end{equation*}
$$

where

$$
\begin{align*}
\Delta \sigma=B^{\prime} \sin \sigma\{ & \cos 2 \sigma_{m}+\frac{1}{4} B^{\prime}\left[\cos \sigma\left(2 \cos ^{2} 2 \sigma_{m}-1\right)\right. \\
& \left.\left.-\frac{1}{6} B^{\prime} \cos 2 \sigma_{m}\left(-3+4 \sin ^{2} \sigma\right)\left(-3+4 \cos ^{2} 2 \sigma_{m}\right)\right]\right\} \tag{141}
\end{align*}
$$

and

$$
\begin{align*}
& \begin{array}{l}
A^{\prime}=B_{0}=1+\frac{1}{4} u^{2}-\frac{3}{64} u^{4}+\frac{5}{256} u^{6}-\frac{175}{16384} u^{8} \\
=1+\frac{4096}{16384} u^{2}-\frac{768}{16384} u^{4}+\frac{320}{16384} u^{6}-\frac{175}{16384} u^{8} \\
=1+\frac{u^{2}}{16384}\left(4096+u^{2}\left(-768+u^{2}\left(320-175 u^{2}\right)\right)\right) \\
\begin{aligned}
B^{\prime}= & \frac{-B_{2}}{B_{0}}
\end{aligned}=\frac{1}{4} u^{2}-\frac{1}{8} u^{4}+\frac{37}{512} u^{6}-\frac{47}{1024} u^{8} \\
\\
=\frac{256}{1024} u^{2}-\frac{128}{1024} u^{4}+\frac{74}{1024} u^{6}-\frac{47}{1024} u^{8} \\
\\
=
\end{array} \begin{array}{l}
u^{2} \\
1024 \\
\left.256+u^{2}\left(-128+u^{2}\left(74-47 u^{2}\right)\right)\right)
\end{array}
\end{align*}
$$

Equations (140) to (143) are the same as those given by Vincenty (1975, equations 7, 6, 3 and 4, p. 89). Vincenty notes in his paper that these equations were derived from Rainsford's inverse formula and that most significant terms in u^{8} were retained, but he gave no outline of his method.

Vincenty's modification of Rainsford's equation for longitude difference

The starting point here is equation (129) [Rainsford's equation for longitude differences] with coefficients A_{0}, A_{2}, A_{4} and A_{6}. Referring to this equation, Rainsford (1955, p. 14) states:
"The A coefficients are given as functions of f since they converge more rapidly than when given as functions of e^{2}. The maximum value of any term in f^{4} (i.e. f^{3} in the $A^{\prime} s$) is less than $0^{\prime \prime} .00001$ even for a line half round the world. Thus the A_{6} term may be omitted altogether and the following simplified forms used even for precise results:"

Rainsford's simplified formula is

$$
\begin{equation*}
\Delta \omega-\Delta \lambda=f \sin \alpha_{E}\left\{A_{0}^{\prime} \sigma+A_{2}^{\prime} \cos 2 \sigma_{m} \sin \sigma+A_{4}^{\prime} \cos 4 \sigma_{m} \sin 2 \sigma\right\} \tag{144}
\end{equation*}
$$

where $\Delta \omega=\omega_{2}-\omega_{1}$ is the difference in longitudes of P_{1}^{\prime} and P_{2}^{\prime} on the auxiliary sphere and $\Delta \lambda=\lambda_{2}-\lambda_{1}$ is the difference in longitudes of P_{1} and P_{2} on the ellipsoid, and the coefficients are

$$
\begin{align*}
& A_{0}^{\prime}=1-\frac{1}{4} f(1+f) \cos ^{2} \alpha_{E}-\frac{3}{16} f^{2} \cos ^{4} \alpha_{E} \\
& A_{2}^{\prime}=\frac{1}{4} f(1+f) \cos ^{2} \alpha_{E}-\frac{1}{4} f^{2} \cos ^{4} \alpha_{E} \tag{145}\\
& A_{4}^{\prime}=\frac{1}{32} f^{2} \cos ^{4} \alpha_{E}
\end{align*}
$$

Equation (144) can be written as

$$
\begin{equation*}
\Delta \omega-\Delta \lambda=A_{0}^{\prime} f \sin \alpha_{E}\left\{\sigma+\frac{A_{2}^{\prime}}{A_{0}^{\prime}} \cos 2 \sigma_{m} \sin \sigma+\frac{A_{4}^{\prime}}{A_{0}^{\prime}} \cos 4 \sigma_{m} \sin 2 \sigma\right\} \tag{146}
\end{equation*}
$$

Using the trigonometric double angle formulas $\sin 2 A=2 \sin A \cos A, \cos 2 A=2 \cos ^{2} A-1$ we can write

$$
\begin{aligned}
\sin 2 \sigma & =2 \sin \sigma \cos \sigma \\
\cos 4 \sigma_{m} & =2 \cos ^{2} 2 \sigma_{m}-1
\end{aligned}
$$

and equation (146) becomes

$$
\begin{align*}
\Delta \omega-\Delta \lambda & =A_{0}^{\prime} f \sin \alpha_{E}\left\{\sigma+\frac{A_{2}^{\prime}}{A_{0}^{\prime}} \cos 2 \sigma_{m} \sin \sigma+\frac{A_{4}^{\prime}}{A_{0}^{\prime}}\left(2 \cos ^{2} 2 \sigma_{m}-1\right)(2 \sin \sigma \cos \sigma)\right\} \\
& =A_{0}^{\prime} f \sin \alpha_{E}\left\{\sigma+\sin \sigma\left[\frac{A_{2}^{\prime}}{A_{0}^{\prime}} \cos 2 \sigma_{m}+2 \frac{A_{4}^{\prime}}{A_{0}^{\prime}} \cos \sigma\left(2 \cos ^{2} 2 \sigma_{m}-1\right)\right]\right\} \tag{147}
\end{align*}
$$

Now the coefficient A_{0}^{\prime} may be re-arranged as follows

$$
\begin{aligned}
A_{0}^{\prime} & =1-\frac{1}{4} f(1+f) \cos ^{2} \alpha_{E}+\frac{3}{16} f^{2} \cos ^{4} \alpha_{E} \\
& =1-\left(\frac{4}{16} f(1+f) \cos ^{2} \alpha_{E}-\frac{3}{16} f^{2} \cos ^{4} \alpha_{E}\right) \\
& =1-\frac{f}{16} \cos ^{2} \alpha_{E}\left(4(1+f)-3 f \cos ^{2} \alpha_{E}\right) \\
& =1-\frac{f}{16} \cos ^{2} \alpha_{E}\left(4+f\left(4-3 \cos ^{2} \alpha_{E}\right)\right)
\end{aligned}
$$

or

$$
A_{0}^{\prime}=1-C
$$

where

$$
C=\frac{f}{16} \cos ^{2} \alpha_{E}\left(4+f\left(4-3 \cos ^{2} \alpha_{E}\right)\right)
$$

Now using these relationships and a special result of the binomial series [equation (72) with $x=-C$ and $\beta=-1$] we may write

$$
\frac{1}{A_{0}^{\prime}}=\frac{1}{1-C}=(1-C)^{-1}=1+C+C^{2}+C^{3}+\cdots
$$

and

$$
\frac{A_{2}^{\prime}}{A_{0}^{\prime}}=\frac{1}{4} f \cos ^{2} \alpha_{E}+\frac{1}{4} f^{2} \cos ^{2} \alpha_{E}-\frac{3}{16} f^{2} \cos ^{4} \alpha_{E}+\frac{1}{8} f^{3} \cos ^{4} \alpha_{E}+\cdots
$$

Ignoring terms greater than f^{3} (greater than f^{2} in $\frac{A_{2}^{\prime}}{A_{0}^{\prime}}$) we have

$$
\begin{aligned}
\frac{A_{2}^{\prime}}{A_{0}^{\prime}} & \equiv \frac{1}{4} f \cos ^{2} \alpha_{E}+\frac{1}{4} f^{2} \cos ^{2} \alpha_{E}-\frac{3}{16} f^{2} \cos ^{4} \alpha_{E} \\
& =\frac{f}{16} \cos ^{2} \alpha_{E}\left(4+f\left(4-3 \cos ^{2} \alpha_{E}\right)\right) \\
& =C
\end{aligned}
$$

Also

$$
\frac{A_{4}^{\prime}}{A_{0}^{\prime}}=\frac{1}{32} f^{2} \cos ^{4} \alpha_{E}+\frac{1}{128} f^{3} \cos ^{6} \alpha_{E}+\cdots
$$

and ignoring terms greater than f^{3} (greater than f^{2} in $\frac{A_{4}^{\prime}}{A_{0}^{\prime}}$) we have

$$
\frac{A_{4}^{\prime}}{A_{0}^{\prime}} \equiv \frac{1}{32} f^{2} \cos ^{4} \alpha_{E} \quad \text { and } \quad 2 \frac{A_{4}^{\prime}}{A_{0}^{\prime}}=\frac{1}{16} f^{2} \cos ^{4} \alpha_{E}
$$

Now

$$
C^{2}=\frac{1}{16} f^{2} \cos ^{4} \alpha_{E}+\frac{1}{8} f^{3} \cos ^{4} \alpha_{E}-\frac{3}{32} f^{3} \cos ^{6} \alpha_{E}+\cdots
$$

and ignoring terms greater than f^{3} (greater than f^{2} in C^{2}) we have

$$
C^{2} \equiv \frac{1}{16} f^{2} \cos ^{4} \alpha_{E}=2 \frac{A_{4}^{\prime}}{A_{0}^{\prime}}
$$

Using these results we may write equation (147) as

$$
\begin{equation*}
\Delta \lambda=\Delta \omega-(1-C) f \sin \alpha_{E}\left\{\sigma+C \sin \sigma\left[\cos 2 \sigma_{m}+C \cos \sigma\left(-1+2 \cos ^{2} 2 \sigma_{m}\right)\right]\right\} \tag{148}
\end{equation*}
$$

where $\Delta \omega=\omega_{2}-\omega_{1}$ is the difference in longitudes of P_{1}^{\prime} and P_{2}^{\prime} on the auxiliary sphere and $\Delta \lambda=\lambda_{2}-\lambda_{1}$ is the difference in longitudes of P_{1} and P_{2} on the ellipsoid, and

$$
\begin{equation*}
C=\frac{f}{16} \cos ^{2} \alpha_{E}\left(4+f\left(4-3 \cos ^{2} \alpha_{E}\right)\right) \tag{149}
\end{equation*}
$$

Equations (148) and (149) are essentially the same as Vincenty (1975, equations 11 and 10, p.89) - Vincenty uses L and λ where we have used $\Delta \lambda$ and $\Delta \omega$ respectively - although he gives no outline of his method of deriving his equations from Rainsford's.

SOLVING THE DIRECT AND INVERSE PROBLEMS ON THE ELLIPSOID USING VINCENTY'S EQUATIONS

Vincenty (1975) set out methods of solving the direct and inverse problems on the ellipsoid. His methods were different from those proposed by Rainsford (1955) even though his equations (140) to (143) for spherical arc length σ and (148) and (149) for longitude λ were simplifications of Rainsford's equations. His approach was to develop solutions more applicable to computer programming rather than the mechanical methods used by Rainsford. Vincenty's method relies upon the auxiliary sphere and there are several equations using spherical trigonometry. Since distances are often small when compared with the Earth's circumference, resulting spherical triangles can have very small sides and angles. In such cases, usual spherical trigonometry formula, e.g., sine rule and cosine rule, may not furnish accurate results and other, less common formula, are used. Vincenty's equations and his methods are now widely used in geodetic computations. In the solutions of the direct and inverse problems set out in subsequent sections, the following notation and relationships are used.
a, f semi-major axis length and flattening of ellipsoid.
b semi-minor axis length of the ellipsoid, $b=a(1-f)$
e^{2} eccentricity of ellipsoid squared, $e^{2}=f(2-f)$
$e^{\prime 2} 2$ nd-eccentricity of ellipsoid squared, $e^{\prime 2}=\frac{e^{2}}{1-e^{2}}$
ϕ, λ latitude and longitude on ellipsoid: ϕ measured 0° to $\pm 90^{\circ}$ (north latitudes positive and south latitudes negative) and λ measured 0° to $\pm 180^{\circ}$ (east longitudes positive and west longitudes negative).
s length of the geodesic on the ellipsoid.
α_{1}, α_{2} azimuths of the geodesic, clockwise from north 0° to $360^{\circ} ; \alpha_{2}$ in the direction $P_{1} P_{2}$ produced.
α_{12} azimuth of geodesic $P_{1} P_{2} ; \alpha_{12}=\alpha_{1}$
α_{21} reverse azimuth; azimuth of geodesic $P_{2} P_{1} ; \alpha_{21}=\alpha_{2} \pm 180^{\circ}$
α_{E} azimuth of geodesic at the equator, $\sin \alpha_{E}=\cos \psi_{0}$
$u^{2}=e^{\prime 2} \sin ^{2} \psi_{0}$
ψ parametric latitude, $\tan \psi=(1-f) \tan \phi$
ψ_{0} parametric latitude of geodesic vertex, $\cos \psi_{0}=\cos \psi \sin \alpha=\sin \alpha_{E}$
ψ, ω latitude and longitude on auxiliary sphere: ψ measured 0° to $\pm 90^{\circ}$ (north latitudes positive and south latitudes negative) and ω measured 0° to $\pm 180^{\circ}$ (east longitudes positive and west longitudes negative).
$\Delta \lambda, \Delta \omega$ longitude differences; $\Delta \lambda=\lambda_{2}-\lambda_{1}$ (ellipsoid) and $\Delta \omega=\omega_{2}-\omega_{1}$ (spherical)
σ angular distance (great circle arc) $P_{1}^{\prime} P_{2}^{\prime}$ on the auxiliary sphere.
σ_{1} angular distance from equator to P_{1}^{\prime} on the auxiliary sphere, $\tan \sigma_{1}=\frac{\tan \psi_{1}}{\cos \alpha_{1}}$ σ_{m} angular distance from equator to mid-point of great circle $\operatorname{arc} P_{1}^{\prime} P_{2}^{\prime}$ on the auxiliary sphere, $2 \sigma_{m}=2 \sigma_{1}+\sigma$

THE DIRECT PROBLEM ON THE ELLIPSOID USING VINCENTY'S EQUATIONS

Using Vincenty's equations the direct problem on the ellipsoid
[given latitude and longitude of P_{1} on the ellipsoid and azimuth α_{12} and geodesic distance s to P_{2} on the ellipsoid, compute the latitude and longitude of P_{2} and the reverse azimuth α_{21}]
may be solved by the following sequence.
With the ellipsoid constants $a, f, b=a(1-f), e^{2}=f(2-f)$ and $e^{\prime 2}=\frac{e^{2}}{1-e^{2}}$ and given $\phi_{1}, \lambda_{1}, \alpha_{1}=\alpha_{12}$ and s

1. Compute parametric latitude ψ_{1} of P_{1} from

$$
\tan \psi_{1}=(1-f) \tan \phi_{1}
$$

2. Compute the parametric latitude of the geodesic vertex ψ_{0} from

$$
\cos \psi_{0}=\cos \psi_{1} \sin \alpha_{1}
$$

3. Compute the geodesic constant u^{2} from

$$
u^{2}=e^{\prime 2} \sin ^{2} \psi_{0}
$$

4. Compute angular distance σ_{1} on the auxiliary sphere from the equator to P_{1}^{\prime} from

$$
\tan \sigma_{1}=\frac{\tan \psi_{1}}{\cos \alpha_{1}}
$$

5. Compute the azimuth of the geodesic at the equator α_{E} from

$$
\sin \alpha_{E}=\cos \psi_{0}=\cos \psi_{1} \sin \alpha_{1}
$$

6. Compute Vincenty's constants A^{\prime} and B^{\prime} from

$$
\begin{aligned}
& A^{\prime}=1+\frac{u^{2}}{16384}\left(4096+u^{2}\left(-768+u^{2}\left(320-175 u^{2}\right)\right)\right) \\
& B^{\prime}=\frac{u^{2}}{1024}\left(256+u^{2}\left(-128+u^{2}\left(74-47 u^{2}\right)\right)\right)
\end{aligned}
$$

7. Compute angular distance σ on the auxiliary sphere from P_{1}^{\prime} to P_{2}^{\prime} by iteration using the following sequence of equations until there is negligible change in σ

$$
\begin{aligned}
2 \sigma_{m}= & 2 \sigma_{1}+\sigma \\
\Delta \sigma= & B^{\prime} \sin \sigma\left\{\cos 2 \sigma_{m}+\frac{1}{4} B^{\prime}\left[\cos \sigma\left(2 \cos ^{2} 2 \sigma_{m}-1\right)\right.\right. \\
& \left.\left.-\frac{1}{6} B^{\prime} \cos 2 \sigma_{m}\left(-3+4 \sin ^{2} \sigma\right)\left(-3+4 \cos ^{2} 2 \sigma_{m}\right)\right]\right\} \\
\sigma= & \frac{s}{b A^{\prime}}+\Delta \sigma
\end{aligned}
$$

The first approximation for σ in this iterative solution can be taken as $\sigma \simeq \frac{s}{b A^{\prime}}$
8. After computing the spherical arc length σ the latitude of P_{2} can be computed using spherical trigonometry and the relationship $\tan \phi_{2}=\frac{\tan \psi_{2}}{(1-f)}$

$$
\tan \phi_{2}=\frac{\sin \psi_{1} \cos \sigma+\cos \psi_{1} \sin \sigma \cos \alpha_{1}}{(1-f) \sqrt{\sin ^{2} \alpha_{E}+\left(\sin \psi_{1} \sin \sigma-\cos \psi_{1} \cos \sigma \cos \alpha_{1}\right)^{2}}}
$$

9. Compute the longitude difference $\Delta \omega$ on the auxiliary sphere from

$$
\tan \Delta \omega=\frac{\sin \sigma \sin \alpha_{1}}{\cos \psi_{1} \cos \sigma-\sin \psi_{1} \sin \sigma \cos \alpha_{1}}
$$

10. Compute Vincenty's constant C from

$$
C=\frac{f}{16} \cos ^{2} \alpha_{E}\left(4+f\left(4-3 \cos ^{2} \alpha_{E}\right)\right)
$$

11. Compute the longitude difference $\Delta \lambda$ on the ellipsoid from

$$
\Delta \lambda=\Delta \omega-(1-C) f \sin \alpha_{E}\left\{\sigma+C \sin \sigma\left[\cos 2 \sigma_{m}+C \cos \sigma\left(-1+2 \cos ^{2} 2 \sigma_{m}\right)\right]\right\}
$$

12. Compute azimuth α_{2} from

$$
\tan \alpha_{2}=\frac{\sin \alpha_{E}}{\cos \psi_{1} \cos \sigma \cos \alpha_{1}-\sin \psi_{1} \sin \sigma}
$$

13. Compute reverse azimuth α_{21}

$$
\alpha_{21}=\alpha_{2} \pm 180^{\circ}
$$

Shown below is the output of a MATLAB function Vincenty_Direct.m that solves the direct problem on the ellipsoid.

The ellipsoid is the GRS80 ellipsoid and ϕ, λ for P_{1} are -45° and 132° respectively with
 133° respectively with the reverse azimuth $\alpha_{21}=181^{\circ} 14^{\prime} 22.613213^{\prime \prime}$

```
>> Vincenty_Direct
////////////////////////////////////////////////
// DIRECT CASE on ellipsoid: Vincenty's method //
///////////////////////////////////////////////
ellipsoid parameters
a = 6378137.000000000
f = 1/298.257222101000
b}=6356752.314140356100
e2 = 6.694380022901e-003
ep2 = 6.739496775479e-003
Latitude & Longitude of P1
latP1 = -45 0 0.000000 (D M S)
lonP1 = 132 0 0.000000 (D M S)
Azimuth & Distance P1-P2
az12 = 1 43 25.876544 (D M S)
s = 3880275.684153
Parametric Latitude of P1
psiP1 = -44 54 13.636256 (D M S)
Parametric Latitude of vertex P0
psiP0 = 88 46 44.750547 (D M S)
Geodesic constant u2 (u-squared)
u2 = 6.736437077728e-003
```

```
angular distance on auxiliary sphere from equator to P1'
sigma1 = -7.839452835875e-001 radians
Vincenty's constants A and B
A = 1.001681988050e+000
B = 1.678458818215e-003
angular distance sigma on auxiliary sphere from P1' to P2'
sigma = 6.099458753810e-001 radians
iterations = 5
Latitude of P2
latP2 = -10 0 0.000000 (D M S)
Vincenty's constant C
C = 8.385253517062e-004
Longitude difference P1-P2
dlon = 1 0 0.000000 (D M S)
Longitude of P2
lon2 = 133 0 0.000000 (D M S)
Reverse azimuth
alpha21 = 181 14 22.613213 (D M S)
>>
```


THE INVERSE PROBLEM ON THE ELLIPSOID USING VINCENTY'S EQUATIONS

Using Vincenty's equations the inverse problem on the ellipsoid
[given latitudes and longitudes of P_{1} and P_{2} on the ellipsoid compute the forward and reverse azimuths α_{12} and α_{21} and the geodesic distance s]
may be solved by the following sequence.
With the ellipsoid constants $a, f, b=a(1-f), e^{2}=f(2-f)$ and $e^{\prime 2}=\frac{e^{2}}{1-e^{2}}$ and given ϕ_{1}, λ_{1} and ϕ_{2}, λ_{2}

1. Compute parametric latitudes ψ_{1} and ψ_{2} of P_{1} and P_{2} from

$$
\tan \psi=(1-f) \tan \phi
$$

2. Compute the longitude difference $\Delta \lambda$ on the ellipsoid

$$
\Delta \lambda=\lambda_{2}-\lambda_{1}
$$

3. Compute the longitude difference $\Delta \omega$ on the auxiliary sphere between P_{1}^{\prime} to P_{2}^{\prime} by iteration using the following sequence of equations until there is negligible change in $\Delta \omega$. Note that σ should be computed using the atan2 function after evaluating $\sin \sigma=\sqrt{\sin ^{2} \sigma}$ and $\cos \sigma$. This will give $-180^{\circ}<\sigma \leq 180^{\circ}$.

$$
\begin{aligned}
\sin ^{2} \sigma & =\left(\cos \psi_{2} \sin \Delta \omega\right)^{2}+\left(\cos \psi_{1} \sin \psi_{2}-\sin \psi_{1} \cos \psi_{2} \cos \Delta \omega\right)^{2} \\
\cos \sigma & =\sin \psi_{1} \sin \psi_{2}+\cos \psi_{1} \cos \psi_{2} \cos \Delta \omega \\
\tan \sigma & =\frac{\sin \sigma}{\cos \sigma} \\
\sin \alpha_{E} & =\frac{\cos \psi_{1} \cos \psi_{2} \sin \Delta \omega}{\sin \sigma} \\
\cos 2 \sigma_{m} & =\cos \sigma-\frac{2 \sin \psi_{1} \sin \psi_{2}}{\cos ^{2} \alpha_{E}} \\
C & =\frac{f}{16} \cos ^{2} \alpha_{E}\left(4+f\left(4-3 \cos ^{2} \alpha_{E}\right)\right) \\
\Delta \omega & =\Delta \lambda+(1-C) f \sin \alpha_{E}\left\{\sigma+C \sin \sigma\left[\cos 2 \sigma_{m}+C \cos \sigma\left(-1+2 \cos ^{2} 2 \sigma_{m}\right)\right]\right\}
\end{aligned}
$$

The first approximation for $\Delta \omega$ in this iterative solution can be taken as $\Delta \omega \simeq \Delta \lambda$
4. Compute the parametric latitude of the geodesic vertex ψ_{0} from

$$
\cos \psi_{0}=\sin \alpha_{E}
$$

5. Compute the geodesic constant u^{2} from

$$
u^{2}=e^{\prime 2} \sin ^{2} \psi_{0}
$$

6. Compute Vincenty's constants A^{\prime} and B^{\prime} from

$$
\begin{aligned}
& A^{\prime}=1+\frac{u^{2}}{16384}\left(4096+u^{2}\left(-768+u^{2}\left(320-175 u^{2}\right)\right)\right) \\
& B^{\prime}=\frac{u^{2}}{1024}\left(256+u^{2}\left(-128+u^{2}\left(74-47 u^{2}\right)\right)\right)
\end{aligned}
$$

7. Compute geodesic distance s from

$$
\begin{aligned}
\Delta \sigma= & B^{\prime} \sin \sigma\left\{\cos 2 \sigma_{m}+\frac{1}{4} B^{\prime}\left[\cos \sigma\left(2 \cos ^{2} 2 \sigma_{m}-1\right)\right.\right. \\
& \left.\left.-\frac{1}{6} B^{\prime} \cos 2 \sigma_{m}\left(-3+4 \sin ^{2} \sigma\right)\left(-3+4 \cos ^{2} 2 \sigma_{m}\right)\right]\right\} \\
s= & b A(\sigma-\Delta \sigma)
\end{aligned}
$$

8. Compute the forward azimuth $\alpha_{12}=\alpha_{1}$ from

$$
\tan \alpha_{1}=\frac{\cos \psi_{2} \sin \Delta \omega}{\cos \psi_{1} \sin \psi_{2}-\sin \psi_{1} \cos \psi_{2} \cos \Delta \omega}
$$

9. Compute azimuth α_{2} from

$$
\tan \alpha_{2}=\frac{\cos \psi_{1} \sin \Delta \omega}{-\sin \psi_{1} \cos \psi_{2}+\cos \psi_{1} \sin \psi_{2} \cos \Delta \omega}
$$

10. Compute reverse azimuth α_{21}

$$
\alpha_{21}=\alpha_{2} \pm 180^{\circ}
$$

Shown below is the output of a MATLAB function Vincenty_Inverse.m that solves the inverse problem on the ellipsoid.

The ellipsoid is the GRS80 ellipsoid. ϕ, λ for P_{1} are -10° and 110° respectively and ϕ, λ for P_{2} are -45° and 155° respectively. Computed azimuths are $\alpha_{12}=140^{\circ} 30^{\prime} 03.017703^{\prime \prime}$ and $\alpha_{21}=297^{\circ} 48^{\prime} 47.310738^{\prime \prime}$, and geodesic distance $s=5783228.548429 \mathrm{~m}$.

```
>> Vincenty_Inverse
//////////////////////////////////////////////////
// INVERSE CASE on ellipsoid: Vincenty's method //
///////////////////////////////////////////////////
ellipsoid parameters
a = 6378137.000000000
f = 1/298.257222101000
b}=6356752.314140356100
e2 = 6.694380022901e-003
ep2 = 6.739496775479e-003
Latitude & Longitude of P1
latP1 = -10 0 0.000000 (D M S)
lonP1 = 110 0 0.000000 (D M S)
Latitude & Longitude of P2
latP2 = -45 0 0.000000 (D M S)
lonP2 = 155 0 0.000000 (D M S)
Parametric Latitudes of P1 and P2
psiP1 = -9 58 1.723159 (D M S)
psiP2 = -44 54 13.636256 (D M S)
Longitude difference on ellipsoid P1-P2
dlon = 45 0 0.000000 (D M S)
Longitude difference on auxiliary sphere P1'-P2'
domega = 9.090186019005e-001 radians
iterations = 5
Parametric Latitude of vertex P0
psiP0 = 51 12 36.239192 (D M S)
Geodesic constant u2 (u-squared)
u2 = 4.094508823114e-003
Vincenty's constants A and B
A = 1.001022842684e+000
B = 1.021536528199e-003
```

```
Azimuth & Distance P1-P2
az12 = 140 30 3.017703 (D M S)
s = 5783228.548429
Reverse azimuth
alpha21 = 297 48 47.310738 (D M S)
>>
```


EXCEL WORKBOOK vincenty.xIS FROM GEOSCIENCE AUSTRALIA

Geoscience Australia has made available an Excel workbook vincenty.xls containing four spreadsheets labelled Ellipsoids, Direct Solution, Inverse Solution and Test Data. The Direct Solution and Inverse Solution spreadsheets are implementations of Vincenty's equations. The Excel workbook vincenty.xls can be downloaded via the Internet at the Geoscience Australia website (http://www.ga.gov.au/) following the links to Geodetic Calculations then Calculate Bearing Distance from Latitude Longitude. At this web page the spreadsheet vincenty.xls is available for use or downloading. Alternatively, the Intergovernmental Committee on Surveying and Mapping (ICSM) has produced an on-line publication Geocentric Datum of Australia Technical Manual Version 2.2 (GDA Technical Manual, ICSM 2002) with a link to vincenty.xls.

The operation of vincenty.xls is relatively simple, but since the spreadsheets use the Excel solver for the iterative solutions of certain equations then the Iteration box must be checked on the Calculation sheet. The Calculation sheet is found under Tools/Options on the Excel toolbar. Also, on the Calculation sheet make sure the Maximum change box has a value of 0.000000000001 .

The Direct Solution and Inverse Solution spreadsheets have statements that the spreadsheets have been tested in the Australian region but not exhaustively tested worldwide.

To test vincenty.xls, direct and inverse solutions between points on a geographic rectangle $A B C D$ covering Australia were computed using vincenty.xls and MATLAB functions Vincenty_Direct.m and Vincenty_Inverse.m. Figure 16 shows the geographic rectangle $A B C D$ whose sides are the meridians of longitude 110° and 155° and parallels of latitude -10° and -45°. Several lines were chosen on and across this rectangle.

Figure 16: Geographic rectangle covering Australia

P_{1}	P_{2}	azimuth α	distance s
$\phi=-10^{\circ}$ $\lambda=110^{\circ}$	$\phi=-10^{\circ}$		
$\lambda=155^{\circ}$	$\alpha_{12}=94^{\circ} 06^{\prime} 55.752182^{\prime \prime}$	$s=4929703.675416 \mathrm{~m}$	
$\phi=-10^{\circ}$	$\phi=-45^{\circ}$		
$\lambda=110^{\circ} 53^{\prime} 04.247818^{\prime \prime}$	$\alpha_{12}=140^{\circ} 30^{\prime} 03.017703^{\prime \prime}$	$s=5783228.548429 \mathrm{~m}$	
$\phi=155^{\circ}$	$\alpha_{21}=297^{\circ} 48^{\prime} 47.310738^{\prime \prime}$		
ϕ $\lambda=110^{\circ}$	$\phi=-45^{\circ}$ $\lambda=110^{\circ}$	$\alpha_{12}=180^{\circ} 00^{\prime} 00.000000^{\prime \prime}$ $\alpha_{21}=0^{\circ} 00^{\prime} 00.000000^{\prime \prime}$	$s=3879089.544659 \mathrm{~m}$
$\phi=-10^{\circ}$	$\phi=-45^{\circ}$	$\alpha_{12}=219^{\circ} 29^{\prime} 56.982297^{\prime \prime}$	$s=5783228.548429 \mathrm{~m}$
$\lambda=155^{\circ}$	$\lambda=110^{\circ}$	$\alpha_{21}=62^{\circ} 11^{\prime} 12.689262^{\prime \prime}$	
$\phi=-45^{\circ}$ $\lambda=132^{\circ}$	$\phi=-10^{\circ}$ $\lambda=133^{\circ}$	$\alpha_{12}=1^{\circ} 43^{\prime} 25.876544^{\prime \prime}$ $\alpha_{21}=181^{\circ} 14^{\prime} 22.613213^{\prime \prime}$	$s=3880275.684153 \mathrm{~m}$
$\phi=-35^{\circ}$	$\phi=-36^{\circ}$	$\alpha_{12}=105^{\circ} 00^{\prime} 10.107712^{\prime \prime}$	$s=4047421.887193 \mathrm{~m}$
$\lambda=110^{\circ}$	$\lambda=155^{\circ}$	$\alpha_{21}=257^{\circ} 56^{\prime} 53.869209^{\prime \prime}$	

Table 1: Geodesic curves between P_{1} and P_{2} on the GRS80 ellipsoid

Table 1 shows a number of long geodesics that are either bounding meridians of the rectangle or geodesics crossing the rectangle. All of these results have been computed using the MATLAB function Vincenty_Inverse.m and verified by using the MATLAB function Vincenty_Direct.m. Each of the lines were then computed using the Inverse Solution spreadsheet of the Excel workbook vincenty.xls; all azimuths were identical and the differences between distances were 0.000002 m on one line and 0.000001 m on two other lines. Each of the lines were then verified by using the Direct Solution spreadsheet (all computed latitudes and longitudes we in exact agreement). It could be concluded that the Excel workbook vincenty.xls gives results accurate to at least the 5th decimal of distance and the 6th decimal of seconds of azimuth for any geodesic in Australia.

Vincenty (1975) verifies his equations by comparing his results with Rainsford's over five test lines (Rainsford 1955). On one of these lines - line (a) $\phi_{1}=55^{\circ} 45^{\prime}, \lambda_{1}=0^{\circ} 00^{\prime}$, $\alpha_{12}=96^{\circ} 36^{\prime} 08.79960^{\prime \prime}, s=14110526.170 \mathrm{~m}$ on Bessel's ellipsoid $a=6377397.155 \mathrm{~m}$ $1 / f=299.1528128$ - Vincenty finds his direct solution gives $\phi_{2}=-33^{\circ} 26^{\prime} 00.000012^{\prime \prime}$, $\lambda_{2}=108^{\circ} 13^{\prime} 00.000007^{\prime \prime}$ and $\alpha_{21}=137^{\circ} 52^{\prime} 22.014528^{\prime \prime}$. We can confirm that the MATLAB function Vincenty_Direct.m also gives these results, but it is interesting to note that the Direct Solution spreadsheet of the Excel workbook vincenty.xls does not give these results. This is due to the Excel solver - used to determine a value by iteration returning an incorrect value. Whilst the error in the Excel solver result is small, it is, nonetheless, significant and users should be aware of the likelihood or erroneous results over very long geodesics using vincenty.xls.

MATLAB FUNCTIONS

Shown below are two MATLAB functions Vincenty_Direct. m and Vincenty_Inverse. m that have been written to test Vincenty's equations and his direct and inverse methods of solution. Both functions call another function DMS.m that is also shown.

MATLAB function Vincenty_Direct.m

```
function Vincenty_Direct
Vincenty_Direct computes the "direct case" on the ellipsoid using
Vinventy's method.
Given the size and shape of the ellipsoid and the latitude and
longitude of P1 and the azimuth and geodesic distance of P1 to P2,
this function computes the latitude and longitude of P2 and the
reverse azimuth P2 to P1.
```

\% Function: Vincenty_Direct
\%
Useage: Vincenty_Direct;
Author:
Rod Deakin,
Department of Mathematical and Geospatial Sciences,
RMIT University,
GPO Box 2476V, MELBOURNE VIC 3001
AUSTRALIA
email: rod.deakin@rmit.edu.au
Date:
Version 1.02 March 2008
Functions Required:

$$
[\mathrm{D}, \mathrm{M}, \mathrm{~S}]=\mathrm{DMS}(\text { DecDeg })
$$

Remarks:
This function computes the DIRECT CASE on the ellipsoid. Given the size and shape of an ellipsoid (defined by parameters a and f, semi-major axis and flattening respectively) and the latitude and longitude of P1 and the azimuth (az12) P1 to P2 and the geodesic distance (s) P1 to P2, the function computes the latitude and longitude of P2 and the reverse azimuth (az21) P2 to P1. Latitudes and longitudes of the geodesic vertices P0 and P0' are also output as well as distances and longitude difference from P1 and P2 to the relevant vertices.

References:
[1] Deakin, R.E, and Hunter, M.N., 2007. 'Geodesics on an Ellipsoid Bessels' Method', School of Mathematical and Geospatial Sciences, RMIT University, January 2007.
[2] Vincenty, T., 1975. 'Direct and Inverse solutions of geodesics on the ellipsoid with application of nested equations', Survey Review, Vol. 23, No. 176, pp.88-93, April 1975.

Variables:

```
a - semi-major axis of ellipsoid
A - Vincenty's constant for computation of sigma
alpha1 - azimuth P1-P2 (radians)
az12 - azimuth P1-P2 (degrees)
az21 - azimuth P2-P1 (degrees)
b - semi-minor axis of ellipsoid
A - Vincenty's constant for computation of sigma
cos_alpha1 - cosine of azimuth of geodesic P1-P2 at P1
dlambda - longitude difference P1 to P2 (radians)
domega - longitude difference P1' to P2' (radians)
d2r - degree to radian conversion factor
e2 - eccentricity of ellipsoid squared
ep2 - 2nd eccentricity squared
f - flattening of ellipsoid
flat - denominator of flattening, f = 1/flat
lambda1 - longitude of P1 (radians)
lambda2 - longitude of P2 (radians)
lat1 - latitude of P1 (degrees)
```

```
lat2 - latitude of P2 (degrees)
lon1 - longitude of P1 (degrees)
lon2 - longitude of P2 (degrees)
phi1 - latitude of P1 (radians)
phi2 - latitude of P2 (radians)
pion2 - pi/2
psi0 - parametric latitude of P0 (radians)
psi1 - parametric latitude of P1 (radians)
psi2 - parametric latitude of P2 (radians)
s - geodesic distance P1 to P2
sigma1 - angular distance (radians) on auxiliary sphere from
equator to P1'
sin_alpha1 - sine of azimuth of geodesic P1-P2 at P1
twopi - 2*pi
u2 - geodesic constant u-squared
%
%
%=ニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニ=ニ========ニ==============================
% Define some constants
d2r = 180/pi;
twopi = 2*pi;
pion2 = pi/2;
% Set defining ellipsoid parameters
a = 6378137; % GRS80
flat = 298.257222101;
% a = 6377397.155; % Bessel (see Ref [2], p.91)
% flat = 299.1528128;
% Compute derived ellipsoid constants
f = 1/flat;
b = a*(1-f);
e2 = f*(2-f);
ep2 = e2/(1-e2);
%--------------------------------------
% latitude and longitude of P1 (degrees)
%-----------
    lon1 = 132;
% lat and lon of P1 (radians)
phi1 = lat1/d2r;
lambda1 = lon1/d2r;
%----------------------------------
% azimuth of geodesic P1-P2 (degrees)
%---------------------------------
az12 = 1 + 43/60 + 25.876544/3600;
%
% azimuth of geodesic P1-P2 (radians)
alpha1 = az12/d2r;
% sine and cosine of azimuth P1-P2
sin_alpha1 = sin(alpha1);
cos_alpha1 = cos(alpha1);
%-----------------
% geodesic distance
%------------------
s = 3880275.684153;
% [1] Compute parametric latitude psi1 of P1
psi1 = atan((1-f)*tan(phi1));
% [2] Compute parametric latitude of vertex
psi0 = acos(cos(psi1)*sin_alpha1);
```

```
% [3] Compute geodesic constant u2 (u-squared)
u2 = ep2*(sin(psi0)^2);
% [4] Compute angular distance sigma1 on the auxiliary sphere from equator
% to P1'
sigma1 = atan2(tan(psi1),cos_alpha1);
% [5] Compute the sine of the azimuth of the geodesic at the equator
sin_alphaE = cos(psi0);
% [6] Compute Vincenty's constants A and B
A = 1 + u2/16384*(4096 + u2*(-768 + u2*(320-175*u2)));
B = u2/1024*(256 + u2*(-128 + u2*(74-47*u2)));
% [7] Compute sigma by iteration
sigma = s/(b*A);
iter = 1;
while 1
    two_sigma_m = 2*sigma1 + sigma;
    s1 = sin(sigma);
    s2 = s1*s1;
    c1 = cos(sigma);
    c1_2m = cos(two_sigma_m);
    c2_2m = c1_2m*c1_2m;
    t1 = 2*c2_2m-1;
    t2 = -3+4*s2;
    t3 = -3+4*c2_2m;
    delta_sigma = B*s1*(c1_2m+B/4*(c1*t1-B/6*c1_2m*t2*t3));
    sigma_new = s/(b*A)+delta_sigma;
    if abs(sigma_new-sigma)<1e-12
        break;
    end;
    sigma = sigma_new;
    iter = iter + 1;
end;
s1 = sin(sigma);
c1 = cos(sigma);
% [8] Compute latitude of P2
y = sin(psi1)*c1+cos(psi1)*s1*cos_alpha1;
x = (1-f)*sqrt(sin_alphaE^2+(sin(psi1)*s1-cos(psi1)*c1*cos_alpha1)^2);
phi2 = atan2(y,x);
lat2 = phi2*d2r;
% [9] Compute longitude difference domega on the auxiliary sphere
y = s1*sin_alpha1;
x = cos(psi1)*c1-sin(psi1)*s1*cos_alpha1;
domega = atan2(y,x);
% [10] Compute Vincenty's constant C
x = 1-sin_alphaE^2;
C = f/16*x*(4+f*(4-3*x));
% [11] Compute longitude difference on ellipsoid
two_sigma_m = 2*sigma1 + sigma;
c1_2m = cos(two_sigma_m);
c2_2m = c1_2m*c1_2m;
dlambda = domega-(1-C)*f*sin_alphaE*(sigma+C*s1*(c1_2m+C*c1*(-1+2*c2_2m)));
dlon = dlambda*d2r;
lon2 = lon1+dlon;
% [12] Compute azimuth alpha2
y = sin_alphaE;
x = cos(psi1)*c1*cos_alpha1-sin(psi1)*s1;
alpha2 = atan2(y,x);
% [13] Compute reverse azimuth az21
```

```
az21 = alpha2*d2r + 180;
if az21 > 360
    az21 = az21-360;
end;
```

\%--
\% Print computed quantities, latitudes and azimuth
\%---
fprintf('\n///');
fprintf('\n// DIRECT CASE on ellipsoid: Vincenty''s method //');
fprintf('\n//');
fprintf('\n\nellipsoid parameters');
fprintf('\na = \%18.9f', a);
fprintf('\nf = 1/\%16.12f',flat);
fprintf('\nb $=\% 21.12 \mathrm{f} ', \mathrm{~b})$;
fprintf('\ne2 = \%20.12e',e2);
fprintf('\nep2 = \%20.12e',ep2);
fprintf('\n\nLatitude \& Longitude of P1');
[D, M, S] = DMS(lat1);
if $D==0$ \&\& lat1<0
fprintf('\nlatP1 = -0 \%2d \%9.6f (D M S)',M,S);
else
fprintf('\nlatP1 = \%3d \%2d \%9.6f (D M S)',D,M,S);
end;
[D,M,S] = DMS(lon1);
if $D==0$ \&\& lon1<0
fprintf('\nlonP1 = -0 \%2d \%9.6f (D M S)',M,S);
else
fprintf('\nlonP1 = \%3d \%2d \%9.6f (D M S)',D,M,S);
end;
fprintf('\n\nAzimuth \& Distance P1-P2');
[D,M,S] = DMS(az12);
fprintf('\naz12 = \%4d \%2d \%9.6f (D M S)',D,M,S);
fprintf('\ns = \%17.6f',s);
fprintf('\n\nParametric Latitude of P1');
[D, M, S] = DMS(psi1*d2r);
if $D==0$ \&\& psi1<0
fprintf('\npsiP1 = -0 \%2d \%9.6f (D M S)',M,S);
else
fprintf('\npsiP1 = \%3d \%2d \%9.6f (D M S)',D,M,S);
end;
fprintf('\n\nParametric Latitude of vertex P0');
$[\mathrm{D}, \mathrm{M}, \mathrm{S}]=\mathrm{DMS}\left(\mathrm{psi} 0^{*} \mathrm{~d} 2 \mathrm{r}\right)$;
if $D==0$ \&\& psi0<0
fprintf('\npsiP0 = -0 \%2d \%9.6f (D M S)',M,S);
else
fprintf('\npsiP0 = \%3d \%2d \%9.6f (D M S)',D,M,S);
end;
fprintf('\n\nGeodesic constant u2 (u-squared)');
fprintf('\nu2 = \%20.12e',u2);
fprintf('\n\nangular distance on auxiliary sphere from equator to P1''');
fprintf('\nsigma1 = \%20.12e radians',sigma1);
fprintf('\n\nVincenty''s constants A and B');
fprintf('\nA = \%20.12e',A);
fprintf('\nB = \%20.12e',B);
fprintf('\n\nangular distance sigma on auxiliary sphere from P1'' to P2''');
fprintf('\nsigma = \%20.12e radians',sigma);

```
fprintf('\niterations = %2d',iter);
fprintf('\n\nLatitude of P2');
[D,M,S] = DMS(lat2);
if D==0 && lat2<0
    fprintf('\nlatP2 = -0 %2d %9.6f (D M S)',M,S);
else
    fprintf('\nlatP2 = %3d %2d %9.6f (D M S)',D,M,S);
end;
fprintf('\n\nVincenty''s constant C');
fprintf('\nC = %20.12e',C);
fprintf('\n\nLongitude difference P1-P2');
[D,M,S] = DMS(dlon);
if D==0 && dlon<0
    fprintf('\ndlon = -0 %2d %9.6f (D M S)',M,S);
else
    fprintf('\ndlon = %3d %2d %9.6f (D M S)',D,M,S);
end;
fprintf('\n\nLongitude of P2');
[D,M,S] = DMS(lon2);
if D==0 && lon2<0
    fprintf('\nlon2 = -0 %2d %9.6f (D M S)',M,S);
else
    fprintf('\nlon2 = %3d %2d %9.6f (D M S)',D,M,S);
end;
fprintf('\n\nReverse azimuth');
[D,M,S] = DMS(az21);
fprintf('\nalpha21 = %3d %2d %9.6f (D M S)',D,M,S);
fprintf('\n\n');
```


MATLAB function Vincenty_Inverse.m

```
function Vincenty_Inverse
% Vincenty_Inverse computes the "inverse case" on the ellipsoid using
% Vinventy's method.
% Given the size and shape of the ellipsoid and the latitudes and
% longitudes of P1 and P2 this function computes the geodesic distance
% P1 to P2 and the forward and reverse azimuths
```

```
% Function: Vincenty_Inverse
%
% Useage: Vincenty_Inverse;
%
% Author:
Rod Deakin,
    Department of Mathematical and Geospatial Sciences,
    RMIT University,
    GPO Box 2476V, MELBOURNE VIC 3001
    AUSTRALIA
    email: rod.deakin@rmit.edu.au
%
% Date:
    Version 1.0 7 March 2008
%
Functions Required:
    [D,M,S] = DMS(DecDeg)
Remarks:
% This function computes the INVERSE CASE on the ellipsoid. Given the size
```

```
and shape of an ellipsoid (defined by parameters a and f, semi-major
axis and flattening respectively) and the latitudes and longitudes of P1
this function computes the forward azimuth (az12) P1 to P2, the reverse
azimuth (az21) P2 to P1 and the geodesic distance (s) P1 to P2.
References:
    [1] Deakin, R.E, and Hunter, M.N., 2007. 'Geodesics on an Ellipsoid -
        Bessels' Method', School of Mathematical and Geospatial Sciences,
        RMIT University, January 2007.
    [2] Vincenty, T., 1975. 'Direct and Inverse solutions of geodesics on
        the ellipsoid with application of nested equations', Survey
        Review, Vol. 23, No. 176, pp.88-93, April 1975.
Variables:
    A - Vincenty's constant for computation of sigma
a - semi-major axis of ellipsoid
alpha1 - azimuth at P1 for the line P1-P2 (radians)
alpha2 - azimuth at P2 for the line P1-P2 extended (radians)
az12 - azimuth P1-P2 (degrees)
az21 - azimuth P2-P1 (degrees)
B - Vincenty's constant for computation of sigma
b - semi-minor axis of ellipsoid
C - Vincenty's constant for computation of longitude
        difference
cdo - cos(domega)
cos_sigma - cos(sigma)
delta_sigma - small change in sigma
dlambda - longitude difference P1 to P2 (radians)
domega - longitude difference P1' to P2' (radians)
d2r - degree to radian conversion factor
e2 - eccentricity of ellipsoid squared
ep2 - 2nd eccentricity squared
f - flattening of ellipsoid
flat - denominator of flattening, f = 1/flat
lambda1 - longitude of P1 (radians)
lambda2 - longitude of P2 (radians)
lat1 - latitude of P1 (degrees)
lat2 - latitude of P2 (degrees)
lon1 - longitude of P1 (degrees)
lon2 - longitude of P2 (degrees)
phi1 - latitude of P1 (radians)
phi2 - latitude of P2 (radians)
pion2 - pi/2
psi0 - parametric latitude of P0 (radians)
psi1 - parametric latitude of P1 (radians)
psi2 - parametric latitude of P2 (radians)
s - geodesic distance P1 to P2
sdo - sin(domega)
sigma - angular distance (radians) on auxiliary sphere from P1'
                                to P2'
sin_alphaE - sine of azimuth of geodesic P1-P2 at equator
sin_sigma - sin(sigma)
twopi - 2*pi
u2 - geodesic constant u-squared
```

```
% Define some constants
d2r = 180/pi;
twopi = 2*pi;
pion2 = pi/2;
% Set defining ellipsoid parameters
    a = 6378137; % GRS80
    flat = 298.257222101;
% a = 6377397.155; % Bessel (see Ref [2], p.91)
% flat = 299.1528128;
```

```
% Compute derived ellipsoid constants
f = 1/flat;
b = a*(1-f);
e2 = f*(2-f);
ep2 = e2/(1-e2);
%---------------------------------------
% latitude and longitude of P1 (degrees)
lat1 = -10;
lon1 = 110;
% lat and lon of P1 (radians)
phi1 = lat1/d2r;
lambda1 = lon1/d2r;
%----------------------------------------
% latitude and longitude of P2 (degrees)
%------------------------------------------
lat2 = -45;
lon2 = 155;
% lat and lon of P2 (radians)
phi2 = lat2/d2r;
lambda2 = lon2/d2r;
% [1] Compute parametric latitudes psi1 and psi2 of P1 and P2
psi1 = atan((1-f)*tan(phi1));
psi2 = atan((1-f)*tan(phi2));
s1 = sin(psi1);
s2 = sin(psi2);
c1 = cos(psi1);
c2 = cos(psi2);
% [2] Compute longitude difference dlambda on the ellipsoid
dlambda = lambda2-lambda1; % (radians)
dlon = lon2-lon1; % (degrees)
% [3] Compute longitude difference domega on the auxiliary sphere by
% iteration
domega = dlambda;
iter = 1;
while 1
    sdo = sin(domega);
    cdo = cos(domega);
    x = c2*sdo;
    y = c1*s2 - s1*c2*cdo;
    sin_sigma = sqrt(x*x + y*y);
    cos_sigma = s1*s2 + c1*c2*cdo;
    sigma = atan2(sin_sigma,cos_sigma);
    sin_alphaE = c1*c2*sdo/sin_sigma;
    % Compute c1_2m = cos(2*sigma_m)
    x = 1-(sin_alphaE*sin_alphaE);
    c1_2m = cos_sigma - (2*s1*s2/x);
    % Compute Vincenty's constant C
    C = f/16* ** (4+f* (4-3*x));
    % Compute domega
    c2_2m = c1_2m*c1_2m;
    domega_new = dlambda+(1-C)*f*sin_alphaE*(sigma+C*sin_sigma*(c1_2m+C*cos_sigma*(-
1+2*c2_2m)));
    if abs(domega-domega_new)<1e-12
        break;
    end;
    domega = domega_new;
    iter = iter + 1;
end;
```

```
% [4] Compute parametric latitude of vertex
psi0 = acos(sin_alphaE);
% [5] Compute geodesic constant u2 (u-squared)
u2 = ep2*(sin(psi0)^2);
% [6] Compute Vincenty's constants A and B
A = 1 + u2/16384*(4096 + u2*(-768 + u2*(320-175*u2)));
B = u2/1024*(256 + u2*(-128 + u2*(74-47*u2)));
% [7] Compute geodesic distance s
t1 = 2*c2_2m-1;
t2 = -3+4*sin_sigma*sin_sigma;
t3 = -3+4*c2_2m;
delta_sigma = B*sin_sigma*(c1_2m+B/4*(cos_sigma*t1-B/6*c1_2m*t2*t3));
s = b*A*(sigma-delta_sigma);
% [8] Compute forward azimuth alpha1
y = c2*sdo;
x = c1*s2 - s1*c2*cdo;
alpha1 = atan2(y,x);
if alpha1<0
    alpha1 = alpha1+twopi;
end;
az12 = alpha1*d2r;
% [9] Compute azimuth alpha2
y = c1*sdo;
x = -s1*c2 + c1*s2*cdo;
alpha2 = atan2(y,x);
% [10] Compute reverse azimuth az21
az21 = alpha2*d2r + 180;
if az21 > 360
    az21 = az21-360;
end;
%-----------------------------------------------
% Print computed quantities, latitudes and azimuth
%------------------------------------------------
fprintf('\n//////////////////////////////////////////////////');
fprintf('\n// INVERSE CASE on ellipsoid: Vincenty''s method //');
fprintf('\n//////////////////////////////////////////////////');
fprintf('\n\nellipsoid parameters');
fprintf('\na = %18.9f',a);
fprintf('\nf = 1/%16.12f',flat);
fprintf('\nb = %21.12f',b);
fprintf('\ne2 = %20.12e',e2);
fprintf('\nep2 = %20.12e',ep2);
fprintf('\n\nLatitude & Longitude of P1');
[D,M,S] = DMS(lat1);
if D==0 && lat1<0
    fprintf('\nlatP1 = -0 %2d %9.6f (D M S)',M,S);
else
    fprintf('\nlatP1 = %3d %2d %9.6f (D M S)',D,M,S);
end;
[D,M,S] = DMS(lon1);
if D==0 && lon1<0
    fprintf('\nlonP1 = -0 %2d %9.6f (D M S)',M,S);
else
    fprintf('\nlonP1 = %3d %2d %9.6f (D M S)',D,M,S);
end;
fprintf('\n\nLatitude & Longitude of P2');
[D,M,S] = DMS(lat2);
if D==0 && lat2<0
```

```
    fprintf('\nlatP2 = -0 %2d %9.6f (D M S)',M,S);
else
    fprintf('\nlatP2 = %3d %2d %9.6f (D M S)',D,M,S);
end;
[D,M,S] = DMS(lon2);
if D==0 && lon2<0
    fprintf('\nlonP2 = -0 %2d %9.6f (D M S)',M,S);
else
    fprintf('\nlonP2 = %3d %2d %9.6f (D M S)',D,M,S);
end;
fprintf('\n\nParametric Latitudes of P1 and P2');
[D,M,S] = DMS(psi1*d2r);
if D==0 && psi1<0
    fprintf('\npsiP1 = -0 %2d %9.6f (D M S)',M,S);
else
    fprintf('\npsiP1 = %3d %2d %9.6f (D M S)',D,M,S);
end;
[D,M,S] = DMS(psi2*d2r);
if D==0 && psi2<0
    fprintf('\npsiP2 = -0 %2d %9.6f (D M S)',M,S);
else
    fprintf('\npsiP2 = %3d %2d %9.6f (D M S)',D,M,S);
end;
fprintf('\n\nLongitude difference on ellipsoid P1-P2');
[D,M,S] = DMS(dlon);
if D==0 && dlon<0
    fprintf('\ndlon = -0 %2d %9.6f (D M S)',M,S);
else
    fprintf('\ndlon = %3d %2d %9.6f (D M S)',D,M,S);
end;
fprintf('\n\nLongitude difference on auxiliary sphere P1''-P2''');
fprintf('\ndomega = %20.12e radians',sigma);
fprintf('\niterations = %2d',iter);
fprintf('\n\nParametric Latitude of vertex P0');
[D,M,S] = DMS(psi0*d2r);
if D==0 && psi0<0
    fprintf('\npsiP0 = -0 %2d %9.6f (D M S)',M,S);
else
    fprintf('\npsiP0 = %3d %2d %9.6f (D M S)',D,M,S);
end;
fprintf('\n\nGeodesic constant u2 (u-squared)');
fprintf('\nu2 = %20.12e',u2);
fprintf('\n\nVincenty''s constants A and B');
fprintf('\nA = %20.12e',A);
fprintf('\nB = %20.12e',B);
fprintf('\n\nAzimuth & Distance P1-P2');
[D,M,S] = DMS(az12);
fprintf('\naz12 = %4d %2d %9.6f (D M S)',D,M,S);
fprintf('\ns = %17.6f',s);
fprintf('\n\nReverse azimuth');
[D,M,S] = DMS(az21);
fprintf('\nalpha21 = %3d %2d %9.6f (D M S)',D,M,S);
fprintf('\n\n');
```


MATLAB function DMS.m

```
function [D,M,S] = DMS(DecDeg)
% [D,M,S] = DMS(DecDeg) This function takes an angle in decimal degrees and returns
% Degrees, Minutes and Seconds
val = abs(DecDeg);
D = fix(val);
M = fix((val-D)*60);
S = (val-D-M/60)*3600;
if abs(S-60) < 5.0e-10
    M = M + 1;
    S = 0.0;
end
if M == 60
    D = D + 1;
    M = 0.0;
end
if D >=360
    D = D - 360;
end
if(DecDeg<=0)
    D = -D;
end
return
```


REFERENCES

Bessel, F. W., (1826), 'On the computation of geographical longitude and latitude from geodetic measurements', Astronomische Nachrichten (Astronomical Notes), Band 4 (Volume 4), Number 86, Spalten 241-254 (Columns 241-254), Altona 1826.

DSB, (1971), Dictionary of Scientific Biography, C.C. Gillispie (Editor in Chief), Charles Scribner's Sons, New York.

ICSM, (2002). Geocentric Datum of Australia Technical Manual - Version 2.2, Intergovernmental Committee on Surveying and Mapping (ICSM), February 2002, available online at: http://www.icsm.gov.au/icsm/gda/gdatm/index.html (last accessed March 2006)

Jank, W., Kivioja, L. A., (1980), 'Solution of the direct and inverse problems on reference ellipsoids by point-by-point integration using programmable pocket calculators', Surveying and Mapping, Vol. 15, No. 3, pp. 325-337.

Jordan/Eggert/Kneissl, (1959), Handbuch der Vermessungskunde, Band IV Mathematische Geodäsie, J.B. Metzlersche Verlagsbuchnandlung, Stuttgart, pp. 978987.

Kivioja, L. A., (1971), 'Computation of geodetic direct and indirect problems by computers accumulating increments from geodetic line elements', Bulletin Geodesique, No. 99, pp. 55-63.

McCaw, G. T., (1932-33), 'Long lines on the Earth', Empire Survey Review, Vol. 1, No. 6, pp. 259-263 and Vol. 2, No. 9, pp. 156-163.

McCaw, G. T., (1934), 'Long lines on the Earth: the direct problem', Empire Survey Review, Vol. 2, No. 12, pp. 346-352 and Vol. 2, No. 14, pp. 505-508.

Pittman, M. E., (1986), 'Precision direct and inverse solution of the geodesic', Surveying and Mapping, Vol. 46, No. 1, pp. 47-54.

Rainsford, H. F., (1955), 'Long geodesics on the ellipsoid', Bulletin Geodesique, No. 37, pp. 12-22.

Rapp, R. H., (1981), Geometric Geodesy - Volume II (Advanced Techniques), Department of Geodetic Science, The Ohio State University, Columbus, Ohio 43210, March, 1981.

Thomas, P. D., (1952), Conformal Projections in Geodesy and Cartography, Special Publication No. 251, Coast and Geodetic Survey, United States Department of Commerce, Washington, D.C.

Thomas, P. D., (1970), Spheroidal Geodesics, Reference Systems, 63 Local Geometry. SP138 U.S. Naval Oceanographic Office, Washington, D.C.

Vincenty, T., (1975), 'Direct and inverse solutions on the ellipsoid with application of nested equations', Survey Review, Vol. 23, No. 176, pp. 88-93.

Vincenty, T., (1976), 'Correspondence: solutions of geodesics', Survey Review, Vol. 23, No. 180, p. 294.

GEODESICS ON AN ELLIPSOID - PITTMAN'S METHOD

R.E. Deakin and M.N. Hunter
School of Mathematical and Geospatial Sciences, RMIT University
GPO Box 2476V, MELBOURNE, VIC 3001
Email: rod.deakin@rmit.edu.au
Presented at the Spatial Sciences Institute Biennial International Conference (SSC2007), Hobart, Tasmania, 14-18 May 2007.

Abstract

The direct and inverse problems of the geodesic on an ellipsoid are fundamental geodetic operations. This paper presents a detailed derivation of a set of recurrence relationships that can be used to obtain solutions to the direct and inverse problems with sub-millimetre accuracies for any length of line anywhere on an ellipsoid. These recurrence relationships were first described by Pittman (1986), but since then, little or nothing about them has appeared in the geodetic literature. This is unusual for such an elegant technique and it is hoped that this paper can redress this situation. Pittman's method has much to recommend it.

BIOGRAPHIES OF PRESENTERS

Rod Deakin and Max Hunter are lecturers in the School of Mathematical and Geospatial Sciences, RMIT University; Rod is a surveyor and Max is a mathematician, and both have extensive experience teaching undergraduate students.

INTRODUCTION

Twenty-one years ago (March 1986), Michael E. Pittman, an assistant professor of mathematical physics with the Department of Physics, University of New Orleans, Louisiana USA, published a paper titled 'Precision Direct and Inverse Solutions of the Geodesic' in Surveying and Mapping (the journal of the American Congress on Surveying \& Mapping, now called Surveying and Land Information Systems). It was probably an unusual event - a physicist writing a technical article on geodetic computation - but even more unusual was Pittman's method; or as he put it in his paper, "The following method is rather different." And it certainly is.

Usual approaches could be roughly divided into two groups: (i) numerical integration schemes and (ii) series expansion of elliptic integrals. The first group could be further divided into integration schemes based on simple differential relationships of the ellipsoid (e.g., Kivioja 1971, Jank \& Kivioja 1980, Thomas \& Featherstone 2005), or numerical integration of elliptic integrals that are usually functions of elements of the ellipsoid and an auxiliary sphere (e.g., Saito 1970, 1979 and Sjöberg 2006). The second group includes the original method of F. W. Bessel (1826) that used an auxiliary sphere and various modifications to his method (e.g., Rainsford 1955, Vincenty 1975, 1976 and Bowring 1983, 1984).

Pittman developed simple recurrence relationships for the evaluation of elliptic integrals that yield distance and longitude difference between a point on a geodesic and the geodesic vertex. These equations can then be used to solve the direct and inverse problems. Pittman's technique is not limited by distance, does not involve any auxiliary surfaces, does not use arbitrarily truncated series and its accuracy is limited only by capacity of the computer used.

Pittman's paper was eight pages long and five of those contained a FORTRAN computer program. In the remaining three pages he presented a very concise development of two recurrence relationships and how they can be used to solve the direct and inverse problems of the geodesic on an ellipsoid (more about this later). His paper, a masterpiece of brevity, contained a single reference and an acknowledgement to Clifford J. Mugnier - then a lecturer in the Department of Civil Engineering, University of New Orleans - for numerous discussions. Unlike other published methods which have been discussed and developed in detail over the years, Pittman's method seems to have received no further treatment to our knowledge in the academic literature, excepting brief mentions in bibliographies and reference lists. Our purpose, in this paper, is to explain Pittman's elegant method as well as provide some useful information about the properties of the geodesic on an ellipsoid.

The Direct and Inverse problems of the geodesic on an ellipsoid

In geodesy, the geodesic is a unique curve on the surface of an ellipsoid defining the shortest distance between two points. A geodesic will cut meridians of an ellipsoid at angles α, known as azimuths and measured clockwise from north 0° to 360°. Figure 1 shows a geodesic curve C between two points $A\left(\phi_{A}, \lambda_{A}\right)$ and $B\left(\phi_{B}, \lambda_{B}\right)$ on an ellipsoid. ϕ, λ are geodetic latitude and longitude respectively and an ellipsoid is taken to mean a surface of revolution created by rotating an ellipse about its minor axis, NS.

Fig. 1: Geodesic curve on an ellipsoid

The geodesic curve C of length s from A to B has a forward azimuth $\alpha_{A B}$ measured at A and a reverse azimuth $\alpha_{B A}$ measured at B and $\alpha_{A B} \neq \alpha_{B A}$. The direct problem on an ellipsoid is: given latitude and longitude of A and azimuth $\alpha_{A B}$ and geodesic distance s, compute the latitude and longitude of B and the reverse azimuth $\alpha_{B A}$. The inverse problem is: given the latitudes and longitudes of A and B, compute the forward and reverse azimuths $\alpha_{A B}, \alpha_{B A}$ and the geodesic distance s.

The geodesic is one of several curves of interest in geodesy. Other curves are: (i) normal section curves that are plane curves containing the normal at one of the terminal points; in Figure 1 there would be two normal section curves joining A and B and both would be of different lengths and also, both longer than the geodesic; (ii) curve of alignment that is the locus of all points P_{k} where the normal section plane through P_{k} contains the terminal points of the line; and (iii) great elliptic arcs that are plane curves containing the terminal points of the line and the centre of the ellipsoid. Normal section curves, curves of alignment and great elliptic arcs are all longer than the geodesic and Bowring (1972) gives equations for the differences in length between these curves and the geodesic.

Some ellipsoid relationships

The size and shape of an ellipsoid is defined by one of three pairs of parameters: (i) a, b where a and b are the semi-major and semi-minor axes lengths of an ellipsoid respectively, or (ii) a, f where f is the flattening of an ellipsoid, or (iii) a, e^{2} where e^{2} is the square of the first eccentricity of an ellipsoid. The ellipsoid parameters a, b, f, e^{2} are related by the following equations

$$
\begin{equation*}
f=\frac{a-b}{a}=1-\frac{b}{a} ; \quad b=a(1-f) ; \quad e^{2}=\frac{a^{2}-b^{2}}{a^{2}}=1-\frac{b^{2}}{a^{2}}=f(2-f) \tag{1}
\end{equation*}
$$

The second eccentricity e^{\prime} of an ellipsoid is also of use and

$$
\begin{equation*}
\left(e^{\prime}\right)^{2}=\frac{a^{2}-b^{2}}{b^{2}}=\frac{e^{2}}{1-e^{2}}=\frac{f(2-f)}{(1-f)^{2}} \tag{2}
\end{equation*}
$$

In Figure 1, the normals to the surface at A and B intersect the rotational axis of the ellipsoid (NS line) at H_{A} and H_{B} making angles ϕ_{A}, ϕ_{B} with the equatorial plane of the ellipsoid. These are the latitudes of A and B respectively. The longitudes λ_{A}, λ_{B} are the angles between the Greenwich meridian plane and the meridian planes $O N A H_{A}$ and ONBH_{B} containing the normals through A and $B . \phi$ and λ are curvilinear coordinates and meridians of longitude (curves of constant λ) and parallels of latitude (curves of constant ϕ) are parametric curves on the ellipsoidal surface. Planes containing the normal to the ellipsoid intersect the surface creating elliptical sections known as normal sections. Amongst the infinite number of possible normal sections at a point, each having a certain radius of curvature, two are of interest: (i) the meridian section, containing the axis of revolution of the ellipsoid and having the least radius of curvature, denoted by ρ (rho), and (ii) the prime vertical section, perpendicular to the meridian plane and having the greatest radius of curvature, denoted by v (nu).

$$
\begin{equation*}
\rho=\frac{a\left(1-e^{2}\right)}{\left(1-e^{2} \sin ^{2} \phi\right)^{\frac{3}{2}}} \quad \text { and } \quad v=\frac{a}{\left(1-e^{2} \sin ^{2} \phi\right)^{\frac{1}{2}}} \tag{3}
\end{equation*}
$$

In the development that follows, use will be made of relationships that can be obtained from the differential rectangle on the ellipsoid shown in Figure 2. Here P and Q are two points on the surface connected by a curve of length $d s$ with azimuth α at P. The meridians λ and $\lambda+d \lambda$, and parallels ϕ and $\phi+d \phi$ form a differential rectangle on the surface of the ellipsoid.

From Figure 2 the following relationships can be obtained

Fig. 2: Differential rectangle on ellipsoid

$$
\begin{equation*}
d s \sin \alpha=v \cos \phi d \lambda \text { and } d s \cos \alpha=\rho d \phi \tag{4}
\end{equation*}
$$

Mathematical definition of a geodesic

A curve drawn on a surface so that its osculating plane at any point on the surface contains the normal to the surface is a geodesic (Lauf 1983). This definition, including a definition of the osculating plane, can be explained briefly by the following.

A point P on a curve (on a surface) has a position vector $\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}$ where $\mathbf{i}, \mathbf{j}, \mathbf{k}$ are unit vectors in the directions of the x, y, z Cartesian coordinate axes and t is some scalar parameter. As t varies then the vector \mathbf{r} sweeps out the curve C on the surface, hence the distance s along the curve is a function of t, given via $\frac{d s}{d t}=\frac{d}{d t} \mathbf{r}(t)$. Differentiating the vector \mathbf{r} with respect to s gives a unit tangent vector \mathbf{t} and differentiating \mathbf{t} with respect to s gives the curvature vector $\kappa \mathbf{n}$, perpendicular to \mathbf{t}. \mathbf{n} is the principal normal vector, κ (kappa) is the curvature and $\rho=\frac{1}{\kappa}$ is the radius of curvature and also the radius of the osculating (kissing) circle touching P.

The osculating plane at P contains both \mathbf{t} and \mathbf{n} (and the osculating circle), and when this plane also contains the normal to the surface then the curvature κ is least and ρ is a maximum; this is Meunier's theorem (Lauf 1983), a fundamental theorem of surfaces. Therefore, if P and Q are very close and both lie on the surface and in the osculating plane, then the distance $d s$ between them is the shortest possible distance on the suface.

The characteristic equation of a geodesic

The mathematical definition of a geodesic does little to help us develop solutions to the problem of computing distances of geodesics on an ellipsoid. It does lead to the characteristic equation of a geodesic, and this equation is the basis of all solutions to computing geodesic distances. This equation

$$
\begin{equation*}
v \cos \phi \sin \alpha=\text { constant } \tag{5}
\end{equation*}
$$

is known as Clairaut's equation in honour of the French mathematical physicist AlexisClaude Clairaut (1713-1765). In a paper in 1733 titled Determination géométric de la perpendicular à la méridienne tracée par M. Cassini, ... Clairaut made an elegant study of the geodesics of surfaces of revolution and stated his theorem embodied in the equation above (Struik 1933). His paper also included the property already pointed out by Johann Bernoulli (1667-1748): the osculating plane of the geodesic is normal to the surface (DSB 1971)

The characteristic equation of a geodesic shows that the geodesic on the ellipsoid has the intrinsic property that at any point, the product of the radius $r=v \cos \phi$ of the parallel of latitude and the sine of the azimuth, $\sin \alpha$, of the geodesic at that point is a constant. This means that as r decreases in higher latitudes, in both the northern and southern hemispheres, $\sin \alpha$ changes until it reaches a maximum or minimum of ± 1. Such a point is known as a vertex and the latitude ϕ will take maximum value ϕ_{0}.

Fig. 3: Schematic diagram of the oscillation of a geodesic on an ellipsoid
Thus the geodesic oscillates over the surface of the ellipsoid between two parallels of latitude having a maximum in the Northern and Southern Hemispheres and crossing the equator at nodes. As we will demonstrate later, due to the eccentricity of the ellipsoid, the geodesic will not repeat after a complete revolution.

Figure 3 shows a schematic diagram of the oscillation of a geodesic on an ellipsoid. P is a point on a geodesic that crosses the equator at A, heading in a northeasterly direction reaching a maximum northerly latitude $\phi_{\max }$ at the vertex P_{0} (north), then descends in a south-easterly direction crossing the equator at B, reaching a maximum southerly latitude $\phi_{\min }$ at P_{0} (south), then ascends in a north-easterly direction crossing the equator again at A^{\prime}. This is one complete revolution of the geodesic, but $\lambda_{A^{\prime}}$ does not equal λ_{A} due to the eccentricity of the ellipsoid. Hence we say that the geodesic curve does not repeat after a complete revolution.

EQUATIONS FOR COMPUTATION ALONG GEODESICS

Using Clairaut's equation and simple differential relationships, expressions for distances s and longitude differences $\Delta \lambda$ (see Figure 3) between P on a geodesic and the vertex P_{0} can be obtained. These expressions are in the form of elliptic integrals, which by their nature do not have exact (or closed) solutions.

Expanding the integrands into infinite series, integrating term-by-term and then truncating to a finite number of terms is the usual technique to obtain working solutions for s and $\Delta \lambda$ (e.g., Thomas 1970). In this section, we show how this method can be simplified by using recurrence relationships to generate solutions to the integrals in the series. Our relationships are slightly different from Pittman (1986) and our notation is a little different but in all other respects, we have followed his elegant approach.

Relationships between parametric latitude $\boldsymbol{\psi}$ and geodetic latitude $\boldsymbol{\Phi}$

Development of formulae is simplified if parametric latitude ψ is used rather than geodetic latitude ϕ. The connections between the two latitudes can be obtained from the following relationships.

Figure 4 shows a portion of a meridian NPE of an ellipsoid having semi-major axis $O E=a$ and semi-minor axis $O N=b . \quad P$ is a point on the ellipsoid and Q is a point on an auxiliary circle centred on O of radius $a . P$ and Q have the same perpendicular distance from the axis of revolution $O N$. The normal to the ellipsoid at P cuts the major axis at an angle ϕ (the geodetic latitude) and intersects the rotational axis at H and the distance $P H=v$. The angle $Q O E=\psi$ is the parametric latitude.

The Cartesian equation of the ellipse is $\frac{w^{2}}{a^{2}}+\frac{z^{2}}{b^{2}}=1$ and the Cartesian equation of the auxiliary circle is $w^{2}+z^{2}=a^{2}$. We may re-

Fig. 4: Meridian section of ellipsoid arrange both equations so that w^{2} is on the left-hand side of the equals sign giving $w^{2}=a^{2}-\frac{a^{2}}{b^{2}} z^{2}$ (ellipse) and $w^{2}=a^{2}-z^{2}$ (circle). Now, since the w-coordinates of P and Q are the same then $a^{2}-\frac{a^{2}}{b^{2}} z_{P}^{2}=a^{2}-z_{Q}^{2}$ which leads to $z_{P}=\frac{b}{a} z_{Q}$.

Using this relationship

$$
\begin{equation*}
w=O M=a \cos \psi \quad \text { and } \quad z=M P=b \sin \psi \tag{6}
\end{equation*}
$$

and differentiating equations (6) with respect to ψ gives $\frac{d w}{d \psi}=-a \sin \psi, \frac{d z}{d \psi}=b \cos \psi$ and the chain rule gives $\frac{d z}{d w}=\frac{d z}{d \psi} \frac{d \psi}{d w}=-\frac{b}{a} \cot \psi$.

Now by definition, $\frac{d z}{d w}$ is the gradient of the tangent and from Figure 4 we may write $\frac{d z}{d w}=-\tan \left(90^{\circ}-\phi\right)=-\cot \phi$. Equating the two expressions for $d z / d w$ gives a relationship between ψ and ϕ as

$$
\begin{equation*}
\tan \psi=\frac{b}{a} \tan \phi=(1-f) \tan \phi \tag{7}
\end{equation*}
$$

From equation (6) and Figure 4, w=acos $\psi=v \cos \phi$ and using equation (3) gives

$$
\begin{equation*}
\cos \psi=\frac{\cos \phi}{\left(1-e^{2} \sin ^{2} \phi\right)^{1 / 2}} \tag{8}
\end{equation*}
$$

Alternatively, using the trigonometric identity $\sin ^{2} A+\cos ^{2} A=1$, equation (8) can be written as

$$
\begin{equation*}
\sin \phi=\frac{\sin \psi}{\left(1-e^{2} \cos ^{2} \psi\right)^{1 / 2}} \tag{9}
\end{equation*}
$$

The latitudes Φ_{0} and Ψ_{0} of the geodesic vertex

Denoting the latitude of the vertex as ϕ_{0} (a maximum), Clairaut's equation (5) gives

$$
\begin{equation*}
v_{0} \cos \phi_{0}=\text { constant }=v \cos \phi \sin \alpha \tag{10}
\end{equation*}
$$

Denoting the parametric latitude of the vertex as ψ_{0} and using $a \cos \psi=v \cos \phi$ from before, equation (10) becomes $a \cos \psi_{0}=a \cos \psi \sin \alpha$ and ψ_{0} is defined as

$$
\begin{equation*}
\cos \psi_{0}=\cos \psi \sin \alpha \tag{11}
\end{equation*}
$$

Squaring both sides of equation (11) and using again the identity $\sin ^{2} A+\cos ^{2} A=1$ we can obtain the azimuth α of a geodesic as

$$
\begin{equation*}
\cos \alpha=\frac{\sqrt{\cos ^{2} \psi-\cos ^{2} \psi_{0}}}{\cos \psi} \tag{12}
\end{equation*}
$$

From equation (11) we see that if the azimuth α of a geodesic is known at P having parametric latitude ψ, the parametric latitude ψ_{0} of the vertex P_{0} can be computed. Conversely, given ψ and ψ_{0} of points P and P_{0} the azimuth of the geodesic between them may be computed from equation (12).
In the following sections, two differential equations; one for $\frac{d s}{d \psi}$ and the other for $\frac{d \lambda}{d \psi}$, will be developed that will enable solutions for the geodesic distance s and the longitude difference $\Delta \lambda$ between P and the vertex P_{0}.

Differential equations for distance $\frac{d s}{d \psi}$ and longitude difference $\frac{d \lambda}{d \psi}$
From equation (9) we may write $\sin ^{2} \psi=\left(1-e^{2} \cos ^{2} \psi\right) \sin ^{2} \phi$ and differentiating implicitly and re-arranging gives

$$
\begin{equation*}
\frac{d \phi}{d \psi}=\frac{\left(1-e^{2} \sin ^{2} \phi\right) \sin \psi \cos \psi}{\left(1-e^{2} \cos ^{2} \psi\right) \sin \phi \cos \phi} \tag{13}
\end{equation*}
$$

Using the chain rule and equation (4) gives an expression for the derivative $\frac{d s}{d \psi}$ as

$$
\begin{equation*}
\frac{d s}{d \psi}=\frac{d s}{d \phi} \frac{d \phi}{d \psi}=\frac{\rho}{\cos \alpha} \frac{\left(1-e^{2} \sin ^{2} \phi\right) \sin \psi \cos \psi}{\left(1-e^{2} \cos ^{2} \psi\right) \sin \phi \cos \phi} \tag{14}
\end{equation*}
$$

Using equations (7), (8), (9) and the fact that $1-e^{2}=\frac{b^{2}}{a^{2}}$, we may write

$$
\begin{equation*}
\frac{d s}{d \psi}=a \cos \psi \frac{\left(1-e^{2} \cos ^{2} \psi\right)^{1 / 2}}{\left(\cos ^{2} \psi-\cos ^{2} \psi_{0}\right)^{1 / 2}} \tag{15}
\end{equation*}
$$

Similarly, the chain rule and equations (4) and (15) gives

$$
\begin{equation*}
\frac{d \lambda}{d \psi}=\frac{d \lambda}{d s} \frac{d s}{d \psi}=\frac{\sin \alpha}{v \cos \phi} a \cos \psi \frac{\left(1-e^{2} \cos ^{2} \psi\right)^{1 / 2}}{\left(\cos ^{2} \psi-\cos ^{2} \psi_{0}\right)^{1 / 2}} \tag{16}
\end{equation*}
$$

Using equation (10) and the relationship $a \cos \psi=v \cos \phi$, we may write

$$
\begin{equation*}
\frac{d \lambda}{d \psi}=\frac{\cos \psi_{0}}{\cos \psi} \frac{\left(1-e^{2} \cos ^{2} \psi\right)^{1 / 2}}{\left(\cos ^{2} \psi-\cos ^{2} \psi_{0}\right)^{1 / 2}} \tag{17}
\end{equation*}
$$

Equations (15) and (17) are the basic differential equations that will yield solutions for distance s and longitude difference $\Delta \lambda$ along the geodesic curve between P and the vertex P_{0}.

Formula for computing geodesic distance \boldsymbol{s} between P and the vertex P_{0}

Equation (15) can be simplified by letting $u=\sin \psi$ and $u_{0}=\sin \psi_{0}$, so that $\frac{d u}{d \psi}=\cos \psi$ and $\cos ^{2} \psi-\cos ^{2} \psi_{0}=u_{0}^{2}-u^{2}$, hence

$$
\begin{equation*}
\frac{d s}{d \psi}=a \frac{d u}{d \psi} \frac{\left(1-e^{2} \cos ^{2} \psi\right)^{1 / 2}}{\left(u_{0}^{2}-u^{2}\right)^{1 / 2}} \tag{18}
\end{equation*}
$$

The chain rule gives $\frac{d s}{d u}=\frac{d s}{d \psi} / \frac{d u}{d \psi}=\frac{a\left(1-e^{2} \cos ^{2} \psi\right)^{1 / 2}}{\left(u_{0}^{2}-u^{2}\right)^{1 / 2}}$ but using $\cos ^{2} \psi=1-\sin ^{2} \psi$ and equations (1) and (2) we are able to obtain, after some manipulation

$$
\begin{equation*}
\frac{d s}{d u}=\frac{b\left(1+\varepsilon u^{2}\right)^{1 / 2}}{\left(u_{0}^{2}-u^{2}\right)^{1 / 2}} \tag{19}
\end{equation*}
$$

where $\varepsilon=\left(e^{\prime}\right)^{2}$. The geodesic distance s between P and the vertex P_{0} is given by

$$
\begin{equation*}
s=b \int_{p=u}^{p=u_{0}} \frac{\left(1+\varepsilon p^{2}\right)^{1 / 2}}{\left(u_{0}^{2}-p^{2}\right)^{1 / 2}} d p \tag{20}
\end{equation*}
$$

where $\sin \psi \leq p \leq \sin \psi_{0}$. Equation (20) can be simplified by use of the binomial series and the numerator of the integrand is given by

$$
\begin{equation*}
\left(1+\varepsilon p^{2}\right)^{1 / 2}=\sum_{n=0}^{\infty} B_{n}^{\frac{1}{2}}\left(\varepsilon p^{2}\right)^{n} \tag{21}
\end{equation*}
$$

where $B_{n}^{\frac{1}{2}}$ are binomial coefficients computed from the recurrence relationship

$$
\begin{equation*}
B_{n}^{\frac{1}{2}}=\frac{3-2 n}{2 n} B_{n-1}^{\frac{1}{2}}, \quad n \geq 1 \text { and } B_{0}^{\frac{1}{2}}=1 \tag{22}
\end{equation*}
$$

Equation (20) can now be written as

$$
\begin{equation*}
s=b \int_{u}^{u_{0}} \frac{1}{\left(u_{0}^{2}-p^{2}\right)^{1 / 2}} \sum_{n=0}^{\infty} B_{n}^{\frac{1}{2}} \varepsilon^{n} p^{2 n} d p=b \sum_{n=0}^{\infty} B_{n}^{\frac{1}{2}} \varepsilon^{n} \int_{u}^{u_{0}} \frac{p^{2 n}}{\left(u_{0}^{2}-p^{2}\right)^{1 / 2}} d p=b \sum_{n=0}^{\infty} \varepsilon^{n} B_{n}^{\frac{1}{2}} I_{n} \tag{23}
\end{equation*}
$$

where

$$
\begin{equation*}
I_{n}=\int_{u}^{u_{0}} \frac{p^{2 n}}{\left(u_{0}^{2}-p^{2}\right)^{1 / 2}} d p \text {, for } n \geq 0 \tag{24}
\end{equation*}
$$

The solution of the integral I_{n} is fundamental to the computation of the distance s along the geodesic between P and P_{0}, and the usual technique is to find solutions for each integral I_{n} and expand equation (23) into a finite series; e.g. Thomas (1970, pp. 33-34). Pittman's (1986) approach, outlined below, was to developed the integral I_{n} as a recurrence equation having the general form $I_{n}=a_{n-1}+b_{n-1} I_{n-1}$ where the coefficients a_{n-1} and b_{n-1} are functions of n, ψ and ψ_{0} and an initial value of I_{0} is a function of ψ and ψ_{0} only.

$$
\text { Now } \quad I_{n}=\int_{u}^{u_{0}} \frac{p^{2 n}}{\left(u_{0}^{2}-p^{2}\right)^{1 / 2}} d p=-\int_{u}^{u_{0}} p^{2 n-1} \frac{-p}{\left(u_{0}^{2}-p^{2}\right)^{1 / 2}} d p=-\int_{u}^{u_{0}} p^{2 n-1} \frac{d}{d p}\left(u_{0}^{2}-p^{2}\right)^{1 / 2} d p
$$

and using integration by parts (e.g., Ayres 1972) the integral I_{n} becomes

$$
\begin{align*}
I_{n} & =-\left[p^{2 n-1}\left(u_{0}^{2}-p^{2}\right)^{1 / 2}-\int\left(u_{0}^{2}-p^{2}\right)^{1 / 2}(2 n-1) p^{2 n-2} d p\right]_{p=u}^{p=u_{0}} \\
& =u^{2 n-1}\left(u_{0}^{2}-u^{2}\right)^{1 / 2}+(2 n-1) \int_{u}^{u_{0}}\left(u_{0}^{2}-p^{2}\right) \frac{p^{2 n-2}}{\left(u_{0}^{2}-p^{2}\right)^{1 / 2}} d p \\
& =u^{2 n-1}\left(u_{0}^{2}-u^{2}\right)^{1 / 2}+(2 n-1)\left[u_{0}^{2} I_{n-1}-I_{n}\right] \tag{25}
\end{align*}
$$

and

$$
\begin{equation*}
2 n I_{n}=u^{2 n-1}\left(u_{0}^{2}-u^{2}\right)^{1 / 2}+(2 n-1) u_{0}^{2} I_{n-1} \quad \text { for } n=1,2,3, \ldots \tag{26}
\end{equation*}
$$

Let $U=\frac{u}{u_{0}}$ so that $u=U u_{0}, u_{0}^{2}-u^{2}=u_{0}^{2}\left(1-U^{2}\right)$ giving

$$
\begin{equation*}
2 n I_{n}=\left(U u_{0}\right)^{2 n-1} u_{0}\left(1-U^{2}\right)^{1 / 2}+(2 n-1) u_{0}^{2} I_{n-1} \quad \text { for } n=1,2,3, \ldots \tag{27}
\end{equation*}
$$

Let $J_{n}=\frac{2 n I_{n}}{u_{0}^{2 n}}$ so that $J_{n-1}=\frac{2(n-1) u_{0}^{2}}{u_{0}^{2 n}} I_{n-1}$ and the recurrence formula for I_{n} becomes a simpler recurrence formula for J_{n}

$$
\begin{equation*}
J_{n}=U^{2 n-1} \sqrt{1-U^{2}}+\frac{2 n-1}{2(n-1)} J_{n-1} \quad \text { for } n=2,3, \ldots \tag{28}
\end{equation*}
$$

with initial condition

$$
\begin{equation*}
J_{1}=\frac{2 I_{1}}{u_{0}^{2}}=U \sqrt{1-U^{2}}+I_{0} \tag{29}
\end{equation*}
$$

I_{0} has a simple result derived from equation (24) as follows:

$$
\begin{equation*}
I_{0}=\left(1 / u_{0}\right) \int_{u}^{u_{0}}\left(1-\left[p / u_{0}\right]^{2}\right)^{-1 / 2} d p \tag{30}
\end{equation*}
$$

and with the transformation $p=u_{0} \cos \theta, d p / d \theta=-u_{0} \sin \theta$ and $1-\left[p / u_{0}\right]^{2}=1-\cos ^{2} \theta$

$$
\begin{equation*}
I_{0}=\int_{\theta=\arccos \left(\frac{u}{u_{0}}\right)}^{0}(-1) d \theta=\arccos \left(\frac{u}{u_{0}}\right)=\arccos U \tag{31}
\end{equation*}
$$

Using these results, the distance s along the geodesic between P and the vertex P_{0} is

$$
\begin{align*}
s & =b\left\{I_{0}+\frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n} \varepsilon^{n} u_{0}^{2 n} B_{n}^{\frac{1}{2}} J_{n}\right\} \\
& =b I_{0}+\frac{b}{2} \varepsilon u_{0}^{2} B_{1}^{\frac{1}{2}} J_{1}+\frac{b}{4} \varepsilon^{2} u_{0}^{4} B_{2}^{\frac{1}{2}} J_{2}+\frac{b}{6} \varepsilon^{3} u_{0}^{6} B_{3}^{\frac{1}{2}} J_{3}+\cdots \\
& =D_{0}+D_{1}+D_{2}+D_{3}+\cdots \tag{32}
\end{align*}
$$

Formula for computing difference in longitude $\Delta \lambda$ between P and P_{0}

Using the binomial series we may write equation (17) as

$$
\begin{equation*}
\frac{d \lambda}{d \psi}=\cos \psi_{0} \sum_{n=0}^{\infty}(-1)^{n} e^{2 n} B_{n}^{\frac{1}{2}} \frac{\cos ^{2 n-1} \psi}{\left(\cos ^{2} \psi-\cos ^{2} \psi_{0}\right)^{1 / 2}} \tag{33}
\end{equation*}
$$

and the difference in longitude between P and the vertex P_{0} is

$$
\begin{equation*}
\Delta \lambda=\int_{\theta=\psi}^{\psi_{0}} \frac{d \lambda}{d \theta} d \theta=\cos \psi_{0} \sum_{n=0}^{\infty}(-1)^{n} e^{2 n} B_{n}^{\frac{1}{2}} L_{n} \tag{34}
\end{equation*}
$$

where the integral L_{n} is

$$
\begin{equation*}
L_{n}=\int_{\theta=\psi}^{\psi_{0}} \frac{\cos ^{2 n} \theta}{\cos \theta\left(\cos ^{2} \theta-\cos ^{2} \psi_{0}\right)^{1 / 2}} d \theta, \quad n \geq 0 \tag{35}
\end{equation*}
$$

Again, let $u=\sin \psi, u_{0}=\sin \psi_{0}$ and put $p=\sin \theta$. Then $d \theta / d p=\sec \theta$, $\cos ^{2} \theta=1-p^{2}$, and with

$$
\frac{\cos ^{2 n} \theta}{\cos \theta} d \theta=\frac{\left(\cos ^{2} \theta\right)^{n}}{\cos ^{2} \theta} \cos \theta d \theta=\frac{\left(1-p^{2}\right)^{n}}{1-p^{2}} d p=\left(1-p^{2}\right)^{n-1} d p
$$

and

$$
\left(\cos ^{2} \theta-\cos ^{2} \psi_{0}\right)^{1 / 2}=\left(1-\sin ^{2} \theta-\left(1-\sin ^{2} \psi_{0}\right)\right)^{1 / 2}=\left(u_{0}^{2}-p^{2}\right)^{1 / 2}
$$

giving

$$
\begin{equation*}
L_{n}=\int_{u}^{u_{0}} \frac{\left(1-p^{2}\right)^{n-1}}{\left(u_{0}^{2}-p^{2}\right)^{1 / 2}} d p, \quad n \geq 1 \tag{36}
\end{equation*}
$$

Using the binomial series, the numerator of the integrand can be expanded into a polynomial $\left(1-p^{2}\right)^{n-1}=\sum_{m=0}^{n-1}(-1)^{m} B_{m}^{n-1} p^{2 m}$, where the binomial coefficients B_{m}^{n-1} are given by

$$
\begin{equation*}
B_{m}^{n-1}=\frac{n-m}{m} B_{m-1}^{n-1} \quad \text { for } m=2,3,4, \ldots \tag{37}
\end{equation*}
$$

with an initial value $B_{1}^{n-1}=n-1$ and noting that $B_{0}^{n-1}=1$.
Using these results, equation (36) becomes

$$
\begin{equation*}
L_{n}=\sum_{m=0}^{n-1}(-1)^{m} B_{m}^{n-1} \int_{u}^{u_{0}} \frac{p^{2 m}}{\left(u_{0}^{2}-p^{2}\right)^{1 / 2}} d p=\sum_{m=0}^{n-1}(-1)^{m} B_{m}^{n-1} I_{m} \tag{38}
\end{equation*}
$$

where

$$
\begin{equation*}
I_{m}=\int_{u}^{u_{0}} \frac{p^{2 m}}{\left(u_{0}^{2}-p^{2}\right)^{1 / 2}} d p, \text { for } m \geq 0 \tag{39}
\end{equation*}
$$

and equation (39) is the same as equation (24) except for a change of index variable.
Using this similarity and the expressions above, the longitude difference given by equation (34) can be expressed as

$$
\begin{equation*}
\Delta \lambda=\cos \psi_{0}\left\{L_{0}+\sum_{n=1}^{\infty}(-1)^{n} e^{2 n} B_{n}^{\frac{1}{2}} \sum_{m=0}^{n-1}(-1)^{m} B_{m}^{n-1} I_{m}\right\} \tag{40}
\end{equation*}
$$

Equation (40) can expanded as

$$
\begin{align*}
\Delta \lambda=\cos \psi_{0}\left\{L_{0}\right. & +\left[-e^{2} B_{1}^{\frac{1}{2}}+\sum_{n=2}^{\infty}(-1)^{n} e^{2 n} B_{n}^{\frac{1}{2}}\right] I_{0} \tag{41}\\
& \left.+\sum_{n=2}^{\infty}(-1)^{n} e^{2 n} B_{n}^{\frac{1}{2}} \sum_{m=1}^{n-1}(-1)^{m} B_{m}^{n-1} I_{m}\right\}
\end{align*}
$$

and then simplified by use of the binomial series, where

$$
\begin{equation*}
\left(1-e^{2}\right)^{1 / 2}=\sum_{n=0}^{\infty}(-1)^{n} e^{2 n} B_{n}^{\frac{1}{2}}=1+\sum_{n=1}^{\infty}(-1)^{n} e^{2 n} B_{n}^{\frac{1}{2}}=1-e^{2} B_{1}^{\frac{1}{2}}+\sum_{n=2}^{\infty}(-1)^{n} e^{2 n} B_{n}^{\frac{1}{2}} \tag{42}
\end{equation*}
$$

The terms in [..] of equation (41) are the last two terms on the right-hand side of equation (42) and using this equivalence gives

$$
\begin{align*}
\Delta \lambda & =\cos \psi_{0}\left\{L_{0}+\left(\sqrt{1-e^{2}}-1\right) I_{0}+\sum_{n=2}^{\infty}(-1)^{n} e^{2 n} B_{n}^{\frac{1}{2}} \sum_{m=1}^{n-1}(-1)^{m} B_{m}^{n-1} I_{m}\right\} \\
& =\cos \psi_{0}\left\{L_{0}+\left(\sqrt{1-e^{2}}-1\right) I_{0}+\frac{1}{2} \sum_{n=2}^{\infty}(-1)^{n} e^{2 n} B_{n}^{\frac{1}{2}} \sum_{m=1}^{n-1} \frac{(-1)^{m}}{m} u_{0}^{2 m} B_{m}^{n-1} J_{m}\right\} \tag{43}
\end{align*}
$$

where I_{0} is obtained from equation (31) and J_{m} are given by equation (28), noting that as before $J_{m}=\frac{2 m}{u_{0}^{2 m}} I_{m}$.

A simple expression for L_{0} is obtained from equation (35) as follows

$$
\begin{equation*}
L_{0}=\int_{\theta=\psi}^{\psi_{0}} \frac{1}{\cos \theta\left(\cos ^{2} \theta-\cos ^{2} \psi_{0}\right)^{1 / 2}} d \theta=\int_{\theta=\psi}^{\psi_{0}} \frac{\sec ^{2} \theta}{\left(\sin ^{2} \psi_{0}-\tan ^{2} \theta \cos ^{2} \psi_{0}\right)^{1 / 2}} d \theta \tag{44}
\end{equation*}
$$

Putting $x=\cot \psi_{0} \tan \theta$ then $d \theta / d x=\tan \psi_{0} \cos ^{2} \theta$ and

$$
\begin{aligned}
\sin ^{2} \psi_{0}-\tan ^{2} \theta \cos ^{2} \psi_{0} & =\sin ^{2} \psi_{0}\left(1-\tan ^{2} \theta \frac{\cos ^{2} \psi_{0}}{\sin ^{2} \psi_{0}}\right) \\
& =\sin ^{2} \psi_{0}\left(1-\tan ^{2} \theta \cot ^{2} \psi_{0}\right) \\
& =\sin ^{2} \psi_{0}\left(1-x^{2}\right)
\end{aligned}
$$

so that

$$
\begin{equation*}
L_{0}=\frac{\tan \psi_{0}}{\sin \psi_{0}} \int_{\substack{x=\tan \psi \\ \tan \psi_{0}}}^{1} \frac{d x}{\sqrt{1-x^{2}}} \tag{45}
\end{equation*}
$$

since $\int \frac{d x}{\sqrt{1-x^{2}}}=\left\{\begin{array}{r}\arcsin x \\ \frac{\pi}{2}-\arccos x\end{array}\right.$, then using the second result gives

$$
\begin{equation*}
L_{0}=\sec \psi_{0} \int_{\substack{x=\tan \psi \\ \tan \psi_{0}}}^{1} \frac{d x}{\sqrt{1-x^{2}}}=\sec \psi_{0} \arccos \left(\frac{\tan \psi}{\tan \psi_{0}}\right) \tag{46}
\end{equation*}
$$

Equation (40) can be simplified further to give the longitude difference $\Delta \lambda$ between P and the vertex P_{0} as

$$
\begin{equation*}
\Delta \lambda=\cos \psi_{0}\left\{M_{0}+M_{1}+M_{2}+M_{3}+\cdots\right\} \tag{47}
\end{equation*}
$$

where
and

$$
\begin{align*}
& M_{n}= \begin{cases}L_{0} & \text { for } n=0 \\
\left(\sqrt{1-e^{2}}-1\right) I_{0} & \text { for } n=1 \\
\frac{1}{2} B_{n}^{\frac{1}{2}}(-1)^{n} e^{2 n} K_{n} & \text { for } n \geq 2\end{cases} \\
& K_{n}=\sum_{m=1}^{n-1} \frac{(-1)^{m}}{m} u_{0}^{2 m} B_{m}^{n-1} J_{m} \quad \text { for } n=2,3,4, \ldots \tag{49}
\end{align*}
$$

A GEODESIC ON AN ELLIPSOID DOES NOT REPEAT AFTER A SINGLE REVOLUTION

Earlier, it was mentioned that due to the eccentricity of the ellipsoid, the geodesic will not repeat after a complete revolution. Here is a demonstration of that fact.
When P is at the node A of Figure 3 then $\Delta \lambda=\Delta \lambda_{4}$ and using equation (17) we have

$$
\begin{equation*}
4\left(\Delta \lambda_{4}\right)=4 \cos \psi_{0} \int_{\theta=0}^{\psi_{0}} \frac{\left(1-e^{2} \cos ^{2} \theta\right)^{1 / 2}}{\cos \theta\left(\cos ^{2} \theta-\cos ^{2} \psi_{0}\right)^{1 / 2}} d \theta \tag{50}
\end{equation*}
$$

Since this integral is difficult to evaluate, we instead determine upper and lower bounds for the quantity $4\left(\Delta \lambda_{4}\right)$ by using the bounds of the integration variable θ. This allows certain terms within the integral to be disposed of and a simplified integral evaluated.

For $0 \leq \theta \leq \psi_{0}$, the bounds on the numerator of the integrand are $\left(1-e^{2}\right)^{1 / 2} \leq\left(1-e^{2} \cos ^{2} \theta\right)^{1 / 2} \leq\left(1-e^{2} \cos ^{2} \psi_{0}\right)^{1 / 2}$ so that on the one hand

$$
\begin{align*}
4\left(\Delta \lambda_{4}\right) & \leq 4 \cos \psi_{0} \int_{\theta=0}^{\psi_{0}} \frac{\left(1-e^{2} \cos ^{2} \psi_{0}\right)^{1 / 2}}{\cos \theta\left(\cos ^{2} \theta-\cos ^{2} \psi_{0}\right)^{1 / 2}} d \theta \\
& =\left.4 \cos \psi_{0}\left(1-e^{2} \cos ^{2} \psi_{0}\right)^{1 / 2} L_{0}\right|_{\psi=0} \\
& =4 \cos \psi_{0}\left(1-e^{2} \cos ^{2} \psi_{0}\right)^{1 / 2} \frac{1}{2} \pi \sec \psi_{0} \\
& =2 \pi\left(1-e^{2} \cos ^{2} \psi_{0}\right)^{1 / 2} \tag{51}
\end{align*}
$$

while on the other hand

$$
\begin{align*}
4\left(\Delta \lambda_{4}\right) & \geq 4 \cos \psi_{0} \int_{\theta=0}^{\psi_{0}} \frac{\left(1-e^{2}\right)^{1 / 2}}{\cos \theta\left(\cos ^{2} \theta-\cos ^{2} \psi_{0}\right)^{1 / 2}} d \theta \\
& =2 \pi\left(1-e^{2}\right)^{1 / 2} \tag{52}
\end{align*}
$$

Combining these inequalities gives the bounds for the quantity $4\left(\Delta \lambda_{4}\right)$ as

$$
\begin{equation*}
2 \pi\left(1-e^{2}\right)^{1 / 2} \leq 4\left(\Delta \lambda_{4}\right) \leq 2 \pi\left(1-e^{2} \cos ^{2} \psi_{0}\right)^{1 / 2} \tag{53}
\end{equation*}
$$

Therefore, after a single revolution, $4\left(\Delta \lambda_{4}\right)<2 \pi$ when $0^{\circ}<\psi_{0}<90^{\circ}$. Note that when $\psi_{0}=0^{\circ}$ the geodesic is an arc of the equator (a circle) and when $\psi_{0}=90^{\circ}$ the geodesic is an arc of the meridian (an ellipse).

NUMERICAL RESULTS FOR DISTANCE AND LONGITUDE EQUATIONS

Equations (32) and (47) for computing distance s and longitude difference $\Delta \lambda$ between P and the vertex P_{0} are relatively simple summations of terms. To test the number of terms required for accurate answers, a geodesic was chosen with an azimuth $\alpha=43^{\circ} 12^{\prime} 36^{\prime \prime}$ at P having latitude $\phi=9^{\circ} 35^{\prime} 24^{\prime \prime}$ on the ellipsoid of the Geodetic Reference System 1980 (GRS80) (Moritz 1980), defined by $a=6378137$ metres and $f=1 / 298.257222101$.

Numerical constants for GRS80 ellipsoid and geodesic
$b=a(1-f) \quad=6356752.314140356$ metres
$\psi=\arctan [(1-f) \tan \phi]=0.166826262923$ radians
$\psi_{0}=\arccos [\cos \psi \sin \alpha]=0.829602797993$ radians
$u=\sin \psi \quad=0.166053515348 ; u_{0}=\sin \psi_{0}=0.737663250899$
$U=\frac{u}{u_{0}}=\frac{\sin \psi}{\sin \psi_{0}}=0.225107479796 ; I_{0}=\arccos U=1.343742980976$ radians
$V=\frac{\tan \psi}{\tan \psi_{0}} \quad=0.154125311675 ; L_{0}=\sec \psi_{0} \arccos V=2.097333540996$ radians

Table 1: Ellipsoid and geodesic constants and binomial coefficients for
equations (32) and (47)

n	$e^{2 n}$	ε^{n}	$u_{0}^{2 n}$	$B_{n}^{\frac{1}{2}}$
1	$6.694380022901 \mathrm{e}-003$	$6.739496775479 \mathrm{e}-003$	0.544147071727	0.500000000000
2	$4.481472389101 \mathrm{e}-005$	$4.542081678669 \mathrm{e}-005$	0.296096035669	-0.125000000000
3	$3.000067923478 \mathrm{e}-007$	$3.061134482735 \mathrm{e}-007$	0.161119790759	0.062500000000
4	$2.008359477428 \mathrm{e}-009$	$2.063050597570 \mathrm{e}-009$	0.087672862339	-0.039062500000
5	$1.344472156450 \mathrm{e}-011$	$1.390392284997 \mathrm{e}-011$	0.047706931312	0.027343750000
6	$9.000407545482 \mathrm{e}-014$	$9.370544321391 \mathrm{e}-014$	0.025959586974	-0.020507812500
7	$6.025214847044 \mathrm{e}-016$	$6.315275323850 \mathrm{e}-016$	0.014125833235	0.016113281250
8	$4.033507790574 \mathrm{e}-018$	$4.256177768135 \mathrm{e}-018$	0.007686530791	-0.013092041016

Table 2: Recurrence formula values and distance components for equation (32)

n	J_{n}	D_{n}	
	1.563072838216	$8.541841303930 \mathrm{e}+006$	8541841.303930 m
2	2.355723441968	$9.109578467516 \mathrm{e}+003$	9109.5784675
3	2.945217495733	$-6.293571169346 \mathrm{e}+000$	-6.2935712
4	3.436115617261	$9.618619108010 \mathrm{e}-003$	0.0096186
5	3.865631515581	$-1.929070816523 \mathrm{e}-005$	-0.0000193
6	4.252194740421	$4.456897529564 \mathrm{e}-008$	0.0000000
7	4.606544305836	$-1.123696751599 \mathrm{e}-010$	-0.0000000
8	4.935583185013	$3.006580650377 \mathrm{e}-013$	0.0000000
	sum	$8.550944598425 \mathrm{e}+006$	$s=8550944.598425 \mathrm{~m}$

Table 3: Recurrence formula values and longitude components for equation (47)

n	J_{n}	M_{n}	$\Delta \lambda=\cos \psi_{0}($ sum $)$	$\begin{aligned} & \cong 1.413013969112 \text { radians } \\ & =80.959736823113 \text { degrees } \\ & =80^{\circ} 57^{\prime} 35.052563^{\prime \prime} \end{aligned}$
0		$2.097333540996 \mathrm{e}^{+000}$		
1	1.563072838216	-4.505315819380e-003		
2	2.355723441968	$2.382298926901 \mathrm{e}-006$		
3	2.945217495733	$1.267831357153 \mathrm{e}-008$		
4	3.436115617261	$6.525291638252 \mathrm{e}-011$		
5	3.865631515581	$3.431821056093 \mathrm{e}-013$		
6	4.252194740421	$1.852429353592 \mathrm{e}-015$		
7	4.606544305836	$1.023576994037 \mathrm{e}-017$		
8	4.935583185013	$5.769507252421 \mathrm{e}-020$		
	sum	$2.092830620219 \mathrm{e}+000$		

Inspection of these numerical values indicates than an upper limit of $N=8$ in the summations is more than sufficient for accuracies of 0.000001 metre in distances and 0.000001 second of arc for longitude differences. [Results for s and $\Delta \lambda$ can be confirmed using Vincenty's equations (Vincenty 1975) that have been programmed in a Microsoft ${ }^{\mathrm{TM}}$ Excel workbook that can be downloaded from the website of Geoscience Australia at http://www.ga.gov.au/]

It should be noted here that the distance and longitude equations [equations (32) and (47)] are not themselves, solutions to the direct or inverse problems. Instead, they are the basic tools, which if used in certain ways, enable the solution to those problems.

In a computer program, equations (32) and (47) would be embedded in a function that returned s and $\Delta \lambda$ given the ellipsoid parameters (a, f), parametric latitudes $\left(\psi, \psi_{0}\right)$ and the upper limit of summations (N). A brief explanation of how such a function might be used is given below.

USING THE DISTANCE AND LONGITUDE EQUATIONS TO COMPUTE THE DIRECT AND INVERSE PROBLEM

Fig. 5: Schematic diagram of a geodesic between P_{1} and P_{2} on an ellipsoid

Direct solution

The key here is to use the distance equation in an iterative computation of $\sin \psi_{2}$. Once this is known, then ϕ_{2}, λ_{2} and α_{21} follow. The steps in the computation are:

1. Test the azimuth to determine whether the geodesic is heading towards or away from the nearest vertex P_{0}, noting that P_{0} will be in the same hemisphere as P_{1}.
2. Compute ψ_{1} and ψ_{0}; then use the distance and longitude equations to compute s_{1} and $\Delta \lambda_{1}$ between P_{1} and P_{0}, as well as λ_{0}. (see Fig. 5).
3. With $u=\sin \psi=0$, compute s_{4} and $\Delta \lambda_{4}$ between the node and P_{0}.
4. Compute $s_{2}=\left\{\begin{array}{ll}s-s_{1} & \text { if geodesic is heading towards } P_{0} \\ s+s_{1} & \text { if geodesic is heading away from } P_{0}\end{array}\right.$. If $s_{2}>0$ then P_{2} is after P_{0} and closer to another vertex P_{0}^{\prime} in which case s_{2} is reduced by multiples of $2 s_{4}$ until $s_{2}<s_{4}$ and the number of vertices n determined (vertices are $2 s_{4}$ apart). If $s_{2}<0$ then P_{2} is before P_{0}. (Note that in Fig. 5, $s_{2}<0$ and P_{2} is before P_{0})
5. Compute ψ_{2} by iteration. An approximate value ψ_{2}^{\prime} is found from equations (32) by taking the first term only; hence $\frac{s}{b}=I_{0}=\arccos \left(\frac{\sin \psi}{\sin \psi_{0}}\right)$ and $\sin \psi_{2}^{\prime}=\sin \psi_{0} \cos \left(\frac{s_{2}}{b}\right)$.
Now a re-arrangement of the differential equation (19) gives $d u=\frac{d s}{b} \sqrt{\frac{u_{0}^{2}-u^{2}}{1+\varepsilon u^{2}}}$ where $u=\sin \psi_{2}^{\prime}, d s=s_{2}^{\prime}-s_{2}$ and s_{2}^{\prime} is computed from the distance equation with the approximate parametric latitude ψ_{2}^{\prime}. Equation (19), linking $d s$ and $d u$, is the basis of the iterative solution for $\sin \psi_{2}$ (and hence ϕ_{2}).
6. After computing ψ_{2} the longitude difference $\Delta \lambda_{2}$ is computed and depending on the number of vertices and the direction of the geodesic, λ_{2} is determined. The azimuth α_{2} follows from Clairaut's equation and the reverse azimuth α_{21} obtained.

Inverse solution

This is the more difficult of the two solutions since ψ_{0} is unknown and must be determined by iteration, using approximations for s, α_{1} and α_{2} obtained by approximating the ellipsoid with a sphere and using spherical trigonometry. The steps in the computation are:

1. Convert longitudes of P_{1} and P_{2} to east longitudes in the range $0^{\circ}<\lambda_{1}, \lambda_{2}<360^{\circ}$ and determine a longitude difference $\Delta \lambda$ in the range $-180^{\circ} \leq \Delta \lambda \leq 180^{\circ}$. $\pm \Delta \lambda$ corresponding to east/west direction of the geodesic from P_{1}.
2. Compute parametric latitudes ψ_{1} and ψ_{2} then use these and $\Delta \lambda$ as latitudes and longitude difference on a sphere to compute spherical distance σ and spherical angles β_{1} and β_{2}. These can be used to determine approximations of s and α_{12}.
3. Compute ψ_{0} by iteration. Approximations $\Delta \lambda_{1}^{\prime}$ and $\Delta \lambda_{2}^{\prime}$ can be obtained from equation (47) noting that $M_{0}=\sec \psi_{0} \arccos \left(\frac{\tan \psi}{\tan \psi_{0}}\right)$ and ignoring terms $M_{1}, M_{2}, M_{3}, \ldots$
This gives $\Delta \lambda_{1}^{\prime}=\arccos \left(\frac{\tan \psi_{1}}{\tan \psi_{0}}\right)$ and $\Delta \lambda_{2}^{\prime}=\arccos \left(\frac{\tan \psi_{2}}{\tan \psi_{0}}\right)$, and
$f\left(\psi_{0}\right)=\Delta \lambda^{\prime}-\Delta \lambda=\left\{ \pm \arccos \left(\frac{\tan \psi_{1}}{\tan \psi_{0}}\right) \pm \arccos \left(\frac{\tan \psi_{2}}{\tan \psi_{0}}\right) \pm \Delta \lambda_{4}^{\prime}\right\}-\Delta \lambda$ where the \pm signs are associated with the east/west direction of the geodesic.
ψ_{0} can be found using Newton's iterative method (Williams 1972)

$$
\begin{equation*}
\left(\psi_{0}\right)_{n+1}=\left(\psi_{0}\right)_{n}-\frac{f\left(\psi_{0}\right)}{f^{\prime}\left(\psi_{0}\right)} \tag{54}
\end{equation*}
$$

where $f^{\prime}\left(\psi_{0}\right)$ is the derivative of $f\left(\psi_{0}\right)$. An initial value of ψ_{0} can be computed from equation (11).
4. Once ψ_{0} is known then $s_{1}, \Delta \lambda_{1} ; s_{2}, \Delta \lambda_{2}$ and $s_{4}, \Delta \lambda_{4}$ can be computed from the distance and longitude equations and s obtained. The forward and reverse azimuths can be found from Clairaut's equation (5).

CONCLUSION

Pittman's (1986) recurrence relationships for evaluating integrals allow beautifully compact equations for distance s and longitude difference $\Delta \lambda$ along a geodesic between P and the vertex P_{0}. These equations can be easily translated into a computer program function returning s and $\Delta \lambda$ given a, f, u and u_{0}. Using such a function, algorithms (as outlined above), can be constructed to solve the direct and inverse problems on the ellipsoid. Pittman's (1986) paper (which included FORTRAN computer code) has a concise development of the necessary equations and algorithms. The paper here has a more detailed development of the recurrence relationships (with a slightly different formulation) as well as additional information on the definition and properties of a geodesic.

Interestingly, Pittman's (1986) method is entirely different to other approaches that fall (roughly) into two groups: (i) numerical integration techniques and (ii) series expansion of integrals; the latter of these with a history of development extending back to Bessel's (1826) method. Numerical integration, a technique made practical with the arrival of computers in the mid to late 20th century, is relatively modern. So too is Pittman's method.

To our knowledge, this is the first paper (since the original) discussing his elegant method; a method that has much to recommend it, and one that we hope might become the object of study in undergraduate surveying courses and discussion in the geodetic literature.

REFERENCES

Ayres, F., 1972. Calculus, Schaum's Outline Series, Theory and problems of Differential and Integral Calculus, 2nd edn, McGraw-Hill Book Company, New York.
Bessel, F. W., 1826, 'Uber die Berechnung der Geographischen Langen und Breiten aus geodatischen Vermessungen. (On the computation of geographical longitude and latitude grom geodetic measurements)', Astronomische Nachrichten (Astronomical Notes), Band 4 (Vol. 4), No. 86, Spalten 241-254 (Columns 241-254).

Bowring, B. R., 1972, 'Correspondence: Distance and the spheroid', Survey Review, Vol. 21, No. 164, pp. 281-284.
Bowring, B. R., 1983, 'The geodesic inverse problem', Bulletin Geodesique, Vol. 57, No. 2, pp. 109-120.
Bowring, B. R., 1984, 'Note on the geodesic inverse problem', Bulletin Geodesique, Vol. 58, p. 543.
DSB, 1971. Dictionary of Scientific Biography, C.C. Gillispie (Editor in Chief), Charles Scribener's Sons, New York.
Jank, W., Kivioja, L.A., 1980, 'Solution of the direct and inverse problems on reference ellipsoids by point-by-point integration using programmable pocket calculators', Surveying and Mapping, Vol. 15, No. 3, pp. 325-337.
Kivioja, L. A., 1971, 'Computation of geodetic direct and indirect problems by computers accumulating increments from geodetic line elements', Bulletin Geodesique, No. 99, pp. 55-63.
Lauf, G.B., 1983. Geodesy and Map Projections, TAFE Publications Unit, Collingwood, Australia
Moritz, H., 1980, 'Geodetic reference system 1980', The Geodesists Handbook 1980, Bulletin Geodesique, Vol. 54, No. 3, pp. 395-407.
Pittman, M.E., 1986. 'Precision direct and inverse solutions of the geodesic', Surveying and Mapping, Vol. 46, No. 1, pp. 47-54, March 1986.
Rainsford, H. F., 1955, 'Long geodesics on the ellipsoid', Bulletin Geodesique, No. 37, pp. 12-22.
Saito, T., 1970, 'The computation of long geodesics on the ellipsoid by non-series expanding procedure', Bulletin Geodesique, No. 98, pp. 341-374.
Saito, T., 1979, 'The computation of long geodesics on the ellipsoid through Gaussian quadrature', Bulletin Geodesique, Vol. 53, No. 2, pp. 165-177.
Sjöberg, Lars E., 2006, 'New solutions to the direct and indirect geodetic problems on the ellipsoid', Zeitschrift für Geodäsie, Geoinformation und Landmanagement (zfv), 2006(1):36 pp. 1-5.
Struik, D.J., 1933. 'Outline of a history of differential geometry', Isis, Vol. 19, No.1, pp. 92-120, April 1933. (Isis is an official publication of the History of Science Society and has been in print since 1912. It is published by the University of Chicago Press - Journals Division: http://www.journals.uchicargo.edu/)
Thomas, P.D., 1970. Spheroidal Geodesics, Reference Systems, \& Local Geometry, Special Publication No. 138 (SP-138), United States Naval Oceanographic office, Washington.
Thomas, C. M. and Featherstone, W. E., 2005, 'Validation of Vincenty's formulas for the geodesic using a new fourth-order extension of Kivioja's formual', Journal of Surveying Engineering, Vol. 131, No. 1, pp. 20-26.
Vincenty, T., 1975, 'Direct and inverse solutions on the ellipsoid with application of nested equations', Survey Review, Vol. 22, No. 176, pp. 88-93.
Vincenty, T., 1976, 'Correspondence: solutions of geodesics', Survey Review, Vol. 23, No. 180, p. 294.
Williams, P. W., 1972, Numerical Computation, Thomas Nelson and Sons Ltd, London.

THE NORMAL SECTION CURVE
 ON AN ELLIPSOID

R. E. Deakin
School of Mathematical \& Geospatial Sciences, RMIT University, GPO Box 2476V, MELBOURNE VIC 3001, AUSTRALIA
email: rod.deakin@rmit.edu.au
November 2009

Abstract

These notes provide a detailed derivation of the equation for a normal section curve on an ellipsoid and from this equation a technique for computing the arc length along a normal section curve is developed. Solutions for the direct and inverse problems of the normal section on an ellipsoid are given and MATLAB functions are provided showing the algorithms developed.

INTRODUCTION

In geodesy, the normal section curve is a plane curve created by intersecting a plane containing the normal to the ellipsoid (a normal section plane) with the surface of the ellipsoid, and the ellipsoid is a reference surface approximating the true shape of the Earth. In general, there are two normal section curves between two points on an ellipsoid, a fact that will be explained below, so the normal section curve is not a unique curve. And the distance along a normal section curve is not the shortest distance between two points. The shortest distance is along the geodesic, a unique curve on the surface defining the shortest distance, but the difference in length between the normal section and a geodesic can be shown to be negligible in all practical cases.

The azimuth of a normal section plane between two points on an ellipsoid can be easily determined by coordinate geometry if the latitudes and longitudes of the points are expressed in a local Cartesian coordinate system - this will be explained in detail below. The distance along a normal section curve can be determined by numerical integration once the polar equation of the curve is known. And the derivation of the polar equation of
a normal section curve is developed in detail by first proving that normal sections of ellipsoids are in fact ellipses, then deriving Cartesian equations of the ellipsoid and the normal section in local Cartesian coordinates and finally transforming the local Cartesian coordinates to polar coordinates. The differential equation for arc length (as a function of polar coordinates) is derived and a solution using a numerical technique known as Romberg integration is developed for the arc length along a normal section curve.

The azimuth of the normal section as a function of Cartesian coordinates); the polar equation of the normal section curve; and the solution of the arc length using Romberg integration are the core components of solutions of the direct and inverse cases of the normal sections on an ellipsoid. These are fundamental geodetic operations and can be likened to the equivalent operations of plane surveying; radiations (computing coordinates of points given bearings and distances radiating from a point of known coordinates) and joins; (computing bearings and distances between points having known coordinates). The solution of the direct and inverse cases of the normal section are set out in detail and MATLAB functions are provided.

THE ELLIPSOID

Figure 1: The reference ellipsoid
In geodesy, the ellipsoid is a surface of revolution created by rotating an ellipse (whose major and minor semi-axes lengths are a and b respectively and $a>b$) about its minor axis. The ϕ, λ curvilinear coordinate system is a set of orthogonal parametric curves on the surface - parallels of latitude ϕ and meridians of longitude λ with their respective reference planes; the equator and the Greenwich meridian.

Longitudes are measured 0° to $\pm 180^{\circ}$ (east positive, west negative) from the Greenwich meridian and latitudes are measured 0° to $\pm 90^{\circ}$ (north positive, south negative) from the equator. The x, y, z geocentric Cartesian coordinate system has an origin at O, the centre of the ellipsoid, and the z-axis is the minor axis (axis of revolution). The $x O z$ plane is the Greenwich meridian plane (the origin of longitudes) and the $x O y$ plane is the equatorial plane.

The positive x-axis passes through the intersection of the Greenwich meridian and the equator, the positive y-axis is advanced 90° east along the equator and the positive z-axis passes through the north pole of the ellipsoid.

The Cartesian equation of the ellipsoid is

$$
\begin{equation*}
\frac{x^{2}+y^{2}}{a^{2}}+\frac{z^{2}}{b^{2}}=1 \tag{1}
\end{equation*}
$$

where a and b are the semi-axes of the ellipsoid $(a>b)$.
The first-eccentricity squared e^{2} and the flattening f of the ellipsoid are defined by

$$
\begin{align*}
& e^{2}=\frac{a^{2}-b^{2}}{a^{2}}=f(2-f) \tag{2}\\
& f=\frac{a-b}{a}
\end{align*}
$$

and the polar radius c, and the second-eccentricity squared $e^{\prime 2}$ are defined by

$$
\begin{align*}
& c=\frac{a^{2}}{b}=\frac{a}{1-f} \\
& e^{\prime 2}=\frac{a^{2}-b^{2}}{b^{2}}=\frac{f(2-f)}{(1-f)^{2}}=\frac{e^{2}}{1-e^{2}} \tag{3}
\end{align*}
$$

PROOF THAT NORMAL SECTION CURVES ARE ELLIPSES

Normal section curves are plane curves; i.e., curves on the surface of the ellipsoid created by intersecting the surface with a plane; and this plane (the normal section plane) contains the normal to the surface at one of the terminal points.

A meridian of longitude is also a normal section curve and all meridians of longitude on the ellipsoid are ellipses having semi-axes a and $b(a>b)$ since all meridian planes - e.g., Greenwich meridian plane $x O z$ and the meridian plane $p O z$ containing P - contain the z axis of the ellipsoid and their curves of intersection are ellipses (planes intersecting surfaces
create curves of intersection on the surface). This can be seen if we let $p^{2}=x^{2}+y^{2}$ in equation (1) which gives the familiar equation of the (meridian) ellipse

$$
\begin{equation*}
\frac{p^{2}}{a^{2}}+\frac{z^{2}}{b^{2}}=1 \quad(a<b) \tag{4}
\end{equation*}
$$

Figure 2: Meridian ellipse
In Figure 2, ϕ is the latitude of P (the angle between the equator and the normal), C is the centre of curvature and $P C$ is the radius of curvature of the meridian ellipse at $P . H$ is the intersection of the normal at P and the z-axis (axis of revolution).

The only parallel of latitude that is also a normal section is the equator. And in this unique case, this normal section curve (the equator) is a circle. All parallels of latitude on the ellipsoid are circles created by intersecting the ellipsoid with planes parallel to (or coincident with) the $x O y$ equatorial plane. Replacing z with a constant C in equation (1) gives the equation for circular parallels of latitude

$$
\begin{equation*}
x^{2}+y^{2}=a^{2}\left(1-\frac{C^{2}}{b^{2}}\right)=p^{2} \quad(0 \leq C \leq b ; a>b) \tag{5}
\end{equation*}
$$

All other curves on the surface of the ellipsoid created by intersecting the ellipsoid with a plane are ellipses. And this general statement covers all normal section planes that are not meridians or the equator. This can be demonstrated by using another set of coordinates $x^{\prime}, y^{\prime}, z^{\prime}$ that are obtained by a rotation of the x, y, z coordinates such that

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]=\mathbf{R}\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \quad \text { where } \quad \mathbf{R}=\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right]
$$

where \mathbf{R} is an orthogonal rotation matrix and $\mathbf{R}^{-1}=\mathbf{R}^{T}$ so

$$
\begin{aligned}
& {\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right]=\mathbf{R}^{-1}\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right] \quad \text { and }\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{lll}
r_{11} & r_{21} & r_{31} \\
r_{12} & r_{22} & r_{32} \\
r_{13} & r_{23} & r_{33}
\end{array}\right]\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]} \\
& x^{2}=r_{11}^{2} x^{\prime 2}+r_{21}^{2} y^{\prime 2}+r_{31}^{2} z^{\prime 2}+2 r_{11} r_{21} x^{\prime} y^{\prime}+2 r_{11} r_{31} x^{\prime} z^{\prime}+2 r_{21} r_{31} y^{\prime} z^{\prime} \\
& y^{2}=r_{12}^{2} x^{\prime 2}+r_{22}^{2} y^{\prime 2}+r_{32}^{2} z^{\prime 2}+2 r_{12} r_{22} x^{\prime} y^{\prime}+2 r_{12} r_{32} x^{\prime} z^{\prime}+2 r_{22} r_{32} y^{\prime} z^{\prime} \\
& \text { giving } \\
& z^{2}=r_{13}^{2} x^{\prime 2}+r_{23}^{2} y^{\prime 2}+r_{33}^{2} z^{\prime 2}+2 r_{13} r_{23} x^{\prime} y^{\prime}+2 r_{13} r_{33} x^{\prime} z^{\prime}+2 r_{23} r_{33} y^{\prime} z^{\prime} \\
& x^{2}+y^{2}=\left(r_{11}^{2}+r_{12}^{2}\right) x^{\prime 2}+\left(r_{21}^{2}+r_{22}^{2}\right) y^{\prime 2}+\left(r_{31}^{2}+r_{32}^{2}\right) z^{\prime 2}+2\left(r_{11} r_{21}+r_{12} r_{22}\right) x^{\prime} y^{\prime} \\
& +2\left(r_{11} r_{31}+r_{12} r_{32}\right) x^{\prime} z^{\prime}+2\left(r_{21} r_{31}+r_{22} r_{32}\right) y^{\prime} z^{\prime}
\end{aligned}
$$

Substituting into equation (1) gives the equation of the ellipsoid in $x^{\prime}, y^{\prime}, z^{\prime}$ coordinates

$$
\begin{align*}
& \frac{1}{a^{2}}\left\{\begin{array}{l}
\left(r_{11}^{2}+r_{12}^{2}\right) x^{\prime 2}+\left(r_{21}^{2}+r_{22}^{2}\right) y^{\prime 2}+\left(r_{31}^{2}+r_{32}^{2}\right) z^{\prime 2}+2\left(r_{11} r_{21}+r_{12} r_{22}\right) x^{\prime} y^{\prime} \\
+2\left(r_{11} r_{31}+r_{12} r_{32}\right) x^{\prime} z^{\prime}+2\left(r_{21} r_{31}+r_{22} r_{32}\right) y^{\prime} z^{\prime}
\end{array}\right\} \\
& +\frac{1}{b^{2}}\left\{r_{13}^{2} x^{\prime 2}+r_{23}^{2} y^{\prime 2}+r_{33}^{2} z^{\prime 2}+2 r_{13} r_{23} x^{\prime} y^{\prime}+2 r_{13} r_{33} x^{\prime} z^{\prime}+2 r_{23} r_{33} y^{\prime} z^{\prime}\right\}=1 \tag{6}
\end{align*}
$$

In equation (6) let $z^{\prime}=C_{1}$ where C_{1} is a constant. The result will be the equation of a curve created by intersecting an inclined plane with the ellipsoid, i.e.,

$$
\begin{align*}
& \left\{\frac{r_{11}^{2}+r_{12}^{2}}{a^{2}}+\frac{r_{13}^{2}}{b^{2}}\right\} x^{\prime 2}+2\left\{\frac{r_{11} r_{21}+r_{12} r_{22}}{a^{2}}+\frac{r_{13} r_{23}}{b^{2}}\right\} x^{\prime} y^{\prime}+\left\{\frac{r_{21}^{2}+r_{22}^{2}}{a^{2}}+\frac{r_{23}^{2}}{b^{2}}\right\} y^{\prime 2} \\
& +\left\{2 C_{1}\left(r_{11} r_{31}+r_{12} r_{32}+r_{13} r_{33}\right)\right\} x^{\prime}+\left\{2 C_{1}\left(r_{21} r_{31}+r_{22} r_{32}+r_{23} r_{33}\right)\right\} y^{\prime} \\
= & 1-C_{1}^{2}\left\{r_{31}^{2}+r_{32}^{2}+r_{33}^{2}\right\} \tag{7}
\end{align*}
$$

This equation can be expressed as

$$
\begin{equation*}
A x^{\prime 2}+2 H x^{\prime} y^{\prime}+B y^{\prime 2}+D x^{\prime}+E y^{\prime}=1 \tag{8}
\end{equation*}
$$

where it can be shown that $A B-H^{2}>0$, hence it is the general Cartesian equation of an ellipse that is offset from the coordinate origin and rotated with respect to the coordinate axes (Grossman 1981). Equations of a similar form can be obtained for inclined planes $x^{\prime}=C_{2}$ and $y^{\prime}=C_{3}$, hence we may say, in general, inclined planes intersecting the ellipsoid will create curves of intersection that are ellipses.

NORMAL SECTION CURVES BETWEEN P_{1} AND P_{2} ON THE ELLIPSOID

Figure 3: Normal section curves between P_{1} and P_{2} on the ellipsoid

Figure 3 shows P_{1} and P_{2} on the surface of an ellipsoid. The normals at P_{1} and P_{2} (that lie in the meridian planes $O N P_{1} H_{1}$ and $O N P_{2} H_{2}$ respectively) cut the rotational axis at H_{1} and H_{2}, making angles ϕ_{1}, ϕ_{2} with the equatorial plane of the ellipsoid. These are the latitudes of P_{1} and P_{2} respectively.

The plane containing the ellipsoid normal at P_{1}, and also the point P_{2} intersects the surface of the ellipsoid along the normal section curve $P_{1} P_{2}$. The reciprocal normal section curve $P_{2} P_{1}$ (the intersection of the plane containing the normal at P_{2}, and also the point P_{1} with the ellipsoidal surface) does not in general coincide with the normal section curve $P_{1} P_{2}$ although the distances along the two curves are, for all practical purposes, the same.

Hence there is not a unique normal section curve between P_{1} and P_{2}, unless both P_{1} and P_{2} are on the same meridian or both are on the equator.

The azimuth α_{12}, is the clockwise angle (0° to 360°) measured at P_{1} in the local horizon plane from north (the direction of the meridian) to the normal section plane containing P_{2}. The azimuth α_{21} is the azimuth of the normal section plane $P_{2} P_{1}$ measured at P_{2}.

LOCAL CARTESIAN COORDINATES

Figure 4 shows a local Cartesian coordinate system E, N, U with an origin at P on the reference ellipsoid with respect to the geocentric Cartesian system x, y, z whose origin is a the centre of the ellipsoid

Figure 4: x, y, z geocentric Cartesian and E, N, U local Cartesian coordinates

Geocentric x, y, z Cartesian coordinates are computed from the following equations

$$
\begin{align*}
& x=\nu \cos \phi \cos \lambda \\
& y=\nu \cos \phi \sin \lambda \tag{9}\\
& z=\nu\left(1-e^{2}\right) \sin \phi
\end{align*}
$$

where $\nu=P H$ in Figure 4 is the radius of curvature in the prime vertical plane and

$$
\begin{equation*}
\nu=\frac{a}{\sqrt{1-e^{2} \sin ^{2} \phi}} \tag{10}
\end{equation*}
$$

The origin of the local E, N, U system lies at the point $P\left(\phi_{0}, \lambda_{0}\right)$. The positive U-axis is coincident with the normal to the ellipsoid passing through P and in the direction of increasing radius of curvature ν. The $N-U$ plane lies in the meridian plane passing through P and the positive N-axis points in the direction of North. The $E-U$ plane is perpendicular to the $N-U$ plane and the positive E-axis points East. The $E-N$ plane is often referred to as the local geodetic horizon plane.

Geocentric and local Cartesian coordinates are related by the matrix equation

$$
\left[\begin{array}{c}
U \tag{11}\\
E \\
N
\end{array}\right]=\mathbf{R}_{\phi \lambda}\left[\begin{array}{l}
x-x_{0} \\
y-y_{0} \\
z-z_{0}
\end{array}\right]
$$

where x_{0}, x_{0}, z_{0} are the geocentric Cartesian coordinates of the origin of the E, N, U system and $\mathbf{R}_{\phi \lambda}$ is a rotation matrix derived from the product of two separate rotation matrices.

$$
\mathbf{R}_{\phi \lambda}=\mathbf{R}_{\phi} \mathbf{R}_{\lambda}=\left[\begin{array}{ccc}
\cos \phi_{0} & 0 & \sin \phi_{0} \tag{12}\\
0 & 1 & 0 \\
-\sin \phi_{0} & 0 & \cos \phi_{0}
\end{array}\right]\left[\begin{array}{ccc}
\cos \lambda_{0} & \sin \lambda_{0} & 0 \\
-\sin \lambda_{0} & \cos \lambda_{0} & 0 \\
0 & 0 & 1
\end{array}\right]
$$

The first, \mathbf{R}_{λ} (a positive right-handed rotation about the x-axis by λ) takes the x, y, z axes to $x^{\prime}, y^{\prime}, z^{\prime}$. The z^{\prime}-axis is coincident with the z-axis and the $x^{\prime}-y^{\prime}$ plane is the Earth's equatorial plane. The $x^{\prime}-y^{\prime}$ plane is the meridian plane passing through P and the y^{\prime}-axis is perpendicular to the meridian plane and in the direction of East.

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \lambda & \sin \lambda & 0 \\
-\sin \lambda & \cos \lambda & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
\mathbf{R}_{\lambda}
\end{array}\right]
$$

The second \mathbf{R}_{ϕ} (a rotation about the y^{\prime}-axis by ϕ) takes the $x^{\prime}, y^{\prime}, z^{\prime}$ axes to the $x^{\prime \prime}, y^{\prime \prime}, z^{\prime \prime}$ axes. The $x^{\prime \prime}$-axis is parallel to the U-axis, the $y^{\prime \prime}$-axis is parallel to the E-axis and the $z^{\prime \prime}$-axis is parallel to the N-axis.

$$
\left[\begin{array}{l}
x^{\prime \prime} \\
y^{\prime \prime} \\
z^{\prime \prime}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \phi & 0 & \sin \phi \\
0 & 1 & 0 \\
-\sin \phi & 0 & \cos \phi
\end{array}\right]\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]
$$

Performing the matrix multiplication in equation (12) gives

$$
\mathbf{R}_{\phi \lambda}=\left[\begin{array}{ccc}
\cos \phi_{0} \cos \lambda_{0} & \cos \phi_{0} \sin \lambda_{0} & \sin \phi_{0} \tag{13}\\
-\sin \lambda_{0} & \cos \lambda_{0} & 0 \\
-\sin \phi_{0} \cos \lambda_{0} & -\sin \phi_{0} \sin \lambda_{0} & \cos \phi_{0}
\end{array}\right]
$$

Rotation matrices formed from rotations about coordinate axes are often called Euler rotation matrices in honour of the Swiss mathematician Léonard Euler (1707-1783). They are orthogonal, satisfying the condition $\mathbf{R}^{T} \mathbf{R}=\mathbf{I}$ (i.e., $\mathbf{R}^{-1}=\mathbf{R}^{T}$).

A re-ordering of the rows of the matrix $\mathbf{R}_{\phi \lambda}$ gives the transformation in the more usual form E, N, U

$$
\left[\begin{array}{c}
E \tag{14}\\
N \\
U
\end{array}\right]=\mathbf{R}\left[\begin{array}{l}
x-x_{0} \\
y-y_{0} \\
z-z_{0}
\end{array}\right]
$$

where

$$
\mathbf{R}=\left[\begin{array}{ccc}
-\sin \lambda_{0} & \cos \lambda_{0} & 0 \tag{15}\\
-\sin \phi_{0} \cos \lambda_{0} & -\sin \phi_{0} \sin \lambda_{0} & \cos \phi_{0} \\
\cos \phi_{0} \cos \lambda_{0} & \cos \phi_{0} \sin \lambda_{0} & \sin \phi_{0}
\end{array}\right]
$$

From equation (14) we can see that coordinate differences $\Delta E=E_{k}-E_{i}, \Delta N=N_{k}-N_{i}$ and $\Delta U=U_{k}-U_{i}$ in the local geodetic horizon plane are given by

$$
\left[\begin{array}{l}
\Delta E \tag{16}\\
\Delta N \\
\Delta U
\end{array}\right]=\mathbf{R}\left[\begin{array}{l}
\Delta x \\
\Delta y \\
\Delta z
\end{array}\right]
$$

where $\Delta x=x_{k}-x_{i}, \Delta y=y_{k}-y_{i}$ and $\Delta z=z_{k}-z_{i}$ are geocentric Cartesian coordinate differences.

NORMAL SECTION AZIMUTH ON THE ELLIPSOID

The matrix relationship given by equation (16) can be used to derive an expression for the azimuth of a normal section between two points on the reference ellipsoid. The normal section plane between points P_{1} and P_{2} on the Earth's terrestrial surface contains the normal at point P_{1}, the intersection of the normal and the rotational axis of the ellipsoid at H_{1} (see Figure 3) and P_{2}. This plane will intersect the local geodetic horizon plane in a line having an angle with the north axis, which is the direction of the meridian at P_{1}.

This angle is the azimuth of the normal section plane $P_{1}-P_{2}$ denoted as α_{12} and will have components ΔE and ΔN in the local geodetic horizon plane. From plane geometry

$$
\begin{equation*}
\tan \alpha_{12}=\frac{\Delta E}{\Delta N} \tag{17}
\end{equation*}
$$

By inspection of equations (15) and (16) we may write the equation for normal section azimuth between points P_{1} and P_{2} as

$$
\begin{equation*}
\tan \alpha_{12}=\frac{\Delta E}{\Delta N}=\frac{-\Delta x \sin \lambda_{1}+\Delta y \cos \lambda_{1}}{-\Delta x \sin \phi_{1} \cos \lambda_{1}-\Delta y \sin \phi_{1} \sin \lambda_{1}+\Delta z \cos \phi_{1}} \tag{18}
\end{equation*}
$$

where $\Delta x=x_{2}-x_{1}, \Delta y=y_{2}-y_{1}$ and $\Delta z=z_{2}-z_{1}$

EQUATION OF THE ELLIPSOID IN LOCAL CARTESIAN COORDINATES

The Cartesian equation of the ellipsoid is given by equation (1) as

$$
\begin{equation*}
\frac{x^{2}+y^{2}}{a^{2}}+\frac{z^{2}}{b^{2}}=1 \tag{19}
\end{equation*}
$$

and multiplying both sides of equation (19) by a^{2} gives

$$
\begin{equation*}
x^{2}+y^{2}+\frac{a^{2}}{b^{2}} z^{2}=a^{2} \tag{20}
\end{equation*}
$$

Re-arranging equation (3) gives $\frac{a^{2}}{b^{2}}=e^{\prime 2}+1$ and substituting this result into equation (20) and re-arranging gives an alternative expression for the Cartesian equation of an ellipsoid as

$$
\begin{equation*}
x^{2}+y^{2}+z^{2}+e^{\prime 2} z^{2}-a^{2}=0 \tag{21}
\end{equation*}
$$

We now find expressions for x^{2}, y^{2} and z^{2} in terms of local Cartesian coordinates that when substituted into equation (21) and simplified will give the equation of the ellipsoid in local Cartesian coordinates. The relevant substitutions are set out below.

The relationship between geocentric and local Cartesian coordinates is given by equation (14) as

$$
\left[\begin{array}{c}
E \tag{22}\\
N \\
U
\end{array}\right]=\mathbf{R}\left[\begin{array}{c}
x-x_{0} \\
y-y_{0} \\
z-z_{0}
\end{array}\right]
$$

where the orthogonal rotation matrix \mathbf{R} is given by equation (15) as

$$
\mathbf{R}=\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \tag{23}\\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right]=\left[\begin{array}{ccc}
-\sin \lambda_{0} & \cos \lambda_{0} & 0 \\
-\sin \phi_{0} \cos \lambda_{0} & -\sin \phi_{0} \sin \lambda_{0} & \cos \phi_{0} \\
\cos \phi_{0} \cos \lambda_{0} & \cos \phi_{0} \sin \lambda_{0} & \sin \phi_{0}
\end{array}\right]
$$

and

$$
\begin{align*}
& x_{0}=\nu_{0} \cos \phi_{0} \cos \lambda_{0} \\
& y_{0}=\nu_{0} \cos \phi_{0} \sin \lambda_{0} \tag{24}\\
& z_{0}=\nu_{0}\left(1-e^{2}\right) \sin \phi_{0}
\end{align*}
$$

with the radius of curvature of the prime vertical section

$$
\begin{equation*}
\nu_{0}=\frac{a}{\sqrt{1-e^{2} \sin ^{2} \phi_{0}}} \tag{25}
\end{equation*}
$$

Re-arranging equation (22) gives

$$
\left[\begin{array}{l}
x \tag{26}\\
y \\
z
\end{array}\right]=\mathbf{R}^{-1}\left[\begin{array}{l}
E \\
N \\
U
\end{array}\right]+\left[\begin{array}{l}
x_{0} \\
y_{0} \\
z_{0}
\end{array}\right]
$$

where

$$
\mathbf{R}^{-1}=\mathbf{R}^{T}=\left[\begin{array}{lll}
r_{11} & r_{21} & r_{31} \tag{27}\\
r_{12} & r_{22} & r_{32} \\
r_{13} & r_{23} & r_{33}
\end{array}\right]
$$

Expanding equation (26) gives

$$
\begin{align*}
& x=r_{11} E+r_{21} N+r_{31} U+x_{0} \\
& y=r_{12} E+r_{22} N+r_{32} U+y_{0} \tag{28}\\
& z=r_{13} E+r_{23} N+r_{33} U+z_{0}
\end{align*}
$$

and

$$
\begin{align*}
x^{2}= & r_{11}^{2} E^{2}+r_{21}^{2} N^{2}+r_{31}^{2} U^{2}+2 r_{11} r_{21} E N+2 r_{11} r_{31} E U+2 r_{21} r_{31} N U \\
& +x_{0}^{2}+2 r_{11} E x_{0}+2 r_{21} N x_{0}+2 r_{31} U x_{0} \\
y^{2}= & r_{12}^{2} E^{2}+r_{22}^{2} N^{2}+r_{31}^{2} U^{2}+2 r_{12} r_{22} E N+2 r_{12} r_{32} E U+2 r_{22} r_{32} N U \tag{29}\\
& +y_{0}^{2}+2 r_{12} E y_{0}+2 r_{22} N y_{0}+2 r_{32} U y_{0} \\
z^{2}= & r_{13}^{2} E^{2}+r_{23}^{2} N^{2}+r_{33}^{2} U^{2}+2 r_{13} r_{23} E N+2 r_{13} r_{33} E U+2 r_{23} r_{33} N U \\
& +z_{0}^{2}+2 r_{13} E z_{0}+2 r_{23} N z_{0}+2 r_{33} U z_{0}
\end{align*}
$$

with

$$
\begin{align*}
x^{2}+y^{2}+z^{2}= & \left(r_{11}^{2}+r_{12}^{2}+r_{13}^{2}\right) E^{2}+\left(r_{21}^{2}+r_{22}^{2}+r_{23}^{2}\right) N^{2}+\left(r_{31}^{2}+r_{32}^{2}+r_{33}^{2}\right) U^{2} \\
& +2\left(r_{11} r_{21}+r_{12} r_{22}+r_{13} r_{23}\right) E N \\
& +2\left(r_{11} r_{31}+r_{12} r_{32}+r_{13} r_{33}\right) E U \\
& +2\left(r_{21} r_{31}+r_{22} r_{32}+r_{23} r_{33}\right) N U \\
& +x_{0}^{2}+y_{0}^{2}+z_{0}^{2} \\
& +2\left(r_{11} x_{0}+r_{12} y_{0}+r_{13} z_{0}\right) E \\
& +2\left(r_{21} x_{0}+r_{22} y_{0}+r_{23} z_{0}\right) N \\
& +2\left(r_{31} x_{0}+r_{32} y_{0}+r_{33} z_{0}\right) U \tag{30}
\end{align*}
$$

Now using the equivalences for r_{11}, r_{12}, etc given in equation (23), certain terms in equation (30) can be simplified as

$$
\begin{aligned}
& r_{11}^{2}+r_{12}^{2}+r_{13}^{2}=\sin ^{2} \lambda_{0}+\cos ^{2} \lambda_{0}=1 \\
& r_{21}^{2}+r_{22}^{2}+r_{23}^{2}=\sin ^{2} \phi_{0}\left(\cos ^{2} \lambda_{0}+\sin ^{2} \lambda_{0}\right)+\cos ^{2} \phi_{0}=1 \\
& r_{31}^{2}+r_{32}^{2}+r_{33}^{2}=\cos ^{2} \phi_{0}\left(\cos ^{2} \lambda_{0}+\sin ^{2} \lambda_{0}\right)+\sin ^{2} \phi_{0}=1
\end{aligned}
$$

and

$$
\begin{aligned}
r_{11} r_{21}+r_{12} r_{22}+r_{13} r_{23} & =\sin \lambda_{0} \sin \phi_{0} \cos \lambda_{0}-\cos \lambda_{0} \sin \phi_{0} \sin \lambda_{0}+0 \\
& =0 \\
r_{11} r_{31}+r_{12} r_{32}+r_{13} r_{33} & =-\sin \lambda_{0} \cos \phi_{0} \cos \lambda_{0}+\cos \lambda_{0} \cos \phi_{0} \sin \lambda_{0}+0 \\
& =0 \\
r_{21} r_{31}+r_{22} r_{32}+r_{23} r_{33} & =-\sin \phi_{0} \cos \phi_{0} \cos ^{2} \lambda_{0}-\sin \phi_{0} \cos \phi_{0} \sin ^{2} \lambda_{0}+\cos \phi_{0} \sin \phi_{0} \\
& =-\sin \phi_{0} \cos \phi_{0}\left(\cos ^{2} \lambda_{0}+\sin ^{2} \lambda_{0}\right)+\cos \phi_{0} \sin \phi_{0} \\
& =0
\end{aligned}
$$

Substituting these results into equation (30) gives

$$
\begin{align*}
x^{2}+y^{2}+z^{2}= & E^{2}+N^{2}+U^{2}+x_{0}^{2}+y_{0}^{2}+z_{0}^{2} \\
& +2\left(r_{11} x_{0}+r_{12} y_{0}+r_{13} z_{0}\right) E \\
& +2\left(r_{21} x_{0}+r_{22} y_{0}+r_{23} z_{0}\right) N \\
& +2\left(r_{31} x_{0}+r_{32} y_{0}+r_{33} z_{0}\right) U \tag{31}
\end{align*}
$$

Using equation (24) and noting that equation (25) can be re-arranged as $1-e^{2} \sin ^{2} \phi_{0}=\frac{a^{2}}{\nu_{0}^{2}}$ we have

$$
\begin{aligned}
x_{0}^{2}+y_{0}^{2}+z_{0}^{2} & =\nu_{0}^{2} \cos ^{2} \phi_{0}\left(\cos ^{2} \lambda_{0}+\sin ^{2} \lambda_{0}\right)+\nu_{0}^{2}\left(1-e^{2}\right)^{2} \sin ^{2} \phi_{0} \\
& =\nu_{0}^{2} \cos ^{2} \phi_{0}+\nu_{0}^{2} \sin ^{2} \phi_{0}\left(1-2 e^{2}+e^{4}\right) \\
& =\nu_{0}^{2} \cos ^{2} \phi_{0}+\nu_{0}^{2} \sin ^{2} \phi_{0}-2 \nu_{0}^{2} e^{2} \sin ^{2} \phi_{0}+\nu_{0}^{2} e^{4} \sin ^{2} \phi_{0} \\
& =\nu_{0}^{2}-2 \nu_{0}^{2} e^{2} \sin ^{2} \phi_{0}+\nu_{0}^{2} e^{4} \sin ^{2} \phi_{0} \\
& =\nu_{0}^{2}\left(1-e^{2} \sin ^{2} \phi_{0}\right)-\nu_{0}^{2} e^{2} \sin ^{2} \phi_{0}\left(1-e^{2}\right) \\
& =a^{2}-\left(\nu_{0}^{2}-a^{2}\right)\left(1-e^{2}\right)
\end{aligned}
$$

From equations (31), (23) and (24) we have

$$
\begin{aligned}
r_{11} x_{0}+r_{12} y_{0}+r_{13} z_{0}= & -\nu_{0} \cos \phi_{0} \cos \lambda_{0} \sin \lambda_{0}+\nu_{0} \cos \phi_{0} \sin \lambda_{0} \cos \lambda_{0}+0 \\
= & 0 \\
r_{21} x_{0}+r_{22} y_{0}+r_{23} z_{0}= & -\nu_{0} \cos \phi_{0} \sin \phi_{0} \cos ^{2} \lambda_{0}-\nu_{0} \sin \phi_{0} \cos \phi_{0} \sin ^{2} \lambda_{0} \\
& +\nu_{0}\left(1-e^{2}\right) \sin \phi_{0} \cos \phi_{0} \\
= & -\nu_{0} \cos \phi_{0} \sin \phi_{0}\left(\cos ^{2} \lambda_{0}+\sin ^{2} \lambda_{0}-1+e^{2}\right) \\
= & -\nu_{0} e^{2} \cos \phi_{0} \sin \phi_{0}
\end{aligned}
$$

and

$$
\begin{aligned}
r_{31} x_{0}+r_{32} y_{0}+r_{33} z_{0} & =\nu_{0} \cos ^{2} \phi_{0} \cos ^{2} \lambda_{0}+\nu_{0} \cos ^{2} \phi_{0} \sin ^{2} \lambda_{0}+\nu_{0}\left(1-e^{2}\right) \sin ^{2} \phi_{0} \\
& =\nu_{0} \cos ^{2} \phi_{0}+\nu_{0}\left(1-e^{2}\right) \sin ^{2} \phi_{0} \\
& =\nu_{0} \cos ^{2} \phi_{0}+\nu_{0} \sin ^{2} \phi_{0}-\nu_{0} e^{2} \sin ^{2} \phi_{0} \\
& =\nu_{0}\left(1-e^{2} \sin ^{2} \phi_{0}\right) \\
& =a^{2}
\end{aligned}
$$

Substituting these results into equation (31) gives

$$
\begin{align*}
x^{2}+y^{2}+z^{2}= & E^{2}+N^{2}+U^{2}+\nu_{0}^{2}\left(1-e^{2} \sin ^{2} \phi_{0}\right)-\nu_{0}^{2} e^{2} \sin ^{2} \phi_{0}\left(1-e^{2}\right) \\
& -2 \nu_{0} e^{2} \sin \phi_{0} \cos \phi_{0} N+2 \nu_{0}\left(1-e^{2} \sin ^{2} \phi_{0}\right) U \tag{32}
\end{align*}
$$

Using the expression for z^{2} given in equation (29), the term $e^{\prime 2} z^{2}$ in equation (21) can be expressed as

$$
\begin{gather*}
e^{\prime 2} z^{2}=e^{\prime 2}\left\{r_{13}^{2} E^{2}+r_{23}^{2} N^{2}+r_{33}^{2} U^{2}+2 r_{13} r_{23} E N+2 r_{13} r_{33} E U+2 r_{23} r_{33} N U\right. \tag{33}\\
\left.+z_{0}^{2}+2 r_{13} E z_{0}+2 r_{23} N z_{0}+2 r_{33} U z_{0}\right\}
\end{gather*}
$$

where

$$
\begin{aligned}
& r_{13}^{2}=0 ; \quad r_{23}^{2}=\cos ^{2} \phi ; \quad r_{33}^{2}=\sin ^{2} \phi \\
& 2 r_{13} r_{23}=0 ; 2 r_{13} r_{33}=0 ; 2 r_{23} r_{33}=2 \cos \phi_{0} \sin \phi_{0} ; \\
& z_{0}^{2}=\nu_{0}^{2}\left(1-e^{2}\right)^{2} \sin ^{2} \phi_{0} ; \\
& 2 r_{13} z_{0}=0 ; 2 r_{23} z_{0}=2 \nu_{0}\left(1-e^{2}\right) \cos \phi_{0} \sin \phi_{0} ; 2 r_{33} z_{0}=2 \nu_{0}\left(1-e^{2}\right) \sin ^{2} \phi_{0}
\end{aligned}
$$

and equation (33) can be expressed as

$$
\begin{aligned}
e^{\prime 2} z^{2}= & e^{\prime 2}\left(\cos ^{2} \phi_{0} N^{2}+\sin ^{2} \phi_{0} U^{2}+2 \cos \phi_{0} \sin \phi_{0} N U\right) \\
& +e^{\prime 2}\left(\nu_{0}^{2}\left(1-e^{2}\right)^{2} \sin ^{2} \phi_{0}+2 \nu_{0}\left(1-e^{2}\right) \cos \phi_{0} \sin \phi_{0} N+2 \nu_{0}\left(1-e^{2}\right) \sin ^{2} \phi_{0} U\right)
\end{aligned}
$$

But $e^{\prime 2}=\frac{e^{2}}{1-e^{2}}$ so we may write

$$
\begin{align*}
e^{\prime 2} z^{2}= & e^{\prime 2}\left(\cos \phi_{0} N+\sin \phi_{0} U\right)^{2} \\
& +\frac{e^{2}}{1-e^{2}}\left(\nu_{0}^{2}\left(1-e^{2}\right)^{2} \sin ^{2} \phi_{0}+2 \nu_{0}\left(1-e^{2}\right) \cos \phi_{0} \sin \phi_{0} N+2 \nu_{0}\left(1-e^{2}\right) \sin ^{2} \phi_{0} U\right) \\
= & e^{\prime 2}\left(\cos \phi_{0} N+\sin \phi_{0} U\right)^{2} \\
& +\nu_{0}^{2}\left(1-e^{2}\right)^{2} e^{2} \sin ^{2} \phi_{0}+2 \nu_{0} e^{2} \cos \phi_{0} \sin \phi_{0} N+2 \nu_{0} e^{2} \sin ^{2} \phi_{0} U \tag{34}
\end{align*}
$$

Substituting equations (32) and (34) into equation (21) gives

$$
\begin{aligned}
E^{2}+N^{2}+U^{2} & +e^{\prime 2}\left(\cos \phi_{0} N+\sin \phi_{0} U\right)^{2}-a^{2} \\
& +\nu_{0}^{2}\left(1-e^{2} \sin ^{2} \phi_{0}\right)-\nu_{0}^{2} e^{2} \sin ^{2} \phi_{0}\left(1-e^{2}\right) \\
& -2 \nu_{0} e^{2} \sin \phi_{0} \cos \phi_{0} N+2 \nu_{0}\left(1-e^{2} \sin ^{2} \phi_{0}\right) U \\
& +\nu_{0}^{2} e^{2} \sin ^{2} \phi_{0}\left(1-e^{2}\right)+2 \nu_{0} e^{2} \sin \phi_{0} \cos \phi_{0} N+2 \nu_{0} e^{2} \sin ^{2} \phi_{0} U=0
\end{aligned}
$$

And simplifying and noting that $\nu_{0}^{2}\left(1-e^{2} \sin ^{2} \phi_{0}\right)=a^{2}$ gives the Cartesian equation of the ellipsoid in local coordinates E, N, U as

$$
\begin{equation*}
E^{2}+N^{2}+U^{2}+e^{\prime 2}\left(\cos \phi_{0} N+\sin \phi_{0} U\right)^{2}+2 \nu_{0} U=0 \tag{35}
\end{equation*}
$$

The origin of the E, N, U system is at P_{1} with coordinates ϕ_{0}, λ_{0} where the radius of curvature of the prime vertical section is $\nu_{0}=\frac{a}{\left(1-e^{2} \sin ^{2} \phi_{0}\right)^{\frac{1}{2}}}$ and the first and second
eccentricities of the ellipsoid (a, f) are obtained from $e^{2}=f(2-f)$ and $e^{\prime 2}=\frac{e^{2}}{1-e^{2}}$
Equation (35) is similar to an equation given by Bowring (1978, p. 363, equation (10) with $x \equiv N \quad y \equiv-U, z \equiv E)$. Bowring does not give a derivation, but notes that his equation is taken from Tobey (1928).

CARTESIAN EQUATION OF THE NORMAL SECTION CURVE

The Cartesian equation of the normal section curve is developed as a function of local Cartesian coordinates ζ, η, ξ which are rotated from the local E, N, U system by the azimuth α of the normal section plane.

Figure 5: Normal section plane between P_{1} and P_{2} on the ellipsoid
Figure 5 shows a normal section plane having an azimuth α between P_{1} and P_{2} on the ellipsoid and a local Cartesian coordinate system E, N, U with an origin at P_{1}.

Cartesian equations of the ellipsoid in geocentric and local coordinates given by equations (1), (21) and (35) are:

$$
\begin{gathered}
\frac{x^{2}+y^{2}}{a^{2}}+\frac{z^{2}}{b^{2}}=1 \\
x^{2}+y^{2}+z^{2}+e^{\prime 2} z^{2}-a^{2}=0 \\
E^{2}+N^{2}+U^{2}+e^{\prime 2}\left(\cos \phi_{0} N+\sin \phi_{0} U\right)^{2}+2 \nu_{0} U=0
\end{gathered}
$$

Consider a rotation of the E, N, U system about the U-axis by the azimuth α so that the rotated N-axis lies in the normal section plane and the rotated E-axis is perpendicular to the plane. Denote this rotated E, N, U system as ζ, η, ξ shown in Figure 6

Figure 6: Rotated local coordinate system ζ, η, ξ

These two local Cartesian systems; E, N, U and ζ, η, ξ are related by

$$
\left[\begin{array}{c}
\zeta \\
\eta \\
\xi
\end{array}\right]=\left[\begin{array}{ccc}
\cos \alpha & -\sin \alpha & 0 \\
\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
E \\
N \\
U
\end{array}\right]
$$

and

$$
\left[\begin{array}{c}
E \\
N \\
U
\end{array}\right]=\left[\begin{array}{ccc}
\cos \alpha & \sin \alpha & 0 \\
-\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\zeta \\
\eta \\
\xi
\end{array}\right]
$$

and we may write

$$
\begin{array}{ll}
E=\zeta \cos \alpha+\eta \sin \alpha ; & E^{2}=\zeta^{2} \cos ^{2} \alpha+\eta^{2} \sin ^{2} \alpha+2 \zeta \eta \cos \alpha \sin \alpha \\
N=\eta \cos \alpha-\zeta \sin \alpha ; & N^{2}=\zeta^{2} \sin ^{2} \alpha+\eta^{2} \cos ^{2} \alpha-2 \zeta \eta \cos \alpha \sin \alpha \tag{36}\\
U=\xi & U^{2}=\xi^{2}
\end{array}
$$

giving

$$
\begin{equation*}
E^{2}+N^{2}+U^{2}=\zeta^{2}+\eta^{2}+\xi^{2} \tag{37}
\end{equation*}
$$

Substituting equations (36) and (37) into equation (35) gives

$$
\begin{equation*}
\zeta^{2}+\eta^{2}+\xi^{2}+e^{\prime 2}\left(-\zeta \sin \alpha \cos \phi_{0}+\eta \cos \alpha \cos \phi_{0}+\xi \sin \phi_{0}\right)^{2}+2 \nu_{0} \xi=0 \tag{38}
\end{equation*}
$$

This is the Cartesian equation of an ellipsoid where the local Cartesian coordinates ζ, η, ξ have an origin at $P_{1}\left(\phi_{0}, \lambda_{0}\right)$ on the ellipsoid (a, f) with the ξ-axis in the direction of the outward normal at P_{1}; the $\xi-\eta$ plane is coincident with the normal section plane making an angle α with the meridian plane of P_{1}; and the $\xi-\zeta$ plane is perpendicular to the normal section plane. As before the radius of curvature of the prime vertical section is $\nu_{0}=\frac{a}{\left(1-e^{2} \sin ^{2} \phi_{0}\right)^{\frac{1}{2}}}$ and the first and second eccentricities of the ellipsoid are obtained from $e^{2}=f(2-f)$ and $e^{\prime 2}=\frac{e^{2}}{1-e^{2}}$.

Setting $\zeta=0$ in equation (38) will give the equation of the normal section plane as

$$
\begin{equation*}
\eta^{2}+\xi^{2}+e^{\prime 2}\left(\eta \cos \alpha \cos \phi_{0}+\xi \sin \phi_{0}\right)^{2}+2 \nu_{0} \xi=0 \tag{39}
\end{equation*}
$$

Expanding equation (39) gives

$$
\eta^{2}+\eta^{2} e^{\prime 2} \cos ^{2} \alpha \cos ^{2} \phi_{0}+\xi^{2}+\xi^{2} e^{\prime 2} \sin ^{2} \phi_{0}+2 \eta \xi e^{\prime 2} \cos \alpha \cos \phi_{0} \sin \phi_{0}+2 \nu_{0} \xi=0
$$

which can be simplified to

$$
\begin{equation*}
\xi^{2}\left(1+g^{2}\right)+2 \xi \eta g h+\eta^{2}\left(1+h^{2}\right)+2 \nu_{0} \xi=0 \tag{40}
\end{equation*}
$$

where g and h are constants of the normal section and

$$
\begin{align*}
& g=e^{\prime} \sin \phi_{0} \quad=\frac{e}{\sqrt{1-e^{2}}} \sin \phi_{0} \tag{41}\\
& h=e^{\prime} \cos \alpha \cos \phi_{0}=\frac{e}{\sqrt{1-e^{2}}} \cos \alpha \sin \phi_{0}
\end{align*}
$$

Equation (40) is similar to Clarke (1880, equation 14, p. 107) although Clarke's derivation is different and very concise; taking only 11 lines of text and diagrams.

POLAR EQUATION OF THE NORMAL SECTION CURVE

Figure 7: Normal section curve $f(\xi, \eta)$
The Cartesian equation of the normal section curve in local coordinates $\xi, \eta, \zeta=0$ is given by equations (40) and (41) given the latitude ϕ_{0} of P_{1}, the ellipsoid constant e^{2} and the azimuth α of the normal section plane.

The equation of the curve in polar coordinates r, θ; where r is a chord of the curve and θ is the zenith distance of the chord, can be obtained in the following manner.

First, from Figure 7, we may write

$$
\begin{align*}
& \xi=r \cos \theta \\
& \eta=r \sin \theta \tag{42}
\end{align*}
$$

And second, we may re-arrange equation (40) as

$$
\begin{equation*}
\xi^{2}+\eta^{2}+(g \xi+h \eta)^{2}=-2 \nu_{0} \xi \tag{43}
\end{equation*}
$$

Squaring equations (42) and adding gives

$$
\begin{equation*}
\xi^{2}+\eta^{2}=r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=r^{2} \tag{44}
\end{equation*}
$$

and the third term in equation (43) can be expressed as

$$
\begin{align*}
(g \xi+h \eta)^{2} & =(g r \cos \theta+h r \sin \theta)^{2} \\
& =g^{2} r^{2} \cos ^{2} \theta+h^{2} r^{2} \sin ^{2} \theta+2 g h r^{2} \sin \theta \cos \theta \\
& =r^{2}(g \cos \theta+h \sin \theta)^{2} \tag{45}
\end{align*}
$$

Substituting equations (44) and (45) into equation (43) and re-arranging gives the polar equation of the normal section curve

$$
\begin{equation*}
r=\frac{-2 \nu_{0} \cos \theta}{1+(g \cos \theta+h \sin \theta)^{2}} \tag{46}
\end{equation*}
$$

ARC LENGTH ALONG A NORMAL SECTION CURVE

To evaluate the arc length s along the normal section curve, consider the following

Figure 8: Small element of arc length along a normal section curve
In Figure 8 , when $\Delta \theta$ is small, then $A M \simeq r \Delta \theta$ and the arc length Δs is approximated by the chord $A B$ and $(\Delta s)^{2} \simeq(r \Delta \theta)^{2}+(\Delta r)^{2}$ or

$$
\begin{aligned}
\Delta s & =\sqrt{(r \Delta \theta)^{2}+(\Delta r)^{2}} \\
& =\sqrt{(\Delta \theta)^{2}\left(r^{2}+\left(\frac{\Delta r}{\Delta \theta}\right)^{2}\right)}
\end{aligned}
$$

and

$$
\frac{\Delta s}{\Delta \theta}=\sqrt{r^{2}+\left(\frac{\Delta r}{\Delta \theta}\right)^{2}}
$$

Taking the limit of $\frac{\Delta s}{\Delta \theta}$ as $\Delta \theta \rightarrow 0$ gives

$$
\begin{equation*}
\lim _{\Delta \theta \rightarrow 0}\left(\frac{\Delta s}{\Delta \theta}\right)=\frac{d s}{d \theta}=\sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} \tag{47}
\end{equation*}
$$

and the arc length is given by

$$
\begin{equation*}
s=\int d s=\int_{\theta=\theta_{A}}^{\theta=\theta_{B}}\left\{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}\right\}^{\frac{1}{2}} d \theta \tag{48}
\end{equation*}
$$

Referring to Figure 7 the η-axis is tangential to the normal section curve $P_{1} P_{2}$ at P_{1} and the zenith distance $\theta=\theta_{A}=\frac{\pi}{2}$ and $r=0$. And when $\theta=\theta_{B}=\theta_{2}$ then the chord $r=P_{1} P_{2}$ and the arc length of the normal section curve is given by

$$
\begin{equation*}
s=\int d s=\int_{\theta=\frac{\pi}{2}}^{\theta=\theta_{2}}\left\{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}\right\}^{\frac{1}{2}} d \theta \tag{49}
\end{equation*}
$$

r is given by equation (46) with normal section constants g and h given by equations (41). The derivative $\frac{d r}{d \theta}$ can be obtained from equation (46) using the quotient rule for differential calculus

$$
\begin{equation*}
\frac{d r}{d \theta}=\frac{d}{d \theta}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d \theta}-u \frac{d v}{d \theta}}{v^{2}} \tag{50}
\end{equation*}
$$

where

$$
\begin{align*}
u & =-2 \nu_{0} \cos \theta ; & v & =1+(g \cos \theta+h \sin \theta)^{2} \\
\frac{d u}{d \theta} & =2 \nu_{0} \sin \theta ; & \frac{d v}{d \theta} & =2(g \cos \theta+h \sin \theta)(h \cos \theta-g \sin \theta) \tag{51}
\end{align*}
$$

The arc length of the normal section curve between P_{1} and P_{2} can be found by evaluating the integral given in equation (49). This integral cannot be solved analytically but may be evaluated by a numerical integration technique known Romberg integration. Appendix 1 contains a development of the formula used in Romberg integration as well as a MATLAB function demonstrating the algorithm.

SOLVING THE DIRECT AND INVERSE PROBLEMS ON THE ELLIPSOID USING NORMAL SECTIONS

The direct problem on an ellipsoid is: given latitude and longitude of P_{1}, azimuth α_{12} of the normal section $P_{1} P_{2}$ and the arc length s along the normal section curve; compute the latitude and longitude of P_{2}.

The inverse problem on an ellipsoid is: given the latitudes and longitudes of P_{1} and P_{2} compute the azimuth α_{12} and the arc length s along the normal section curve $P_{1} P_{2}$.

Note 1. In general there are two normal section curves joining P_{1} and P_{2}. We are only dealing with the single normal section $P_{1} P_{2}$ (containing the normal at P_{1} - see Figure 3) and so only the forward azimuth α_{12} is given or computed. The reverse azimuth α_{21} is the azimuth of the normal section $P_{2} P_{1}$ (containing the normal at P_{2}) which is a different curve from normal section curve $P_{1} P_{2}$.

Note 2. The usual meaning of: solving the direct and inverse problems on the ellipsoid would imply the use of the geodesic; the unique curve defining the shortest distance between two points. And solving these problems is usually done using Bessel's method with Vincenty's equations (Deakin \& Hunter 2007) or Pittman's method (Deakin \& Hunter 2007).

In the solutions of the direct and inverse problems set out in subsequent sections, the following notation and relationships are used.
a, f semi-major axis length and flattening of ellipsoid.
b semi-minor axis length of the ellipsoid, $b=a(1-f)$
e^{2} eccentricity of ellipsoid squared, $e^{2}=f(2-f)$
$e^{\prime 2}$ 2nd-eccentricity of ellipsoid squared, $e^{\prime 2}=\frac{e^{2}}{1-e^{2}}$
ϕ, λ latitude and longitude on ellipsoid: ϕ measured 0° to $\pm 90^{\circ}$ (north latitudes positive and south latitudes negative) and λ measured 0° to $\pm 180^{\circ}$ (east longitudes positive and west longitudes negative).
s length of the normal section curve on the ellipsoid.
α_{12} azimuth of normal section $P_{1} P_{2}$
α_{12}^{\prime} azimuth of normal section $P_{2} P_{1}$ (measured in the local horizon plane of P_{1})
α_{21} reverse azimuth; azimuth of normal section $P_{2} P_{1}$
c chord $P_{1} P_{2}$
θ zenith distance of the chord c
x, y, z are geocentric Cartesian coordinates with an origin at the centre of the ellipsoid and where the z-axis is coincident with the rotational axis of the ellipsoid, the $x-z$ plane is the Greenwich meridian plane and the $x-y$ plane is the equatorial plane of the ellipsoid.
$x^{\prime}, y^{\prime}, z^{\prime}$ are geocentric Cartesian coordinates with an origin at the centre of the ellipsoid and where the z^{\prime}-axis is coincident with the rotational axis of the ellipsoid, the $x^{\prime}-z^{\prime}$ plane is the meridian plane of P_{1} and the $x^{\prime}-y^{\prime}$ plane is the equatorial plane of the ellipsoid. The $x^{\prime}, y^{\prime}, z^{\prime}$ system is rotated from the x, y, z system by an angle λ_{1} about the z-axis.
vectors a vector a defining the length and direction of a line from point 1 to point 2 is given by the formula $\mathbf{a}=a_{i} \mathbf{i}+a_{j} \mathbf{j}+a_{k} \mathbf{k}$ where $a_{i}=x_{2}-x_{1}, a_{j}=y_{2}-y_{1}$ and $a_{k}=z_{2}-z_{1}$ are the vector components and \mathbf{i}, \mathbf{j}, and \mathbf{k} are unit vectors in the direction of the positive x, y, and z axes respectively. The components of a unit vector $\hat{\mathbf{a}}=\frac{\mathbf{a}}{|\mathbf{a}|}$ can be calculated by dividing each component by the magnitude of the vector $|\mathbf{a}|=\sqrt{a_{i}^{2}+a_{j}^{2}+a_{k}^{2}}$.
For vectors \mathbf{a} and \mathbf{b} the $\underline{\text { vector dot product }}$ is $\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \theta$ where θ is the angle between the vectors. For unit vectors $\hat{\mathbf{a}} \cdot \hat{\mathbf{b}}=\cos \theta$. The vector dot product is a scalar quantity $S=a_{i} b_{i}+a_{j} b_{j}+a_{k} b_{k}$, hence for unit vectors the angle between them is given by $\cos \theta=S$.
For vectors \mathbf{a} and \mathbf{b} the vector cross product is $\mathbf{a} \times \mathbf{b}=|\mathbf{a}||\mathbf{b}| \sin \theta \hat{\mathbf{p}}$ where $\hat{\mathbf{p}}$ is a unit vector perpendicular to the plane containing \mathbf{a} and \mathbf{b} and in the direction of a right-handed screw rotated from \mathbf{a} to \mathbf{b}. The result of a vector cross product is another vector whose components are given by $\mathbf{a} \times \mathbf{b}=\left(a_{j} b_{k}-a_{k} b_{j}\right) \mathbf{i}-\left(a_{i} b_{k}-a_{k} b_{i}\right) \mathbf{j}+\left(a_{i} b_{j}-a_{j} b_{i}\right) \mathbf{k}$. The components of the unit vector $\hat{\mathbf{p}}$ are found by dividing each component of the cross product by the magnitudes $|\mathbf{a}|$ and $|\mathbf{b}|$, and the sine of the angle between them. For unit vectors $\hat{\mathbf{a}} \times \hat{\mathbf{b}}=\sin \theta \hat{\mathbf{p}}$ and for perpendicular unit vectors $\hat{\mathbf{a}} \times \hat{\mathbf{b}}=\hat{\mathbf{p}}$.

THE DIRECT PROBLEM ON THE ELLIPSOID USING A NORMAL SECTION

The direct problem is: Given latitude and longitude of P_{1}, azimuth α_{12} of the normal section $P_{1} P_{2}$ and the arc length s along the normal section curve; compute the latitude and longitude of P_{2}.

With the ellipsoid constants a, f, e^{2} and $e^{\prime 2}$ and given $\phi_{1}, \lambda_{1}, \alpha_{12}$ and s the problem may be solved by the following sequence.

1. Compute ν_{1} the radius of curvature in the prime vertical plane of P_{1} from

$$
\nu_{1}=\frac{a}{\left(1-e^{2} \sin ^{2} \phi_{1}\right)^{\frac{1}{2}}}
$$

2. Compute the constants g and h of the normal section $P_{1} P_{2}$ from

$$
\begin{aligned}
& g=e^{\prime} \sin \phi_{1} \quad=\frac{e}{\sqrt{1-e^{2}}} \sin \phi_{1} \\
& h=e^{\prime} \cos \alpha_{12} \cos \phi_{1}=\frac{e}{\sqrt{1-e^{2}}} \cos \alpha_{12} \sin \phi_{1}
\end{aligned}
$$

3. Compute the chord $c=P_{1} P_{2}$ and the zenith distance θ of the chord $P_{1} P_{2}$ by iteration using the following sequence of operations until there is negligible change in the computed chord distance
start \quad Set the counter $k=1$ and set the chord $c_{k}=s$
(i) Set the counter $n=1$ and set the zenith distance $\theta_{n}=\frac{\pi}{2}$
(ii) Use Newton-Raphson iteration to compute the zenith distance of the chord using equation (46) rearranged as
$f(\theta)=c+c(g \cos \theta+h \sin \theta)^{2}-2 \nu_{1} \cos \theta=0$ and the iterative formula
$\theta_{n+1}=\theta_{n}-\frac{f\left(\theta_{n}\right)}{f^{\prime}\left(\theta_{n}\right)}$ where $f^{\prime}\left(\theta_{n}\right)$ is the derivative of $f\left(\theta_{n}\right)$ and
$f\left(\theta_{n}\right)=c_{k}+c_{k}\left(g \cos \theta_{n}+h \sin \theta_{n}\right)^{2}-2 \nu_{1} \cos \theta_{n}$
$f^{\prime}\left(\theta_{n}\right)=2 c_{k}\left(g \cos \theta_{n}+h \sin \theta_{n}\right)\left(h \cos \theta_{n}-g \sin \theta_{n}\right)-2 \nu_{1} \sin \theta_{n}$
Note that the iteration for θ is terminated when θ_{n} and θ_{n+1} differ by an acceptably small value.
(iii) Compute the arc length s_{k} using Romberg integration given $a, f, \phi_{1}, \alpha_{12}, \theta$
(iv) Compute the small change in arc length $d s=s_{k}-s$
(v) If $d s<0.000001$ then go to end; else go (vi)
(vi) Increment k, compute new chord $c_{k}=c_{k-1}-d s$ and go to (i)
end Iteration for the chord $c=P_{1} P_{2}$ and the zenith distance θ of the chord $P_{1} P_{2}$ is complete.
4. Compute the x, y, z coordinates of P_{1} using

$$
\begin{aligned}
& x_{1}=\nu_{1} \cos \phi_{1} \cos \lambda_{1} \\
& y_{1}=\nu_{1} \cos \phi_{1} \sin \lambda_{1} \\
& z_{1}=\nu_{1}\left(1-e^{2}\right) \sin \phi_{1}
\end{aligned}
$$

5. Compute coordinate differences $\Delta x^{\prime}, \Delta y^{\prime}, \Delta z^{\prime}$ in the $x^{\prime}, y^{\prime}, z^{\prime}$ using

$$
\begin{aligned}
& \Delta x^{\prime}=-c \sin \theta \cos \alpha_{12} \sin \phi_{1}+c \cos \theta \cos \phi_{1} \\
& \Delta y^{\prime}=c \sin \theta \sin \alpha_{12} \\
& \Delta z^{\prime}=c \sin \theta \cos \alpha_{12} \cos \phi_{1}+c \cos \theta \sin \phi_{1}
\end{aligned}
$$

6. Rotate the $x^{\prime}, y^{\prime}, z^{\prime}$ coordinate differences to x, y, z coordinate differences by a rotation of λ_{1} about the z^{\prime}-axis using

$$
\begin{aligned}
& \Delta x=\Delta x^{\prime} \cos \lambda_{1}-\Delta y^{\prime} \sin \lambda_{1} \\
& \Delta y=\Delta x^{\prime} \sin \lambda_{1}+\Delta y^{\prime} \cos \lambda_{1} \\
& \Delta z=\Delta z^{\prime}
\end{aligned}
$$

7. Compute x, y, z coordinates of P_{2} using

$$
\begin{aligned}
& x_{2}=x_{1}+\Delta x \\
& y_{2}=y_{1}+\Delta y \\
& z_{2}=z_{1}+\Delta z
\end{aligned}
$$

8. Compute latitude and longitude of P_{2} by conversion $x, y, z \Rightarrow \phi, \lambda, h$ using Bowring's method.

Shown below is the output of a MATLAB function nsection_direct. m that solves the direct problem on the ellipsoid for normal sections.
The ellipsoid is the GRS80 ellipsoid and ϕ, λ for P_{1} are -10° and 110° respectively with $\alpha_{12}=140^{\circ} 28^{\prime} 31.981931^{\prime \prime}$ and $s=5783228.924736 \mathrm{~m} . \phi, \lambda \underline{\text { computed }}$ for P_{2} are -45° and 155° respectively.

```
>> nsection_direct
////////////////////////////////
// Normal Section: Direct Case //
////////////////////////////////
ellipsoid parameters
a = 6378137.000000000
f = 1/298.257222101000
e2 = 6.694380022901e-003
ep2 = 6.694380022901e-003
Latitude P1 = -10 0 0.000000 (D M S)
Longitude P1 = 110 0 0.000000 (D M S)
Azimuth of normal section P1-P2
Az12 = 140 28 31.981931 (D M S)
normal section distance P1-P2
s = 5783228.924736
chord distance P1-P2
c = 5586513.169887
iterations = 13
Zenith distance of chord at P1
zd = 116 2 20.450079 (D M S)
iterations = 5
Cartesian coordinates
    X Y Z
P1 -2148527.045536 5903029.542697 -1100248.547700
P2 -4094327.792179 1909216.404490 -4487348.408756
dX = -1945800.746643
dY = -3993813.138207
dZ = -3387099.861057
Latitude P2 = -45 0 0.000000 (D M S)
Longitude P2 = 154 59 60.000000 (D M S)
>>
```


THE INVERSE PROBLEM ON THE ELLIPSOID USING A NORMAL SECTION

The inverse problem is: Given latitudes and longitudes of P_{1} and P_{2} on the ellipsoid compute the azimuth α_{12} of the normal section $P_{1} P_{2}$ and the arc length s of the normal section curve.

With the ellipsoid constants a, f, e^{2} and $e^{\prime 2}$ and given ϕ_{1}, λ_{1} and ϕ_{2}, λ_{2} the problem may be solved by the following sequence.

1. Compute ν_{1} and ν_{2} the radii of curvature in the prime vertical plane of P_{1} and P_{2} from

$$
\nu=\frac{a}{\left(1-e^{2} \sin ^{2} \phi\right)^{\frac{1}{2}}}
$$

2. Compute the x, y, z coordinates of P_{1}, P_{2}, P_{3} and P_{4} noting that P_{3} is at the intersection of the normal through P_{1} and the rotational axis of the ellipsoid and P_{4} is at the intersection of the normal through P_{2} and the rotational axis. Coordinate of P_{1} and P_{2} are obtained from

$$
\begin{aligned}
& x=\nu \cos \phi \cos \lambda \\
& y=\nu \cos \phi \sin \lambda \\
& z=\nu\left(1-e^{2}\right) \sin \phi
\end{aligned}
$$

The x and y coordinates of P_{3} and P_{4} are zero and the z coordinate is obtained from

$$
z=-\nu e^{2} \sin \phi
$$

3. Compute the coordinate differences

$$
\begin{aligned}
& \Delta x=x_{2}-x_{1} \\
& \Delta y=y_{2}-y_{1} \\
& \Delta z=z_{2}-z_{1}
\end{aligned}
$$

4a. Compute vector $\mathbf{c}=(\Delta x) \mathbf{i}+(\Delta y) \mathbf{j}+(\Delta z) \mathbf{k}$ in the direction of the chord $P_{1} P_{2}$.
4b. Compute chord distance $c=|\mathbf{c}|$ and the unit vector $\hat{\mathbf{c}}=\frac{\mathbf{c}}{|\mathbf{c}|}$
5. Compute vector $\mathbf{u}=\left(x_{1}\right) \mathbf{i}+\left(y_{1}\right) \mathbf{j}+\left(z_{1}-z_{3}\right) \mathbf{k}$ and the unit vector $\hat{\mathbf{u}}=\frac{\mathbf{u}}{|\mathbf{u}|}$ in the direction of the outward normal through P_{1}.
6. Set the unit vector $\hat{\mathbf{z}}=0 \mathbf{i}+0 \mathbf{j}+1 \mathbf{k}$ in the direction of the z-axis
7. Compute the zenith distance of the chord from the vector dot product

$$
\cos \theta=\hat{u}_{i} \hat{c}_{i}+\hat{u}_{j} \hat{c}_{j}+\hat{u}_{k} \hat{c}_{k}
$$

8. Compute the unit vector ê perpendicular to the meridian plane of P_{1} from vector cross product ($\hat{\mathbf{e}}$ is in the direction of east)

$$
\hat{\mathbf{e}}=\frac{\hat{\mathbf{z}} \times \hat{\mathbf{u}}}{\cos \phi_{1}}=\left(\frac{\hat{z}_{j} \hat{u}_{k}-\hat{z}_{k} \hat{u}_{j}}{\cos \phi_{1}}\right) \mathbf{i}-\left(\frac{\hat{z}_{i} \hat{u}_{k}-\hat{z}_{k} \hat{u}_{i}}{\cos \phi_{1}}\right) \mathbf{j}+\left(\frac{\hat{z}_{i} \hat{u}_{j}-\hat{z}_{j} \hat{u}_{i}}{\cos \phi_{1}}\right) \mathbf{k}
$$

9. Compute the unit vector $\hat{\mathbf{n}}$ in the meridian plane of P_{1} from vector cross product. ($\hat{\mathbf{n}}$ is in the direction of north)

$$
\hat{\mathbf{n}}=\hat{\mathbf{u}} \times \hat{\mathbf{e}}=\left(\hat{u}_{j} \hat{e}_{k}-\hat{u}_{k} \hat{e}_{j}\right) \mathbf{i}-\left(\hat{u}_{i} \hat{e}_{k}-\hat{u}_{k} \hat{e}_{i}\right) \mathbf{j}+\left(\hat{u}_{i} \hat{e}_{j}-\hat{u}_{j} \hat{e}_{i}\right) \mathbf{k}
$$

10. Compute the unit vector $\hat{\mathbf{p}}$ perpendicular to the normal section $P_{1} P_{2}$ from vector cross product. ($\hat{\mathbf{p}}$ lies in the local horizon plane of P_{1})

$$
\hat{\mathbf{p}}=\frac{\hat{\mathbf{u}} \times \hat{\mathbf{c}}}{\sin \theta}=\left(\frac{\hat{u}_{j} \hat{c}_{k}-\hat{u}_{k} \hat{c}_{j}}{\sin \theta}\right) \mathbf{i}-\left(\frac{\hat{u}_{i} \hat{c}_{k}-\hat{u}_{k} \hat{c}_{i}}{\sin \theta}\right) \mathbf{j}+\left(\frac{\hat{u}_{i} \hat{c}_{j}-\hat{u}_{j} \hat{c}_{i}}{\sin \theta}\right) \mathbf{k}
$$

11. Compute the unit vector $\hat{\mathbf{g}}$ in the local horizon plane of P_{1} and in the direction of the normal section $P_{1} P_{2}$ from vector cross product.

$$
\hat{\mathbf{g}}=\hat{\mathbf{p}} \times \hat{\mathbf{u}}=\left(\hat{p}_{j} \hat{u}_{k}-\hat{p}_{k} \hat{u}_{j}\right) \mathbf{i}-\left(\hat{p}_{i} \hat{u}_{k}-\hat{p}_{k} \hat{u}_{i}\right) \mathbf{j}+\left(\hat{p}_{i} \hat{u}_{j}-\hat{p}_{j} \hat{u}_{i}\right) \mathbf{k}
$$

12. Compute the azimuth α_{12} if the normal section $P_{1} P_{2}$ using vector dot products to first compute angles α (between $\hat{\mathbf{n}}$ and $\hat{\mathbf{g}}$) and β (between $\hat{\mathbf{e}}$ and $\hat{\mathbf{g}}$) from

$$
\begin{aligned}
\cos \alpha & =\hat{n}_{i} \hat{g}_{i}+\hat{n}_{j} \hat{g}_{j}+\hat{n}_{k} \hat{g}_{k} \\
\cos \beta & =\hat{e}_{i} \hat{g}_{i}+\hat{e}_{j} \hat{g}_{j}+\hat{e}_{k} \hat{g}_{k}
\end{aligned}
$$

If $\beta>90^{\circ}$ then $\alpha_{12}=360^{\circ}-\alpha$; else $\alpha_{12}=\alpha$
13. Compute the vector $\mathbf{w}=\left(x_{1}\right) \mathbf{i}+\left(y_{1}\right) \mathbf{j}+\left(z_{1}-z_{4}\right) \mathbf{k}$ and the unit vector $\hat{\mathbf{w}}=\frac{\mathbf{w}}{|\mathbf{w}|}(\mathbf{w}$ is in the direction of the line $P_{4} P_{1}$ and lies in the meridian plane of $\left.P_{1}\right)$.
14. Compute the angle γ between $\hat{\mathbf{w}}$ and $\hat{\mathbf{c}}$ from the vector dot product

$$
\cos \gamma=\hat{w}_{i} \hat{c}_{i}+\hat{w}_{j} \hat{c}_{j}+\hat{w}_{k} \hat{c}_{k}
$$

15. Compute the angle δ between $\hat{\mathbf{w}}$ and $\hat{\mathbf{u}}$ from the vector dot product (δ lies in the meridian plane of P_{1})

$$
\cos \delta=\hat{w}_{i} \hat{u}_{i}+\hat{w}_{j} \hat{u}_{j}+\hat{w}_{k} \hat{u}_{k}
$$

16. Compute the unit vector $\hat{\mathbf{q}}$ perpendicular to the normal section $P_{2} P_{1}$ from vector cross product

$$
\hat{\mathbf{q}}=\frac{\hat{\mathbf{w}} \times \hat{\mathbf{c}}}{\sin \gamma}=\left(\frac{\hat{w}_{j} \hat{c}_{k}-\hat{w}_{k} \hat{c}_{j}}{\sin \gamma}\right) \mathbf{i}-\left(\frac{\hat{w}_{i} \hat{c}_{k}-\hat{w}_{k} \hat{c}_{i}}{\sin \gamma}\right) \mathbf{j}+\left(\frac{\hat{w}_{i} \hat{c}_{j}-\hat{w}_{j} \hat{c}_{i}}{\sin \gamma}\right) \mathbf{k}
$$

17. Compute the unit vector $\hat{\mathbf{h}}$ in the local horizon plane of P_{1} and in the direction of the normal section $P_{2} P_{1}$ from vector cross product.

$$
\hat{\mathbf{h}}=\frac{\hat{\mathbf{q}} \times \hat{\mathbf{u}}}{\cos \delta}=\left(\frac{\hat{q}_{u^{\prime}} \hat{u}_{k}-\hat{q}_{k} \hat{u}_{j}}{\cos \delta}\right) \mathbf{i}-\left(\frac{\hat{q}_{i} \hat{u}_{k}-\hat{q}_{k} \hat{u}_{i}}{\cos \delta}\right) \mathbf{j}+\left(\frac{\hat{q}_{i} \hat{u}_{j}-\hat{q}_{j} \hat{u}_{i}}{\cos \delta}\right) \mathbf{k}
$$

18. Compute the azimuth α_{12}^{\prime} of the normal section $P_{2} P_{1}$ using vector dot products to first compute angles α (between $\hat{\mathbf{n}}$ and $\hat{\mathbf{h}}$) and β (between $\hat{\mathbf{e}}$ and $\hat{\mathbf{h}}$) from

$$
\begin{aligned}
& \cos \alpha=\hat{n}_{i} \hat{h}_{i}+\hat{n}_{j} \hat{h}_{j}+\hat{n}_{k} \hat{h}_{k} \\
& \cos \beta=\hat{e}_{i} \hat{h}_{i}+\hat{e}_{j} \hat{h}_{j}+\hat{e}_{k} \hat{h}_{k}
\end{aligned}
$$

If $\beta>90^{\circ}$ then $\alpha_{12}^{\prime}=360^{\circ}-\alpha$; else $\alpha_{12}^{\prime}=\alpha$
19. Compute the small angle ε between the two normal section planes at P_{1}

$$
\varepsilon=\left|\alpha_{12}-\alpha_{12}^{\prime}\right|
$$

20. Compute arc length s along the normal section curve $P_{1} P_{2}$ using Romberg Integration.

Shown below is the output of a MATLAB function nsection_inverse.m that solves the inverse problem on the ellipsoid for normal sections.
The ellipsoid is the GRS80 ellipsoid and ϕ, λ for P_{1} are -10° and 110° respectively and ϕ, λ for P_{2} are -45° and 155° respectively.

Computed azimuths are $\alpha_{12}=140^{\circ} 28^{\prime} 31.981931^{\prime \prime}$ and $\alpha_{12}^{\prime}=140^{\circ} 32^{\prime} 18.496009^{\prime \prime}$, and $s=5783228.924736 \mathrm{~m}$.

```
>> nsection_inverse
//////////////////////////////////
// Normal Section: Inverse Case //
//////////////////////////////////
ellipsoid parameters
a = 6378137.000000000
f = 1/298.257222101000
e2 = 6.694380022901e-003
ep2 = 6.694380022901e-003
Latitude P1 = -10 0 0.000000 (D M S)
Longitude P1 = 110 0 0.000000 (D M S)
Latitude P2 = -45 0 0.000000 (D M S)
Longitude P2 = 155 0 0.000000 (D M S)
Cartesian coordinates
    X Y Z
P1 -2148527.045536 5903029.542697 -1100248.547700
P2 -4094327.792180 1909216.404490 -4487348.408755
P3 0.000000 0.000000 7415.121539
P4 0.000000 0.000000 30242.470131
dX = -1945800.746645
dY = -3993813.138206
dZ = -3387099.861055
Chord distance P1-P2
chord = 5586513.169886
Zenith distance of chord at P1
zd = 116 2 20.450079 (D M S)
Azimuth of normal section P1-P2
Az12 = 140 28 31.981931 (D M S)
Azimuth of normal section P2-P1
Az21 = 297 47 44.790362 (D M S)
Azimuth of normal section P2-P1 at P1
Az'12 = 140 32 18.496009 (D M S)
Angle between normal sections at P1
epsilon = 0 3 46.514078 (D M S)
ROMBERG INTEGRATION TABLE
1 5783427.529966
2 5783278.294728 5783228.549649
3 5783241.249912 5783228.901640 5783228.925106
4 5783232.004951 5783228.923298 5783228.924742 5783228.924736
5 5783229.694723 5783228.924646 5783228.924736 5783228.924736
normal section distance P1-P2
s = 5783228.924736
>>
```


DIFFERENCE IN LENGTH BETWEEN GEODESIC AND NORMAL SECTION

There are five curves of interest in geodesy; the geodesic, the normal section, the great elliptic arc the loxodrome and the curve of alignment.

The geodesic between P_{1} and P_{2} on an ellipsoid is the unique curve on the surface defining the shortest distance; all other curves will be longer in length. The normal section curve $P_{1} P_{2}$ is a plane curve created by the intersection of the normal section plane containing the normal at P_{1} and also P_{2} with the ellipsoid surface. And as we have shown there is the other normal section curve $P_{2} P_{1}$. The curve of alignment is the locus of all points Q such that the normal section plane at Q also contains the points P_{1} and P_{2}. The curve of alignment is very close to a geodesic. The great elliptic arc is the plane curve created by intersecting the plane containing P_{1}, P_{2} and the centre O with the surface of the ellipsoid and the loxodrome is the curve on the surface that cuts each meridian between P_{1} and P_{2} at a constant angle.

Approximate equations for the difference in length between the geodesic, the normal section curve and the curve of alignment were developed by Clarke (1880, p. 133) and Bowring (1972, p. 283) developed an approximate equation for the difference between the geodesic and the great elliptic arc. Following Bowring (1972), let

$$
\begin{aligned}
& s=\text { geodesic length } \\
& L=\text { normal section length } \\
& D=\text { great elliptic length } \\
& S=\text { curve of alignment length }
\end{aligned}
$$

then

$$
\begin{align*}
& L-s=\frac{e^{4}}{90} s\left(\frac{s}{R}\right)^{4} \cos ^{4} \phi_{1} \sin ^{2} \alpha_{12} \cos ^{2} \alpha_{12}+\cdots \\
& D-s=\frac{e^{4}}{24} s\left(\frac{s}{R}\right)^{2} \sin ^{2} \phi_{1} \cos ^{2} \phi_{1} \sin ^{2} \alpha_{12}+\cdots \tag{52}\\
& S-s=\frac{e^{4}}{360} s\left(\frac{s}{R}\right)^{4} \cos ^{4} \phi_{1} \sin ^{2} \alpha_{12} \cos ^{2} \alpha_{12}+\cdots
\end{align*}
$$

where R can be taken as the radius of curvature in the prime vertical at P_{1}. Now for a given value of $s, L-s$ will be a maximum if $\phi_{1}=0^{\circ}$ (P_{1} on the equator) and $\alpha_{12}=45^{\circ}$ in which case $\cos ^{4} \phi_{1} \sin ^{2} \alpha_{12} \cos ^{2} \alpha_{12}=\frac{1}{4}$, thus

$$
\begin{equation*}
(L-s)<\frac{e^{4}}{360} s\left(\frac{s}{R}\right)^{4} \tag{53}
\end{equation*}
$$

For the GRS80 ellipsoid where $f=1 / 298.257222101, e^{2}=f(2-f)$, and for $s=1600000 \mathrm{~m}$ and $R=6371000 \mathrm{~m}$ and equation (53) gives $L-s<0.001 \mathrm{~m}$.

This can be verified by using two MATLAB functions: Vincenty_ Direct.m that computes the direct case on the ellipsoid for the geodesic and nsection_inverse.m that computes the inverse case on the ellipsoid for the normal section. Suppose P_{1} has latitude and longitude $\phi_{1}=0^{\circ}, \lambda_{1}=0^{\circ}$ on the GRS80 ellipsoid and that the azimuth and distance of the geodesic are $\alpha_{12}=45^{\circ}$ and $s=1600000 \mathrm{~m}$ respectively. The coordinates of P_{2} are obtained from Vincenty_Direct.m as shown below. These values are then used in nsection_direct.m to compute the normal section azimuth and distance $P_{1} P_{2}$.

The difference $L-s=0.000789 \mathrm{~m}$.

```
>> Vincenty_Direct
////////////////////////////////////////////
// DIRECT CASE on ellipsoid: Vincenty's method
//////////////////////////////////////////////
ellipsoid parameters
a = 6378137.000000000
f = 1/298.257222101000
b = 6356752.314140356100
e2 = 6.694380022901e-003
ep2 = 6.739496775479e-003
Latitude & Longitude of P1
latP1 = 0 0 0.000000 (D M S)
lonP1 = 0 0 0.000000 (D M S)
Azimuth & Distance P1-P2
az12 = 45 0 0.000000 (D M S)
s = 1600000.000000
Latitude and Longitude of P2
latP2 = 10 10 33.913466 (D M S)
lonP2 = 10 16 16.528718 (D M S)
Reverse azimuth
alpha21 = 225 55 1.180693 (D M S)
>>
```

```
>> nsection_inverse
////////////////////////////////
// Normal Section: Inverse Case //
/////////////////////////////////
ellipsoid parameters
a = 6378137.000000000
f = 1/298.257222101000
e2 = 6.694380022901e-003
ep2 = 6.694380022901e-003
Latitude P1 = 0 0 0.000000 (D M S)
Longitude P1 = 0 0 0.000000 (D M S)
Latitude P2 = 10 10 33.913466 (D M S)
Longitude P2 = 10 16 16.528718 (D M S)
Azimuth of normal section P1-P2
Az12 = 45 0 7.344646 (D M S)
ROMBERG INTEGRATION TABLE
1 1600010.313769
2 1600002.577521 1599999.998771
3 1600000.644877 1600000.000663 1600000.000789
4 1600000.161805 1600000.000781 1600000.000789
    1600000.000789
normal section distance P1-P2
s = 1600000.000789
>>
```

Differences in length between the geodesic and normal section exceed 0.001 m for distances greater than $1,600 \mathrm{~km}$. At $5,800 \mathrm{~km}$ the difference is approximately 0.380 m .

MATLAB FUNCTIONS

Shown below are two MATLAB functions nsection direct. m and nsection inverse. m that have been written to demonstrate the use of Romberg integration in the solution of the direct and inverse case on the ellipsoid using normal sections. These functions call other functions; DMS.m, Cart2Geo.m and romberg.m that are also shown.

```
MATLAB function nsection_direct.m
function nsection_direct
\%
\% nsection_direct: This function computes the direct case for a normal
\% section on the reference ellipsoid. That is, given the latitude and
\% longitude of P1 and the azimuth of the normal section P1-P2 and distance
\% along the normal section curve, compute the latitude and longitude of P2.
```



```
Function: nsection_direct
Usage: nsection_direct
Author: R.E.Deakin,
    School of Mathematical \& Geospatial Sciences, RMIT University
    GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA.
    email: rod.deakin@rmit.edu.au
    Version 1.0 23 September 2009
    Version 1.116 December 2009
Purpose: nsection_inverse: This function computes the direct case for
a normal section on the reference ellipsoid. That is, given the
latitude and longitude of P1 and the azimuth of the normal section P1-P2
and distance along the normal section curve, compute the latitude and
longitude of P2.
Functions required:
    [D,M,S] = DMS(DecDeg)
s = romberg(a,f,lat1,Az12,zd)
    [lat,lon, h] = Cart2Geo(a,flat, X, Y, Z)
Variables
Az12 - azimuth of normal section P1-P2
a - semi-major axis of spheroid
d2r - degree to radian conversion factor 57.29577951...
e2 - eccentricity of ellipsoid squared
eps - 2nd-eccentricity squared
\(\mathrm{f} \quad-\mathrm{f}=1 / \mathrm{flat}\) is the flattening of ellipsoid
flat - denominator of flattening of ellipsoid
f zd - function of the zenith distance
fdash_zd - derivative of the function of the zenith distance
g,h - constants of normal section
lat1 - latitude of P1 (radians)
lat2 - latitude of P2 (radians)
lon1 - longitude of P1 (radians)
lon2 - longitude of P2 (radians)
nu1 - radius of curvature in prime vertical plane at P1
pion2 - pi/2
s - arc length of normal section P1-P2
s2 - sin-squared(latitude)
\(x, y \quad-\quad l o c a l ~ v a r i a b l e s ~ i n ~ n e w t o n-R a p h s o n ~ i t e r a t i o n ~ f o r ~ z e n i t h ~\)
    distance of chord P1-P2
X1,Y1,Z1 - Cartesian coordinates of P1
```

```
% X2,Y2,Z2 - Cartesian coordinates of P2
% X3,Y3,Z3 - Cartesian coordinates of P3
% X4,Y4,Z4 - Cartesian coordinates of P4
% zd - zenith distance of chord
%
Remarks:
%
% References:
    [1] Deakin, R. E., (2009), "The Normal Section Curve on an Ellipsoid",
                Lecture Notes, School of Mathematical and Geospatial Sciences,
                RMIT University, November 2009.
%
% Set degree to radian conversion factor and pi/2
d2r = 180/pi;
pion2 = pi/2;
% Set ellipsoid parameters
a = 6378137; % GRS80
flat = 298.257222101;
% Compute ellipsoid constants
f = 1/flat;
e2 = f*(2-f);
ep2 = e2/(1-e2);
% Set lat and long of P1 on ellipsoid
lat1 = -10/d2r;
lon1 = 110/d2r;
% Set azimuth of normal section P1-P2 and arc length of normal section
Az12 = (140 + 28/60 + 31.981931/3600)/d2r;
s = 5783228.924736;
% [1] Compute radius of curvature in the prime vertical plane at P1
s2 = sin(lat1)^2;
nu1 = a/sqrt(1-e2*s2);
% [2] Compute constants g and h of the normal section P1-P2
ep = sqrt(ep2);
g = ep*sin(lat1);
h = ep*cos(lat1)*cos(Az12);
% [3] Compute the chord and the zenith distance of the chord of the normal
% section curve P1-P2 by iteration.
% Set the chord equal to the arc length
c = s;
iter_1 = 1;
while 1
    % Set the zenith distance to 90 degrees
    zd = pion2;
    % Compute the zenith distance of the chord using Newton-Raphson iteration
    iter_2 = 1;
    while 1
        x = g* cos(zd)+h*}\operatorname{sin}(zd)
        y = h*}\operatorname{cos}(zd)-g*sin(zd)
        f_zd = c+c* **x+2*nu1*}\operatorname{cos}(zd)
        fdash_zd = 2*c*x*y-2*nu1*sin(zd);
        new_zd = zd-(f_zd/fdash_zd);
        if abs(new_zd - zd) < 1e-15
            break;
        end
        zd = new_zd;
        if iter_2 > 10
                fprintf('Iteration for zenith distance failed to converge after 10
iterations');
                        break;
```

```
        end
        iter_2 = iter_2 + 1;
    end;
    % Compute normal section arc length for zenith distance
    s_new = romberg(a,f,lat1,Az12,zd);
    ds = s_new-s;
    if abs(ds) < 1e-6
        break;
    end
    c = c - ds;
    if iter_1 > 15
        fprintf('Iteration for chord distance failed to converge after 15 iterations');
        break;
    end
    iter_1 = iter_1 + 1;
end;
% [4] Compute X,Y,Z Cartesian coordinates of P1
X1 = nu1* cos(lat1)*}\operatorname{cos(lon1);
Y1 = nu1*cos(lat1)*sin(lon1);
Z1 = nu1*(1-e2)*sin(lat1);
% [5] Compute X',Y',Z' coord differences with Z'-X' plane coincident with meridian
% plane of P1
dXp = -c*sin(zd)*}\operatorname{cos(Az12)*sin(lat1) + c*cos(zd)*cos(lat1);
dYp = c*sin(zd)*sin(Az12);
dZp = c*sin(zd)*cos(Az12)*}\operatorname{cos(lat1) + c*cos(zd)*sin(lat1);
% [6] Rotate X',Y',Z' coord differences by lon1 about Z'-axis
dX = dXp*cos(lon1) - dYp*sin(lon1);
dY = dXp*sin(lon1) + dYp*cos(lon1);
dZ = dZp;
% [7] Compute X,Y,Z coords of P2
X2 = X1 + dX;
Y2 = Y1 + dY;
Z2 = Z1 + dZ;
% [8] Compute lat, lon and ellipsoidal height of P2 using Bowring's method
[lat2,lon2,h2] = Cart2Geo(a,flat,X2,Y2,Z2);
%-----------------------
% Print result to screen
%-----------------------
fprintf('\n/////////////////////////////////');
fprintf('\n// Normal Section: Direct Case //');
fprintf('\n/////////////////////////////////');
fprintf('\n\nellipsoid parameters');
fprintf('\na= %18.9f',a);
fprintf('\nf = 1/%16.12f',flat);
fprintf('\ne2 = %20.12e',e2);
fprintf('\nep2 = %20.12e',e2);
% Print lat and lon of P1
[D,M,S] = DMS(lat1*d2r);
if D == 0 && lat1 < 0
    fprintf('\n\nLatitude P1 = -0 %2d %9.6f (D M S)',M,S);
else
    fprintf('\n\nLatitude P1 = %4d %2d %9.6f (D M S)',D,M,S);
end
[D,M,S] = DMS(lon1*d2r);
if D == 0 && lon1 < 0
    fprintf('\nLongitude P1 = -0 %2d %9.6f (D M S)',M,S);
else
    fprintf('\nLongitude P1 = %4d %2d %9.6f (D M S)',D,M,S);
end
% Print azimuth of normal section
```

```
fprintf('\n\nAzimuth of normal section P1-P2');
[D,M,S] = DMS(Az12*d2r);
fprintf('\nAz12 = %3d %2d %9.6f (D M S)',D,M,S);
% Print normal section distance P1-P2
fprintf('\n\nnormal section distance P1-P2');
fprintf('\ns = %15.6f',s);
% Print chord distance P1-P2
fprintf('\n\nchord distance P1-P2');
fprintf('\nc = %15.6f',c);
fprintf('\niterations = %4d',iter_1);
% Print zenith distance of chord at point 1
fprintf('\n\nZenith distance of chord at P1');
[D,M,S] = DMS(zd*d2r);
fprintf('\nzd = %3d %2d %9.6f (D M S)',D,M,S);
fprintf('\niterations = %4d',iter_2);
% Print Coordinate table
fprintf('\n\nCartesian coordinates');
fprintf('\n X Y Z');
fprintf('\nP1 %15.6f %15.6f %15.6f',X1,Y1,Z1);
fprintf('\nP2 %15.6f %15.6f %15.6f',X2,Y2,Z2);
fprintf('\ndX = %15.6f',dX);
fprintf('\ndY = %15.6f',dY);
fprintf('\ndZ = %15.6f',dZ);
% Print lat and lon of P2
[D,M,S] = DMS(lat2*d2r);
if D == 0 && lat2 < 0
    fprintf('\n\nLatitude P2 = -0 %2d %9.6f (D M S)',M,S);
else
    fprintf('\n\nLatitude P2 = %4d %2d %9.6f (D M S)',D,M,S);
end
[D,M,S] = DMS(lon2*d2r);
if D == 0 && lon2 < 0
        fprintf('\nLongitude P2 = -0 %2d %9.6f (D M S)',M,S);
else
    fprintf('\nLongitude P2 = %4d %2d %9.6f (D M S)',D,M,S);
end
fprintf('\n\n');
```


MATLAB function nsection inverse.m


```
lon1 - longitude of P1 (radians)
lon2 - longitude of P2 (radians)
m - maximum power of 2 to determine number of intervals in
    trapezoidal rule
norm - length of vector
nu1, nu2 - radii of curvature in prime vertical plane at P1 and P2
ni,nj,nk - components of unit vector n
pion2 - pi/2
qi,qj,qk - components of unit vector q perpendicular to plane
                P1-P2-P4
r - polar coordinate in polar equation of normal section
S - n,n array of Integrals in Romberg Integration
sum - summation in trapezoidal rule
s2 - sin-squared(latitude)
ui,uj,uk - components of unit vector u
wi,wj,wk - components of unit vector w
x,y - variables in Romberg Integr
X1,Y1,Z1 - Cartesian coordinates of P1
X3,Y3,Z3 - Cartesian coordinates of P3
X4,Y4,Z4 - Cartesian coordinates of P4
zd - zenith distance of chord
Remarks:
P1 and P2 are two point on the ellipsoid and in general there are two
normal section curves between them. P3 is at the intersection of the
rotational axis of the ellipsoid and the normal through P1. P4 is at
the intersection of the rotational axis of the ellipsoid and the normal
through P2. The normal section P1-P2 is the plane P1-P2-P3. The normal
section P2-P1 is the plane P1-P2-P4 and since P3 and P4 are not
coincident (in general) then the two planes create two lines on the
ellipsoid and two lines on the local horizon plane at P1.
The necessary equations for the solution of the inverse problem (normal
sections) on the ellipsoid are described in [1]. The vector
manipulations to determine the difference between the two normal section
plane azimuths (measuered in the local horizon at P1) follows a vector
method of calculating azimuth given in [2].
This function uses Romberg Integration to compute the arc length along
the normal section curve. This technique of numerical integration is
described in detail in [1].
References:
    [1] Deakin, R. E., (2009), "The Normal Section Curve on an Ellipsoid",
                Lecture Notes, School of Mathematical and Geospatial Sciences,
                RMIT University, November 2009
    [2] Deakin, R. E., (1988), "The Determination of the Instantaneous
                Position of the NIMBUS-7 CZCS Satellite", Symposium on Remote
                Sensing of the Coastal Zone, Queensland, }1988
```

```
% Degree to radian conversion factor
d2r = 180/pi;
pion2 = pi/2;
% Set ellipsoid parameters
a = 6378137; % GRS80
flat = 298.257222101;
% Compute ellipsoid constants
    f = 1/flat;
e2 = f*(2-f);
ep2 = e2/(1-e2);
```

\% Set lat and long of P1 and P2 on ellipsoid
lat1 = -10/d2r;
lon1 $=110 / d 2 r$;
lat2 $=-45 / d 2 r$;
lon2 = 155/d2r;

```
% [1] Compute radii of curvature in the prime vertical plane at P1 & P2
s2 = sin(lat1)^2;
nu1 = a/sqrt(1-e2*s2);
s2 = sin(lat2)^2;
nu2 = a/sqrt(1-e2*s2);
% [2] Compute Cartesian coordinates of points P1, P2, P3 and P4
% Note that P3 is at the intesection of the normal through P1 and
% the rotational axis and P4 is at the intersection of the normal
% through P2 and the rotational axis.
X1 = nu1*cos(lat1)*cos(lon1);
Y1 = nu1*cos(lat1)*sin(lon1);
Z1 = nu1*(1-e2)*sin(lat1);
X2 = nu2*cos(lat2)*cos(lon2);
Y2 = nu2*cos(lat2)*sin(lon2);
Z2 = nu2*(1-e2)*sin(lat2);
X3 = 0;
Y3 = 0;
Z3 = -nu1*e2*sin(lat1);
X4 = 0
Y4 = 0;
Z4 = -nu2*e2*sin(lat2);
% [3] Compute coordinate differences that are the components of the chord
% P1-P2
dX = X2 - X1;
dY = Y2 - Y1;
dZ = Z2 - Z1;
% [4a] Compute the vector c in the direction of the chord between P1 and P2
ci = dX;
cj = dY;
ck = dZ;
% [4b] Compute the chord distance and the unit vector c
chord = sqrt(ci*ci + cj*cj + ck*ck);
ci = ci/chord;
cj = cj/chord;
ck = ck/chord;
% [5] Compute the unit vector u in the direction of the normal through P1
ui = X1;
uj = Y1
uk = Z1-Z3;
norm = sqrt(ui*ui + uj*uj + uk*uk);
ui = ui/norm;
uj = uj/norm;
uk = uk/norm;
% [6] Set unit vector for the z-axis of ellipsoid
zi = 0;
zj = 0;
zk = 1;
% [7] Compute zenith distance of chord at P1 from dot product
zd = acos(ui*ci + uj*cj + uk*ck);
% [8] Compute unit vector e perpendicular to meridian plane using vector cross
% product e = (z x u)/cos(lat1). e is in the direction of east.
ei = (zj*uk - zk*uj)/cos(lat1);
ej = -(zi*uk - zk*ui)/cos(lat1);
ek = (zi*uj - zj*ui)/cos(lat1);
% [9] Compute unit vector n in the meridian plane using vector cross
% product n = u x e. n is in the direction of north.
```

```
ni = (uj*ek - uk*ej);
nj = -(ui*ek - uk*ei);
nk = (ui*ej - uj*ei);
% [10] Compute unit vector p perpendicular to normal section P1-P2 using
% vector cross product q = (u x c)/sin(zd)
pii = (uj*ck - uk*cj)/sin(zd);
pj = -(ui*ck - uk*ci)/sin(zd);
pk = (ui*cj - uj*ci)/sin(zd);
% [11] Compute unit vector g in the local horizon plane of P1 and in the
% direction of the normal section P1-P2 using vector cross product
% g = p x u
gi = (pj*uk - pk*uj);
gj = -(pii*uk - pk*ui);
gk = (pii*uj - pj*ui);
% [12] Compute azimuth of normal section P1-P2-P3 using vector dot product
alpha = acos(ni*gi + nj*gj + nk*gk);
beta = acos(ei*gi + ej*gj + ek*gk);
if beta > pi/2
    Az12 = 2*pi - alpha;
else
    Az12 = alpha;
end
% [13] Compute unit vector w in direction of line P4-P1. w will lie in the
% meridian plane of P1.
wi = X1;
wj = Y1;
wk = Z1-Z4;
norm = sqrt(wi*wi + wj*wj + wk*wk);
wi = wi/norm;
wj = wj/norm;
wk = wk/norm;
```

\% [14] Compute the angle gamma between unit vectors w and c using vector
$\%$ dot product gamma $=\operatorname{acos}(w . c)$
gamma $=\operatorname{acos}(w i * c i+w j * c j+w k * c k) ;$
\% [15] Compute the angle delta between unit vectors w and u using vector
$\%$ dot product delta $=\operatorname{acos}(w . u)$
delta $=\operatorname{acos}(w i * u i+w j * u j+w k * u k) ;$
\% [16] Compute unit vector q perpendicular to plane P2-P1-P4 using vector
\% cross product $q=(w \times c) / s i n(g a m m a)$
qi $=\left(w j * c k-w k^{*} c j\right) / \sin (g a m m a)$;
$q j=-\left(w i^{*} c k-w k^{*} c i\right) / s i n(g a m m a) ;$
$q k=(w i * c j-w j * c i) / s i n(g a m m a) ;$
\% [17] Compute unit vector h in the direction of $P 2$ and in the local horizon
\% plane using vector cross product $h=(q \times u) / \cos (d e l t a)$
hi = (qj*uk - qk*uj)/cos(delta);
$h j=-(q i * u k-q k * u i) / \cos (d e l t a)$;
hk $=\left(q i^{*} u j-q j * u i\right) / \cos (d e l t a) ;$
\% [18] Compute azimuth of section P1-P2-P4 using vector dot product
alpha $=\operatorname{acos}\left(n i^{*} h i+n j * h j+n k^{*} h k\right)$;
beta $=\operatorname{acos}\left(e i^{*} h i+e j * h j+e k * h k\right) ;$
if beta > pi/2
Azdash12 = 2*pi - alpha;
else
Azdash12 = alpha;
end
\% [19] Compute angle between normal section planes at P1
epsilon = abs(Az12-Azdash12);

```
% Compute normal section azimuth P2 to P1
numerator = dX*sin(lon2) - dY*cos(lon2);
denominator = dX*sin(lat2)*cos(lon2) + dY*sin(lat2)*sin(lon2) - dZ*cos(lat2);
Az21 = atan2(numerator,denominator);
if Az21 < 0
    Az21 = 2*pi+Az21;
end
%----------------------
% Print result to screen
%--------------------
fprintf('\n//////////////////////////////////');
fprintf('\n// Normal Section: Inverse Case //');
fprintf('\n/////////////////////////////////');
fprintf('\n\nellipsoid parameters');
fprintf('\na = %18.9f',a);
fprintf('\nf = 1/%16.12f',flat);
fprintf('\ne2 = %20.12e',e2);
fprintf('\nep2 = %20.12e',e2);
% Print lat and lon of Point 1
[D,M,S] = DMS(lat1*d2r);
if D == 0 && lat1 < 0
    fprintf('\n\nLatitude P1 = -0 %2d %9.6f (D M S)',M,S);
else
    fprintf('\n\nLatitude P1 = %4d %2d %9.6f (D M S)',D,M,S);
end
[D,M,S] = DMS(lon1*d2r);
if D == 0 && lon1 < 0
    fprintf('\nLongitude P1 = -0 %2d %9.6f (D M S)',M,S);
else
    fprintf('\nLongitude P1 = %4d %2d %9.6f (D M S)',D,M,S);
end
% Print lat and lon of point 2
[D,M,S] = DMS(lat2*d2r);
if D == 0 && lat1 < 0
    fprintf('\n\nLatitude P2 = -0 %2d %9.6f (D M S)',M,S);
else
    fprintf('\n\nLatitude P2 = %4d %2d %9.6f (D M S)',D,M,S);
end
[D,M,S] = DMS(lon2*d2r);
if D == 0 && lon2 < 0
    fprintf('\nLongitude P2 = -0 %2d %9.6f (D M S)',M,S);
else
    fprintf('\nLongitude P2 = %4d %2d %9.6f (D M S)',D,M,S);
end
% Print Coordinate table
fprintf('\n\nCartesian coordinates');
fprintf('\n X Y Z');
fprintf('\nP1 %15.6f %15.6f %15.6f',X1,Y1,Z1);
fprintf('\nP2 %15.6f %15.6f %15.6f',X2,Y2,Z2);
fprintf('\nP3 %15.6f %15.6f %15.6f',X3,Y3,Z3);
fprintf('\nP4 %15.6f %15.6f %15.6f',X4,Y4,Z4);
fprintf('\ndX = %15.6f',dX);
fprintf('\ndY = %15.6f',dY);
fprintf('\ndZ = %15.6f',dZ);
% Print chord distance 1-2
fprintf('\n\nChord distance P1-P2');
fprintf('\nchord = %15.6f',chord);
% Print zenith distance of chord at point 1
fprintf('\n\nZenith distance of chord at P1');
[D,M,S] = DMS(zd*d2r);
fprintf('\nzd = %3d %2d %9.6f (D M S)',D,M,S);
```

```
% Print azimuths of normal sections
fprintf('\n\nAzimuth of normal section P1-P2')
[D,M,S] = DMS(Az12*d2r);
fprintf('\nAz12 = %3d %2d %9.6f (D M S)',D,M,S);
fprintf('\n\nAzimuth of normal section P2-P1');
[D,M,S] = DMS(Az21*d2r);
fprintf('\nAz21 = %3d %2d %9.6f (D M S)',D,M,S);
fprintf('\n\nAzimuth of normal section P2-P1 at P1');
[D,M,S] = DMS(Azdash12*d2r);
fprintf('\nAz''12 = %3d %2d %9.6f (D M S)',D,M,S);
fprintf('\n\nAngle between normal sections at P1');
[D,M,S] = DMS(epsilon*d2r);
fprintf('\nepsilon = %4d %2d %9.6f (D M S)',D,M,S);
% [20] Compute arc length of normal section using ROMBERG INTEGRATION
fprintf('\n\nROMBERG INTEGRATION TABLE');
% Compute constants of normal section curve P1-P2
ep = sqrt(ep2);
g = ep*sin(lat1);
h = ep*cos(lat1)*}\operatorname{cos(Az12);
m = 15;
S = zeros(m,m);
finish = 0;
for k = 1:m
    int = 2^k;
    inc = (zd-pion2)/int;
    sum = 0;
    for t = pion2:inc:zd
        x = g* cos(t)+h*sin(t);
        y = h* cos(t)-g*sin(t);
        u = -2*nu1*}\operatorname{cos(t);
        v = 1+x*x;
        r = u/v;
        du = 2*nu1*sin(t);
        dv = 2*x*y;
        dr = (v*du-u*dv)/(v*v);
        y = sqrt(r*r + dr*dr);
        sum = sum+2*y;
        if t == pion2
            first = y;
        end
        last = y;
    end
    sum = sum-first-last;
    Integral = inc/2*sum;
    S(k,1) = Integral;
    fprintf('\n%d %15.6f',k,S(k,1));
    for j = 2:k
        S(k,j) = 1/(4^(j-1)-1)*(4^(j-1)*S(k,j-1)-S(k-1,j-1));
        fprintf(' %15.6f',S(k,j));
        diff = abs(S(k,j-1)-S(k,j));
        if diff < 1e-6
            finish = 1;
            s = S(k,j);
            break;
            end
    end
    if finish == 1
        break;
    end
end
% Print normal section distance P1-P2
fprintf('\n\nnormal section distance P1-P2');
```

```
fprintf('\ns = %15.6f',s);
fprintf('\n\n');
```


MATLAB function Cart2Geo.m

```
function [lat,lon,h] = Cart2Geo(a,flat,X,Y,Z)
%
[lat,lon,h] = Cart2Geo(a,flat,X,Y,Z)
        Function computes the latitude (lat), longitude (lon) and height (h)
        of a point related to an ellipsoid defined by semi-major axis (a)
        and denominator of flattening (flat) given Cartesian coordinates
        X,Y,Z. Latitude and longitude are returned as radians.
    Function: Cart2Geo()
%
Usage: [lat,lon,h] = Cart2Geo(a,flat,X,Y,Z);
Author: R.E.Deakin,
        School of Mathematical & Geospatial Sciences, RMIT University
        GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA.
        email: rod.deakin@rmit.edu.au
        Version 1.0 6 April }200
        Version 1.1 20 August 2007
Functions required:
    radii()
Purpose:
    Function Cart2geo() will compute latitude, longitude
    (both in radians) and height of a point related to
    an ellipsoid defined by semi-major axis (a) and
    denominator of flattening (flat) given Cartesian coordinates
    X,Y,Z.
Variables:
    a - semi-major axis of ellipsoid
    b - semi-minor axis of ellipsoid
    c - cos(psi)
    c3 - cos(psi) cubed
    e2 - 1st eccentricity squared
    ep2 - 2nd eccentricity squared
    f - flattening of ellipsoid
    flat - denominator of flattening f = 1/flat
    h - height above ellipsoid
    lat - latitude (radians)
    lon - longitude (radians)
    p - perpendicular distance from minor-axis of ellipsoid
    psi - parametric latitude (radians)
    rm - radius of curvature of meridian section of ellipsoid
    rp - radius of curvature of prime vertical section of ellipsoid
    s - sin(psi)
    s3 - sin(psi) cubed
Remarks:
    This function uses Bowring's method, see Ref [1].
    Bowring's method is also explained in Ref [2].
References:
[1] Bowring, B.R., 1976, 'Transformation from spatial to
    geographical coordinates', Survey Review, Vol. XXIII,
    No. 181, pp. 323-327.
[2] Gerdan, G.P. & Deakin, R.E., 1999, 'Transforming Cartesian
    coordinates X,Y,Z to geogrpahical coordinates phi,lambda,h', The
    Australian Surveyor, Vol. 44, No. 1, pp. 55-63, June 1999.
```

```
% calculate flattening f and ellipsoid constants e2, ep2 and b
f = 1/flat;
e2 = f*(2-f);
ep2 = e2/(1-e2);
b = a*(1-f);
% compute 1st approximation of parametric latitude psi
p = sqrt(X*X + Y*Y);
psi = atan((Z/p)/(1-f));
% compute latitude from Bowring's equation
s = sin(psi);
s3 = s*s*s;
c = cos(psi);
c3 = c*c*c;
lat = atan((Z+b*ep2*s3)/(p-a*e2*c3));
% compute radii of curvature for the latitude
[rm,rp] = radii(a,flat,lat);
% compute longitude and height
lon = atan2(Y,X);
h = p/cos(lat) - rp;
function [D,M,S] = DMS(DecDeg)
% [D,M,S] = DMS(DecDeg) This function takes an angle in decimal degrees and returns
% Degrees, Minutes and Seconds
val = abs(DecDeg);
D = fix(val);
M = fix((val-D)*60);
S = (val-D-M/60)*3600;
if(DecDeg<0)
    D = -D;
end
return
```


MATLAB function romberg.m

```
function s = romberg(a,f,lat1,Az12,zd)
%
% s = romberg(a,f,lat,az,zd)
% This function cumputes the arc length of a normal section using Romberg
% Integration, a numerical integration technique using the trapezoidal rule
% and Richardson Extrapolation. The function requires ellipsoid parameters
% a (semi-major axis) and f (flattening of ellipsoid), lat1 (latitude of P1
% in radians), Az12 (azimuth of normal section plane P1-P2 in radians) and
% zd (zenith distance of the chord of the normal section arc P1-P2). The
% function returns the arc length s.
%-
% Function: romberg
%
% Usage: s = romberg(a,f,lat1,Az12,zd);
%
% Author: R.E.Deakin,
% School of Mathematical & Geospatial Sciences, RMIT University
% GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA.
% email: rod.deakin@rmit.edu.au
% Version 1.0 24 September 2009
% Purpose: This function cumputes the arc length of a normal section
% using Romberg Integration, a numerical integration technique using the
% trapezoidal rule and Richardson Extrapolation. The function requires
```

```
ellipsoid parameters a,f and lat1 (latitude of P1 in radians), Az12
(azimuth of normal section plane P1-P2 in radians) and zd (zenith
distance of the chord of the normal section arc P1-P2)
Functions required:
Variables:
Az12 - azimuth of normal section P1-P2
a - semi-major axis of spheroid
chord - chord distance between P1 and P2
d2r - degree to radian conversion factor 57.29577951...
e2 - eccentricity of ellipsoid squared
eps - 2nd-eccentricity squared
f - f = 1/flat is the flattening of ellipsoid
g,h - constants of normal section curve
lat1 - latitude of P1 (radians)
nu1 - radius of curvature in prime vertical plane at P1
pion2 - pi/2
S - array of normal section arc lengths
s - arc length of normal section P1-P2
s2 - sin-squared(latitude)
zd - zenith distance of chord
Remarks:
References:
[1] Deakin, R. E., (2009), "The Normal Section Curve on an Ellipsoid",
Lecture Notes, School of Mathematical and Geospatial Sciences,
RMIT University, November 2009.
% Degree to radian conversion factor
d2r = 180/pi;
pion2 = pi/2;
% Compute ellipsoid constants
e2 = f*(2-f);
ep2 = e2/(1-e2);
% Compute radius of curvature in the prime vertical plane at P1
s2 = sin(lat1)^2;
nu1 = a/sqrt(1-e2*s2);
%--------------------------------------------------------------
% Compute arc length of normal section using ROMBERG INTEGRATION
%---------------------------------------------------------------
% fprintf('\n\nROMBERG INTEGRATION TABLE');
% Compute constants of normal section curve P1-P2
ep = sqrt(ep2);
g = ep*sin(lat1);
h = ep*cos(lat1)*cos(Az12);
% Set array of arc lengths
n = 15;
S = zeros(n,n);
finish = 0;
for k = 1:15
    % set the number of intervals and the increment
    int = 2^k;
    inc = (zd-pion2)/int;
    sum = 0;
    % evaluate the integral using the Trapezoidal Rule
    for t = pion2:inc:zd
            x = g*}\operatorname{cos(t)+h*}\operatorname{sin}(t)
            y = h* cos(t)-g*}\operatorname{sin}(\textrm{t})
            u = -2*nu1*cos(t);
```

```
    v = 1+x*x;
    r = u/v;
    du = 2*nu1*sin(t);
    dv = 2*x*y;
    dr = (v*du-u*dv)/(v*v);
    y = sqrt(r*r + dr*dr);
    sum = sum+2*y;
    if t == pion2
        first = y;
    end
    last = y;
end
sum = sum-first-last;
Integral = inc/2*sum
S(k,1) = Integral;
fprintf('\n%d %15.6f',k,S(k,1));
% Use Richardson extrapolation
for j = 2:k
    S(k,j) = 1/(4^(j-1)-1)*(4^(j-1)*S(k,j-1)-S(k-1,j-1));
    fprintf(' %15.6f',S(k,j));
    diff = abs(S(k,j-1)-S(k,j));
    if diff < 1e-6
                finish = 1;
                s = S(k,j);
                break;
            end
    end
    if finish == 1
        break
    end
end
```


REFERENCES

Bowring, B. R., (1972), 'Distance and the spheroid', Correspondence, Survey Review, Vol. XXI, No. 164, April 1972, pp. 281-284.
Bowring, B. R., (1978), 'The surface controlled spatial system for surveying computations', Survey Review, Vol. XXIIII, No. 190, October 1978, pp. 361-372.
Clarke, A. R., (1880), Geodesy, Clarendon Press, Oxford.
Deakin, R. E. and Hunter, M. N., (2007), 'Geodesics on an ellipsoid - Pittman's method', Proceedings of the Spatial Sciences Institute Biennial International Conference (SSC2007), Hobart, Tasmania, Australia, 14-18 May 2007, pp. 223-242.
Deakin, R. E. and Hunter, M. N., (2007), 'Geodesics on an ellipsoid - Bessel's Method', Lecture Notes, School of Mathematical \& Geospatial Sciences, RMIT University, Melbourne, Australia, 66 pages.

Dutka, J., (1984), 'Richardson extrapolation and Romberg integration', Historia Mathematica, Vol. 11, Issue 1, February 1984, pp. 3-21. doi: 10.1016/0315-0860(84)90002-8.
Grossman, S. I., (1981), Calculus, 2nd edition, Academic Press, New York.
Romberg, W., (1955), 'Vereinfachte numerische integration', Det Kongelige Norske Videnskabers Selskab Forhandlinger (Trondheim), Vol. 28, No. 7, pp. 30-36.
Tobey, W. M., (1928), Geodesy, Geodetic Survey of Canada Publications No. 11, Ottawa 1928.

Williams, P. W., (1972), Numerical Computation, Nelson, London.

APPENDIX 1: ROMBERG INTEGRATION

Romberg integration (Romberg 1955) is a numerical technique for evaluating a definite integral and discussions of the technique can be found in most textbooks on numerical analysis; e.g. Williams (1972). A concise treatment of the technique and a study of the historical development of methods of integration (quadrature) can be found in Dutka (1984). A development of Romberg's method - and the extrapolation formula that is at the heart of it - is given below and is followed by a MATLAB function that demonstrates the use of the technique.

Romberg integration is a method for estimating the numerical value of the definite integral

$$
\begin{equation*}
I=\int_{a}^{b} f(x) d x \tag{54}
\end{equation*}
$$

It is based on the trapezoidal rule - the simplest of the Newton-Cotes integration formula for equally spaced data on the interval a, b

$$
\begin{equation*}
I=\int_{a}^{b} f(x) d x=\frac{h}{2}\left(f_{0}+2 f_{1}+2 f_{2}+\cdots+2 f_{n-1}+f_{n}\right)+E \tag{55}
\end{equation*}
$$

where
n is the number of intervals of width h,
$h=\frac{b-a}{n}$ is the common interval width or spacing,
$f_{0}, f_{1}, f_{2}, \ldots$ are values of the function evaluated at $x=[a, a+h, a+2 h, \ldots]$, E is the error term

When the function $f(x)$ has continuous derivatives the error term E can be expressed as a convergent power series and we may write

$$
\begin{equation*}
I=\int_{a}^{b} f(x) d x=\frac{h}{2}\left(f_{0}+2 f_{1}+2 f_{2}+\cdots+2 f_{n-1}+f_{n}\right)+E=T+\sum_{j=1}^{\infty} a_{j} h^{2 j} \tag{56}
\end{equation*}
$$

where a_{j} are coefficients.

As the error term E is a convergent power series in h a technique known as Richardson extrapolation ${ }^{1}$ may be employed to improve the accuracy of the result.

Richardson extrapolation can be explained as follows.
Let the value of n be a power of 2 ; say 2^{k} i.e., the number of intervals $n=2,4,8,16, \ldots, 2^{k}$
Denote an evaluation of the integral I given by equation (56) as

$$
\begin{equation*}
S_{k, 1}=T+\sum_{j=1}^{\infty} a_{j} h^{2 j}=T+a_{1} h^{2}+a_{2} h^{4}+a_{3} h^{6}+\cdots \tag{57}
\end{equation*}
$$

If the interval width is halved, then

$$
\begin{equation*}
S_{k+1,1}=T+\sum_{j=1}^{\infty} a_{j}\left(\frac{h}{2}\right)^{2 j}=T+a_{1} \frac{1}{2^{2}} h^{2}+a_{2} \frac{1}{2^{4}} h^{4}+a_{3} \frac{1}{2^{6}} h^{6}+\cdots \tag{58}
\end{equation*}
$$

The first term of the error series can be eliminated by taking suitable combinations of equations (57) and (58); i.e., multiplying equation (58) by 4 and then subtracting equation (57) will eliminate the first term of the error series

$$
\begin{aligned}
4 S_{k+1,1}-S_{k, 1} & =4 T-T+a_{2}\left(\frac{4 h^{4}}{2^{4}}-h^{4}\right)+a_{3}\left(\frac{4 h^{6}}{2^{6}}-h^{6}\right)+\cdots \\
& =3 T+\sum_{j=2}^{\infty} a_{j}\left(\frac{4 h^{2 j}}{2^{2 j}}-h^{2 j}\right)
\end{aligned}
$$

and

$$
\begin{equation*}
T=\frac{4 S_{k+1,1}-S_{k, 1}}{3}-\sum_{j=2}^{\infty} \frac{a_{j} h^{2 j}}{3}\left(\frac{4}{2^{2 j}}-1\right) \tag{59}
\end{equation*}
$$

The first term on the right-hand-side of equation (59) will be designated

$$
S_{k, 2}=\frac{4 S_{k+1,1}-S_{k, 1}}{3}
$$

and the leading error term is now of order h^{4}.

[^11]Successive halvings of the interval will give a sequence of values $S_{1,1}, S_{2,1}, S_{3,1}, \ldots, S_{k, 1}$ and each successive pair $\left(S_{1,1}, S_{2,1}\right),\left(S_{2,1}, S_{3,1}\right), \ldots$ can be combined to give values $S_{2,2}, S_{3,2}, \ldots$; and this next sequence can be combined in a similar manner to remove the leading error term of order h^{4}; and so on.

By using the formula

$$
S_{k, j}=\frac{1}{4^{j-1}-1}\left(4^{j-1} S_{k, j-1}-S_{k-1, j-1}\right) \quad \begin{align*}
k & =1,2,3,4, \ldots \tag{60}\\
j & =2,3,4,5, \ldots
\end{align*}
$$

the process of Richardson extrapolation leads to a triangular sequence of columns with error terms of increasing order.

		j	1	2	3	4	
n	k						
2	1	$S_{1,1}$					
4	2	$S_{2,1}$	$S_{2,2}$				
16	3	$S_{3,1}$	$S_{3,2}$	$S_{3,3}$			
32	4	$S_{4,1}$	$S_{4,2}$	$S_{4,3}$	$S_{4,4}$		
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots	\ddots	
error term		h^{2}	h^{4}	h^{6}	h^{8}		

The entries $S_{k, 2}$ in the second column have eliminated the terms involving h^{2}, the entries in the third column have eliminated the terms involving h^{4}, etc, and as the interval $h=\frac{b-a}{2^{k}}$ the error term of the approximation $S_{k, j}$ is of the order $\left(\frac{b-a}{2^{k}}\right)^{2 j}$ with each successive value in a particular row converging more rapidly to the true value of the integral.

Testing between particular values will determine when the process has converged to a suitable result.

MATLAB FUNCTION romberg_test.m

This function uses Romberg Integration for the calculation of the integral $\int \sec (x) d x$
This integral has the known result $\int \sec (x) d x=\ln \left[\tan \left(\frac{x}{2}+\frac{\pi}{4}\right)\right]$
MATLAB function romberg_test.m

```
function romberg_test
%
% This function computes the numerical value of the integral of sec(x)
% which is known to equal ln[tan(x/2+pi/4)].
% For x = 45 degrees the integral sec(x) = 0.881373587020.
% An integration table is produced that shows the convergence to the true
% value of the integral.
%--------------------------------------------------------------------------------
% Function: romberg_test
% Author: R.E.Deakin,
    School of Mathematical & Geospatial Sciences, RMIT University
    GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA.
    email: rod.deakin@rmit.edu.au
    Version 1.0 09 December 2009
Purpose: This function computes the numerical value of the integral of
    sec(x) which is known to equal ln[tan(x/2+pi/4)].
    For x = 45 degrees the integral sec(x) = 0.881373587.
    An integration table is produced that shows the convergence to the true
    value of the integral.
Variables:
    diff - difference between successive approximations of the integral
    d2r - degree to radian conversion factor 57.29577951...
    first - first value of f(x)
    fx - value of f(x)
h - interval width
Integral - numerical value of integral from trapezoidal rule
k,j - integer counters
last - last value of f(x)
m - maximum number of intervals
n - number of intervals
S - array of integral values
sum - sum of function values
x - the variable
References:
Williams, P. W., (1972), "Numerical Computation", Nelson, London.
%
% Degree to radian conversion factor
d2r = 180/pi;
fprintf('\n\nRomberg Integration Table for the integral of sec(x) for x = 45 degrees');
% Set array of values S(k,j)
m = 15;
S = zeros(m,m);
finish = 0;
for k = 1:m
    % set the number of intervals and the increment
```

```
    n = 2^k;
    h = 45/n;
    sum = 0;
    % evaluate the integral using the Trapezoidal Rule
    for x = 0:h:45
        fx = 1/cos(x/d2r);
        sum = sum+2*fx;
        if x == 0
            first = fx;
        end
        last = fx;
    end
    sum = sum-first-last;
    Integral = h/d2r/2*sum;
    S(k,1) = Integral;
    fprintf('\n%d %15.12f',k,S(k,1));
    % Use Richardson extrapolation
    for j = 2:k
        S(k,j) = 1/(4^(j-1)-1)*(4^(j-1)*S(k,j-1)-S(k-1,j-1));
        fprintf(' %15.12f',S(k,j));
        diff = abs(S(k,j-1)-S(k,j));
        if diff < 1e-12
            finish = 1;
            break;
        end
    end
    if finish == 1
        break
    end
end
fprintf('\n\n');
```

MATLAB Command Window

```
>> help romberg_test
```

 This function cumputes the numerical value of the integral of \(\sec (x)\)
 which is known to equal \(\ln [\tan (x / 2+p i / 4)]\).
 For \(x=45\) degrees the integral \(\sec (x)=0.881373587020\).
 An integration table is produced that shows the convergence to the true
 value of the integral.
 >> romberg_test
Romberg Integration Table for the integral of $\sec (x)$ for $x=45$ degrees
10.899084147577
$20.885885914440 \quad 0.881486503395$
$3 \quad 0.882507477613 \quad 0.881381332003 \quad 0.881374320577$
$\begin{array}{llllll}4 & 0.881657432521 & 0.881374084157 & 0.881373600967 & 0.881373589544\end{array}$
$\begin{array}{lllllll}5 & 0.881444571861 & 0.881373618307 & 0.881373587251 & 0.881373587033 & 0.881373587023\end{array}$
$\begin{array}{lllllll}6 & 0.881391334699 & 0.881373588978 & 0.881373587023 & 0.881373587020 & 0.881373587020\end{array}$
>>

The output from the function Romberg_test. m that is evaluating the integral

$$
I=\int_{x=0^{\circ}}^{x=45^{\circ}} \sec (x) d x
$$

is shown in the Romberg Integration Table and the elements are obtained as follows:

- For $k=1$, there are $n=2^{k}=2$ intervals (or strips) of width h where
$h=\frac{b-a}{n}=\frac{45^{\circ}-0^{\circ}}{2}=22.50^{\circ}$ and the integral $I \simeq \frac{h}{2}\left(f_{0}+2 f_{1}+f_{2}\right)$. The function $f(x)=\sec x=\frac{1}{\cos x}$ evaluated at $x=0^{\circ}, 22.5^{\circ}, 45^{\circ}$ gives

$$
\begin{aligned}
& f_{0}=1 \\
& f_{1}=1.082392200 \\
& f_{2}=1.414213562
\end{aligned}
$$

and

$$
S_{1,1}=I=\frac{22.5}{2}\left(\frac{\pi}{180}\right)(1+2(1.082392200)+1.414213562)=0.899084148
$$

- For $k=2$, there are $n=2^{k}=4$ intervals (or strips) of width h where $h=\frac{b-a}{n}=\frac{45^{\circ}-0^{\circ}}{4}=11.25^{\circ}$ and the integral $I \simeq \frac{h}{2}\left(f_{0}+2 f_{1}+2 f_{3}+f_{4}\right)$. The function $f(x)=\sec x=\frac{1}{\cos x}$ evaluated at $x=0^{\circ}, 11.25^{\circ}, 22.5^{\circ}, 33.75^{\circ}, 45^{\circ}$ gives

$$
\begin{aligned}
& f_{0}=1 \\
& f_{1}=1.019591158 \\
& f_{2}=1.082392200 \\
& f_{3}=1.202689774 \\
& f_{4}=1.414213562
\end{aligned}
$$

and

$$
S_{2,1}=I=\frac{11.25}{2}\left(\frac{\pi}{180}\right)(1+2(1.019 \ldots)+2(1.082 \ldots)+2(1.202 \ldots)+1.414 \ldots)=0.885885914
$$

The element $S_{2,2}$ is obtained from equation (60)

$$
S_{2,2}=\frac{1}{4^{1}-1}\left(4^{1} S_{2,1}-S_{1,1}\right)=\frac{1}{3}(4 \times 0.885885914-0.899084148)=0.881486503
$$

- For $k=3$, there are $n=2^{k}=8$ intervals (or strips) of width $h=5.625^{\circ}$ and the integral $I \simeq \frac{h}{2}\left(f_{0}+2 f_{1}+2 f_{3}+\cdots+2 f_{7}+f_{8}\right)$. The function $f(x)=\sec x=\frac{1}{\cos x}$ evaluated at $x=0^{\circ}, 5.625^{\circ}, 11.25^{\circ}, \ldots, 39.375^{\circ}, 45^{\circ}$ gives

$$
\begin{aligned}
& f_{0}=1 \\
& f_{1}=1.004838572 \\
& f_{2}=1.019591158 \\
& \vdots \\
& f_{7}=1.293643567 \\
& f_{8}=1.414213562
\end{aligned}
$$

and

$$
S_{3,1}=I=\frac{5.625}{2}\left(\frac{\pi}{180}\right)(1+2(1.004 \ldots)+\cdots+2(1.293 \ldots)+1.414 \ldots)=0.882507478
$$

The elements $S_{3,2}$ and $S_{3,3}$ are obtained from equation (60)

$$
\begin{aligned}
& S_{3,2}=\frac{1}{4^{1}-1}\left(4^{1} S_{3,1}-S_{2,1}\right)=\frac{1}{3}(4 \times 0.882507478-0.885885914)=0.881381333 \\
& S_{3,3}=\frac{1}{4^{2}-1}\left(4^{2} S_{3,2}-S_{2,2}\right)=\frac{1}{15}(16 \times 0.881381333-0.881486503)=0.8813374322
\end{aligned}
$$

And so on for increasing values of k
Testing between successive values $S_{k, j-1}$ and $S_{k, j}$ can be used to determine when the iterative procedure is terminated.

THE CURVE OF ALIGNMENT
 ON AN ELLIPSOID

R. E. Deakin
School of Mathematical \& Geospatial Sciences, RMIT University, GPO Box 2476V, MELBOURNE VIC 3001, AUSTRALIA
email: rod.deakin@rmit.edu.au

December 2009

Abstract

These notes provide a detailed derivation of the equation for the curve of alignment on an ellipsoid. Using this equation and knowing the terminal points of the curve, a technique is developed for computing the location of points along the curve. A MATLAB function is provided that demonstrates the algorithm developed.

INTRODUCTION

In geodesy, the curve of alignment between P_{1} and P_{2} on the ellipsoid is the locus of a point P on the surface that moves so that a normal section plane at P contains the terminal points P_{1} and P_{2}.

Figure 1: Curve of alignment on ellipsoid

Figure 1 shows P on the curve of alignment between P_{1} and P_{2}. The normal to the ellipsoid at P intersects the z-axis of the ellipsoid at H_{P} and is contained in the plane $P_{1} P P_{2} H_{P}$. This normal section plane cuts the ellipsoid along the normal section curve $P_{1} P P_{2}$. As P moves from P_{1} to P_{2} - maintaining the condition that a normal section plane contains P_{1} and P_{2} - it traces out the curve of alignment. This is a curve on the surface having both curvature and torsion, i.e., it twists across the surface between P_{1} and P_{2}. Note that in Figure 1, the normal at P_{1} intersects the z-axis at H_{1} and is not contained in the plane $P_{1} P P_{2} H_{P}$, unless P is at P_{1}.

The curve of alignment can also be described physically in the following way. Imagine a theodolite, in adjustment, that is setup on the surface of the ellipsoid somewhere between P_{1} and P_{2}, and whose vertical axis is coincident with the ellipsoid normal. The theodolite is pointed to the backsight P_{1} and the horizontal circle is clamped; then the telescope is rotated in the vertical plane and pointed towards the forsight P_{2}. Unless there is some fluke of positioning, it is unlikely that the theodolite cross-hairs will bisect the target P_{2}. So the theodolite is repositioned by moving appropriate amounts perpendicular to the line until the vertical plane of the theodolite at P contains both the backsight P_{1} and the forsight P_{2}. A peg is place on the surface at this point. This process of "jiggling in" or "middling in" between P_{1} and P_{2} is repeated a short distance further along the line and another peg placed. After the last peg has been placed the curve of alignment is now defined by the pegged line on the surface.

The curve of alignment follows a path very similar to that of the geodesic and it is slightly longer; although the difference is practicably negligible at distances less than $5,000 \mathrm{~km}$.

This will be demonstrated below using equations developed by Clarke (1880) and Bowring (1972).

The equation for the curve developed below is similar to that derived by Thomas (1952) although the method of development is different; and it is not in a form suitable for computing the distance or azimuth of the curve. But, as it contains functions of both the latitude and longitude of a point on the curve, it is suitable for computing the latitude of a point (by iteration) given a certain longitude. Alternatively, by choosing suitable functions of given latitude, the longitude of a point on the curve can be computed directly (by solving a trigonometric equation).

EQUATION OF CURVE OF ALIGNMENT

Figure 2: Normal section plane containing P_{1} and P_{2}
Figure 2 shows a normal section plane of P on an ellipsoid that passes through P_{1} and P_{2}. The semi-axes of the ellipsoid are a and $b(a>b)$ and the first-eccentricity squared e^{2}, second-eccentricity squared $e^{\prime 2}$ and the flattening f of the ellipsoid are defined by

$$
\begin{align*}
& e^{2}=\frac{a^{2}-b^{2}}{a^{2}}=f(2-f) \\
& e^{\prime 2}=\frac{a^{2}-b^{2}}{b^{2}}=\frac{f(2-f)}{(1-f)^{2}}=\frac{e^{2}}{1-e^{2}} \tag{1}\\
& f=\frac{a-b}{a}
\end{align*}
$$

Parallels of latitude ϕ and meridians of longitude λ have their respective reference planes; the equator and the Greenwich meridian, and Longitudes are measured 0° to $\pm 180^{\circ}$ (east positive, west negative) from the Greenwich meridian and latitudes are measured 0° to $\pm 90^{\circ}$ (north positive, south negative) from the equator. The x, y, z geocentric Cartesian coordinate system has an origin at O, the centre of the ellipsoid, and the z-axis is the minor axis (axis of revolution). The $x O z$ plane is the Greenwich meridian plane (the origin of longitudes) and the $x O y$ plane is the equatorial plane. The positive x-axis passes through the intersection of the Greenwich meridian and the equator, the positive y-axis is
advanced 90° east along the equator and the positive z-axis passes through the north pole of the ellipsoid.

The normal section plane in Figure 2 is defined by points (1), (2) and (3) that are P_{1}, P_{2} and H respectively where H is at the intersection of the normal through P and the z-axis.
Cartesian coordinates of (1) and (2) are computed from the following equations

$$
\begin{align*}
x & =\nu \cos \phi \cos \lambda \\
y & =\nu \cos \phi \sin \lambda \tag{2}\\
z & =\nu\left(1-e^{2}\right) \sin \phi
\end{align*}
$$

where $\nu=P H$ is the radius of curvature in the prime vertical plane and

$$
\begin{equation*}
\nu=\frac{a}{\sqrt{1-e^{2} \sin ^{2} \phi}} \tag{3}
\end{equation*}
$$

The distance $O H=\nu e^{2} \sin \phi$ and the Cartesian coordinates of point (3) are

$$
\left[\begin{array}{l}
x_{3} \tag{4}\\
y_{3} \\
z_{3}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
-\nu e^{2} \sin \phi
\end{array}\right]
$$

The General equation of a plane may be written as

$$
\begin{equation*}
A x+B y+C z+D=0 \tag{5}
\end{equation*}
$$

And the equation of the plane passing through points (1), (2) and (3) is given in the form of a 3rd-order determinant

$$
\left|\begin{array}{ccc}
x-x_{1} & y-y_{1} & z-z_{1} \tag{6}\\
x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\
x_{3}-x_{2} & y_{3}-y_{2} & z_{3}-z_{2}
\end{array}\right|=0
$$

or expanded into 2nd-order determinants

$$
\left|\begin{array}{ll}
y_{2}-y_{1} & z_{2}-z_{1} \tag{7}\\
y_{3}-y_{2} & z_{3}-z_{2}
\end{array}\right|\left(x-x_{1}\right)-\left|\begin{array}{ll}
x_{2}-x_{1} & z_{2}-z_{1} \\
x_{3}-x_{2} & z_{3}-z_{2}
\end{array}\right|\left(y-y_{1}\right)+\left|\begin{array}{ll}
x_{2}-x_{1} & y_{2}-y_{1} \\
x_{3}-x_{2} & y_{3}-y_{2}
\end{array}\right|\left(z-z_{1}\right)=0
$$

Expanding the determinants in equation (7) gives

$$
\begin{align*}
& \left(x-x_{1}\right)\left\{\left(y_{2}-y_{1}\right)\left(z_{3}-z_{2}\right)-\left(z_{2}-z_{1}\right)\left(y_{3}-y_{2}\right)\right\} \\
- & \left(y-y_{1}\right)\left\{\left(x_{2}-x_{1}\right)\left(z_{3}-z_{2}\right)-\left(z_{2}-z_{1}\right)\left(x_{3}-x_{2}\right)\right\} \\
+ & \left(z-z_{1}\right)\left\{\left(x_{2}-x_{1}\right)\left(y_{3}-y_{2}\right)-\left(y_{2}-y_{1}\right)\left(x_{3}-x_{2}\right)\right\}=0 \tag{8}
\end{align*}
$$

Now from equation (4) $x_{3}=y_{3}=0$ and equation (8) becomes

$$
\begin{align*}
& \left(x-x_{1}\right)\left(y_{2}-y_{1}\right)\left(z_{3}-z_{2}\right)-\left(x-x_{1}\right)\left(z_{2}-z_{1}\right)\left(-y_{2}\right) \\
- & \left(y-y_{1}\right)\left(x_{2}-x_{1}\right)\left(z_{3}-z_{2}\right)+\left(y-y_{1}\right)\left(z_{2}-z_{1}\right)\left(-x_{2}\right) \\
+ & \left(z-z_{1}\right)\left(x_{2}-x_{1}\right)\left(-y_{2}\right) \quad+\left(z-z_{1}\right)\left(y_{2}-y_{1}\right)\left(-x_{2}\right)=0 \tag{9}
\end{align*}
$$

Expanding and simplifying equation (9) gives

$$
\begin{align*}
& x z_{3}\left(y_{2}-y_{1}\right)+x\left(y_{1} z_{2}-y_{2} z_{1}\right)+z_{3}\left(x_{2} y_{1}-x_{1} y_{2}\right) \\
+ & y z_{3}\left(x_{1}-x_{2}\right)+y\left(x_{2} z_{1}-x_{1} z_{2}\right)+z\left(x_{1} y_{2}-x_{2} y_{1}\right)=0 \tag{10}
\end{align*}
$$

Now from equations (2) and (4) $x=\nu \cos \phi \cos \lambda, y=\nu \cos \phi \sin \lambda, z=\nu\left(1-e^{2}\right) \sin \phi$ and $z_{3}=-\nu e^{2} \sin \phi$, and substituting these into equation (10) gives

$$
\begin{aligned}
& \nu e^{2}\left\{\left(x_{2}-x_{1}\right) \sin \lambda-\left(y_{2}-y_{1}\right) \cos \lambda\right\} \sin \phi-\left(y_{2} z_{1}-y_{1} z_{2}\right) \cos \lambda \\
& +\left(x_{2} z_{1}-x_{1} z_{2}\right) \sin \lambda-\left(x_{2} y_{1}-x_{1} y_{2}\right) \tan \phi=0
\end{aligned}
$$

that is equivalent to

$$
\begin{aligned}
& \nu\left(1-e^{2}\right)\left\{e^{2}\left(y_{2}-y_{1}\right) \cos \lambda-e^{2}\left(x_{2}-x_{1}\right) \sin \lambda\right\} \sin \phi-\left(1-e^{2}\right)\left(y_{1} z_{2}-y_{2} z_{1}\right) \cos \lambda \\
& -\left(1-e^{2}\right)\left(x_{1} z_{2}-x_{2} z_{1}\right) \sin \lambda-\left(1-e^{2}\right)\left(x_{1} y_{2}-x_{2} y_{1}\right) \tan \phi=0
\end{aligned}
$$

or, following Thomas (1952, p. 67, eq. 183); the equation of the curve of alignment is

$$
\begin{equation*}
\nu\left(1-e^{2}\right)\{C \cos \lambda-H \sin \lambda\} \sin \phi-U \cos \lambda-V \sin \lambda-W\left(1-e^{2}\right) \tan \phi=0 \tag{11}
\end{equation*}
$$

where

$$
\begin{array}{lll}
C=e^{2}\left(y_{2}-y_{1}\right) & U=\left(1-e^{2}\right)\left(y_{1} z_{2}-y_{2} z_{1}\right) & W=x_{1} y_{2}-x_{2} y_{1} \\
H=e^{2}\left(x_{2}-x_{1}\right) & V=\left(1-e^{2}\right)\left(x_{2} z_{1}-x_{1} z_{2}\right) & \tag{12}
\end{array}
$$

Equation (11) is not suitable for computing the distance along a curve of alignment, nor is it suitable for computing the azimuth of the curve, but by certain re-arrangements it is possible to solve (iteratively) for the latitude of a point on the curve given a longitude somewhere between the longitudes of the terminal points of the curve. Or alternatively, solve (a trigonometric equation) for the longitude of a point given a latitude somewhere between the latitudes of the terminal points.

SOLVING FOR THE LATITUDE

Equation (11) can be re-arranged as

$$
\begin{equation*}
A \nu \sin \phi-B \tan \phi-D=0 \tag{13}
\end{equation*}
$$

where A and D are functions of longitude alone and B is a constant for the curve, and

$$
\begin{equation*}
A=\left(1-e^{2}\right)(C \cos \lambda-H \sin \lambda) ; \quad B=W\left(1-e^{2}\right) ; \quad D=U \cos \lambda+V \sin \lambda \tag{14}
\end{equation*}
$$

C, H, U, V and W are constants for the particular curve and are given by equation (12). ν is a function of the latitude of P on the curve and is given by equation (3).

The latitude ϕ can be evaluated using Newton-Raphson iteration for the real roots of the equation $f(\phi)=0$ given in the form of an iterative equation

$$
\begin{equation*}
\phi_{(n+1)}=\phi_{(n)}-\frac{f\left(\phi_{(n)}\right)}{f^{\prime}\left(\phi_{(n)}\right)} \tag{15}
\end{equation*}
$$

where n denotes the $n^{\text {th }}$ iteration and $f(\phi)$ is given by equation (13) as

$$
\begin{equation*}
f(\phi)=A \nu \sin \phi-B \tan \phi-D \tag{16}
\end{equation*}
$$

and the derivative $f^{\prime}(\phi)=\frac{d}{d \phi}\{f(\phi)\}$ is given by

$$
\begin{equation*}
f^{\prime}(\phi)=\frac{d \nu}{d \phi} A \sin \phi+\nu A \cos \phi-B \sec ^{2} \phi \tag{17}
\end{equation*}
$$

where, from equation (3)

$$
\begin{equation*}
\frac{d \nu}{d \phi}=\frac{\nu^{3}}{a^{2}} e^{2} \sin \phi \cos \phi \tag{18}
\end{equation*}
$$

An initial value of $\phi_{(1)}(\phi$ for $n=1)$ can be taken as the latitude of P_{1} and the functions $f\left(\phi_{(1)}\right)$ and $f^{\prime}\left(\phi_{(1)}\right)$ evaluated from equations (16) and (17) using $\phi_{1} . \phi_{(2)}(\phi$ for $n=2)$ can now be computed from equation (15) and this process repeated to obtain values $\phi_{(3)}, \phi_{(4)}, \ldots$. This iterative process can be concluded when the difference between $\phi_{(n+1)}$ and $\phi_{(n)}$ reaches an acceptably small value.

SOLVING FOR THE LONGITUDE

Equation (11) can also be re-arranged as

$$
\begin{equation*}
P \cos \lambda-Q \sin \lambda=S \tag{19}
\end{equation*}
$$

where P, Q and S are functions of latitude alone and

$$
\begin{equation*}
P=C \nu\left(1-e^{2}\right) \sin \phi-U ; \quad Q=H \nu\left(1-e^{2}\right) \sin \phi+V ; \quad S=W\left(1-e^{2}\right) \tan \phi \tag{20}
\end{equation*}
$$

C, H, U, V and W are constants for the particular curve and are given by equation (12). ν is a function of the latitude of P on the curve and is given by equation (3).

The longitude can be evaluated using Newton-Raphson iteration where

$$
\begin{equation*}
\lambda_{(n+1)}=\lambda_{(n)}-\frac{f\left(\lambda_{(n)}\right)}{f^{\prime}\left(\lambda_{(n)}\right)} \tag{21}
\end{equation*}
$$

and

$$
\begin{align*}
f(\lambda) & =P \cos \lambda-Q \sin \lambda-S \\
f^{\prime}(\lambda) & =-P \sin \lambda-Q \cos \lambda \tag{22}
\end{align*}
$$

An initial value of $\lambda_{(1)}(\lambda$ for $n=1)$ can be taken as the longitude of P_{1}.
Alternatively, the longitude can be evaluated by a trigonometric equation derived as follows. Equation (19) can be expressed as a trigonometric addition of the form

$$
\begin{align*}
S & =R \cos (\lambda-\theta) \\
& =R \cos \lambda \cos \theta+R \sin \lambda \sin \theta \tag{23}
\end{align*}
$$

Now, equating the coefficients of $\cos \lambda$ and $\sin \lambda$ in equations (19) and (23) gives

$$
\begin{equation*}
P=R \cos \theta ; \quad Q=-R \sin \theta \tag{24}
\end{equation*}
$$

and using these relationships

$$
\begin{equation*}
R=\sqrt{P^{2}+Q^{2}} ; \quad \tan \theta=\frac{-Q}{P} \tag{25}
\end{equation*}
$$

Substituting these results into equation (23) gives

$$
\begin{equation*}
\lambda=\arccos \left\{\frac{S}{\sqrt{P^{2}+Q^{2}}}\right\}+\arctan \left\{\frac{-Q}{P}\right\} \tag{26}
\end{equation*}
$$

DIFFERENCE IN LENGTH BETWEEN A GEODESIC AND CURVE OF ALIGNMENT

There are five curves of interest in geodesy; the geodesic, the normal section, the great elliptic arc the loxodrome and the curve of alignment.

The geodesic between P_{1} and P_{2} on an ellipsoid is the unique curve on the surface defining the shortest distance; all other curves will be longer in length. The normal section curve $P_{1} P_{2}$ is a plane curve created by the intersection of the normal section plane containing the normal at P_{1} and also P_{2} with the ellipsoid surface. And as we have shown (Deakin 2009) there is the other normal section curve $P_{2} P_{1}$. The curve of alignment is the locus of all points P such that the normal section plane at P also contains the points P_{1} and P_{2}. The curve of alignment is very close to a geodesic. The great elliptic arc is the plane curve created by intersecting the plane containing P_{1}, P_{2} and the centre O with the surface of the ellipsoid and the loxodrome is the curve on the surface that cuts each meridian between P_{1} and P_{2} at a constant angle.

Approximate equations for the difference in length between the geodesic, the normal section curve and the curve of alignment were developed by Clarke (1880, p. 133) and Bowring (1972, p. 283) developed an approximate equation for the difference between the geodesic and the great elliptic arc. Following Bowring (1972), let

$$
\begin{aligned}
& s=\text { geodesic length } \\
& L=\text { normal section length } \\
& D=\text { great elliptic length } \\
& S=\text { curve of alignment length }
\end{aligned}
$$

then

$$
\begin{align*}
L-s & =\frac{e^{4}}{90} s\left(\frac{s}{R}\right)^{4} \cos ^{4} \phi_{1} \sin ^{2} \alpha_{12} \cos ^{2} \alpha_{12}+\cdots \\
D-s & =\frac{e^{4}}{24} s\left(\frac{s}{R}\right)^{2} \sin ^{2} \phi_{1} \cos ^{2} \phi_{1} \sin ^{2} \alpha_{12}+\cdots \tag{27}\\
S-s & =\frac{e^{4}}{360} s\left(\frac{s}{R}\right)^{4} \cos ^{4} \phi_{1} \sin ^{2} \alpha_{12} \cos ^{2} \alpha_{12}+\cdots
\end{align*}
$$

where R can be taken as the radius of curvature in the prime vertical at P_{1}. Now for a given value of $s, S-s$ will be a maximum if $\phi_{1}=0^{\circ}$ (P_{1} on the equator) and $\alpha_{12}=45^{\circ}$ in which case $\cos ^{4} \phi_{1} \sin ^{2} \alpha_{12} \cos ^{2} \alpha_{12}=\frac{1}{4}$, thus

$$
\begin{equation*}
(S-s)<\frac{e^{4}}{1440} s\left(\frac{s}{R}\right)^{4} \tag{28}
\end{equation*}
$$

For the GRS80 ellipsoid where $f=1 / 298.257222101, e^{2}=f(2-f)$, and for $s=2000000 \mathrm{~m}$ (2,000 km) and $R=6371000 \mathrm{~m}$, equation (28) gives $S-s<0.001 \mathrm{~m}$.

MATLAB FUNCTIONS

Two MATLAB functions are shown below; they are: curve_of_alignment_lat.m and curve_of_alignment_lon.m Assuming that the terminal points of the curve are known, the first function computes the latitude of a point on the curve given a longitude and the second function computes the longitude of a point given the latitude.

Output from the two functions is shown below for points on a curve of alignment between the terminal points of the straight-line section of the Victorian-New South Wales border. This straight-line section of the border, between Murray Spring and Wauka 1978, is known as the Black-Allan Line in honour of the surveyors Black and Allan who set out the border line in 1870-71. Wauka 1978 (Gabo PM 4) is a geodetic concrete border pillar on the coast at Cape Howe and Murray Spring (Enamo PM 15) is a steel pipe driven into a spring of the Murray River that is closest to Cape Howe. The straight line is a normal section curve on the reference ellipsoid of the Geocentric Datum of Australia (GDA94) that contains the normal to the ellipsoid at Murray Spring. The GDA94 coordinates of Murray Spring and Wauka 1978 are:

$$
\begin{array}{lll}
\text { Murray Spring: } & \phi-37^{\circ} 47^{\prime} 49.2232^{\prime \prime} & \lambda 148^{\circ} 11^{\prime} 48.3333^{\prime \prime} \\
\text { Wauka 1978: } & \phi-37^{\circ} 30^{\prime} 18.0674^{\prime \prime} & \lambda 149^{\circ} 58^{\prime} 32.9932^{\prime \prime}
\end{array}
$$

The normal section azimuth and distance are:

$$
116^{\circ} 58^{\prime} 14.173757^{\prime \prime} \quad 176495.243760 \mathrm{~m}
$$

The geodesic azimuth and distance are:

$$
116^{\circ} 58^{\prime} 14.219146^{\prime \prime} \quad 176495.243758 \mathrm{~m}
$$

Figure 3 shows a schematic view of the Black-Allan line (normal section) and the geodesic and curve of alignment. The relationships between these two curves and the normal section have been computed at seven locations along the line (A, B, C, etc.) where meridians of longitude at $0^{\circ} 15^{\prime}$ intervals cut the line. The relationships are shown in Table 1.

BLACK-ALLAN LINE: VICTORIA/NSW BORDER

 At longitude $149^{\circ} 00^{\prime} \mathrm{E}$. the Geodesic is 0.016 m south of the Border Line and the Curve of Alignment is 0.015 m south.
At longitude $149^{\circ} 30^{\prime} \mathrm{E}$. the Geodesic is 0.015 m south of the Border Line and the Curve of Alignment is 0.019 m south.

Figure 3

BLACK-ALLAN LINE: VICTORIA/NSW BORDER

NAME	GDA94		Ellipsoid values		
	LATITUDE	LONGITUDE	d φ	ρ	$d m=\rho \times d \varphi$
Murray Spring	$-36^{\circ} 47^{\prime} 49.223200{ }^{\prime \prime}$	148 ${ }^{\circ} 11^{\prime} 48.333300{ }^{\prime \prime}$			
A	$-36^{\circ} 49^{\prime} 07.598047^{\prime \prime} \mathrm{N}$ $-36^{\circ} 49^{\prime} 07.598090^{\prime \prime} \mathrm{G}$ $-36^{\circ} 49^{\prime} 07.598051^{\prime \prime} \mathrm{CoA}$	$148^{\circ} 15^{\prime} 00.00000{ }^{\prime \prime}$	$\begin{aligned} & -00^{\prime} 00.000043^{\prime \prime} \\ & -00^{\prime} 00.000004^{\prime \prime} \\ & \hline \end{aligned}$	6358356.102	$\begin{array}{r} -0.0013 \\ -0.0001 \\ \hline \end{array}$
B	$-36^{\circ} 55^{\prime} 13.876510^{\prime \prime} \mathrm{N}$ $-36^{\circ} 55^{\prime} 13.876745^{\prime \prime} \mathrm{G}$ $-36^{\circ} 55^{\prime} 13.876614^{\prime \prime} \mathrm{CoA}$	$148^{\circ} 30^{\prime} 00.00000{ }^{\prime \prime}$	$\begin{aligned} & -00^{\prime} 00.000235^{\prime \prime} \\ & -00^{\prime} 00.000104^{\prime \prime} \\ & \hline \end{aligned}$	6358465.209	$\begin{array}{r} -0.0072 \\ .-0.0032 \end{array}$
C	$-37^{\circ} 01^{\prime} 17.289080^{\prime \prime}$ $-37^{\circ} 01^{\prime} 17.289478^{\prime \prime}$ $-37^{\circ} 01^{\prime} 17.289366^{\prime \prime}$ COA	$148^{\circ} 45^{\prime} 00.000000^{\prime \prime}$	$\begin{aligned} & -00^{\prime} 00.000398^{\prime \prime} \\ & -00^{\prime} 00.000286^{\prime \prime} \\ & \hline \end{aligned}$	6358573.577	$\begin{array}{r} -0.0123 \\ -0.0088 \\ \hline \end{array}$
D	$-37^{\circ} 07^{\prime} 17.845554^{\prime \prime}$ $-37^{\circ} 07^{\prime} 17.846060^{\prime \prime}$ $-37^{\circ} 07^{\prime} 17.846030^{\prime \prime}$ COA	$149^{\circ} 00^{\prime} 00.000000^{\prime \prime}$	$\begin{aligned} & -00^{\prime} 00.000506^{\prime \prime} \\ & -00^{\prime} 00.000476^{\prime \prime} \\ & \hline \end{aligned}$	6358681.204	$\begin{array}{r} -0.0156 \\ -0.0147 \\ \hline \end{array}$
E	$-37^{\circ} 13^{\prime} 15.555723^{\prime \prime}$ $-37^{\circ} 13^{\prime} 15.556262^{\prime \prime}$ $-37^{\circ} 13^{\prime} 15.556326^{\prime \prime}$ $-\quad$ CoA	$149^{\circ} 15^{\prime} 00.000000^{\prime \prime}$	$\begin{aligned} & -00^{\prime} 00.000539^{\prime \prime} \\ & -00^{\prime} 00.000603^{\prime \prime} \\ & \hline \end{aligned}$	6358788.089	$\begin{array}{r} -0.0166 \\ -0.0186 \\ \hline \end{array}$
F	$-37^{\circ} 19^{\prime} 10.429372^{\prime \prime}$ -N $-37^{\circ} 19^{\prime} 10.429845^{\prime \prime}$ $-37^{\circ} 19^{\prime} 10.429972^{\prime \prime}$ CoA	$149^{\circ} 30^{\prime} 00.000000^{\prime \prime}$	$\begin{aligned} & -00^{\prime} 00.000473^{\prime \prime} \\ & -00^{\prime} 00.00060 "^{\prime} \\ & \hline \end{aligned}$	6358894.232	$\begin{array}{r} -0.0146 \\ -0.0185 \\ \hline \end{array}$
G	$-37^{\circ} 25^{\prime} 02.476276^{\prime \prime} \mathrm{N}$ $-37^{\circ} 25^{\prime} 02.476564^{\prime \prime} \mathrm{G}$ $-37^{\circ} 25^{\prime} 02.476677^{\prime \prime} \mathrm{CoA}$	$149^{\circ} 45^{\prime} 00.000000^{\prime \prime}$	$\begin{aligned} & -00^{\prime} 00.000288^{\prime \prime} \\ & -00^{\prime} 00.000401^{\prime \prime} \\ & \hline \end{aligned}$	6358999.632	$\begin{aligned} & -0.0089 \\ & -0.0124 \end{aligned}$
$\begin{aligned} & \hline \text { Wauka } \\ & 1978 \\ & \hline \end{aligned}$	$-37^{\circ} 30^{\prime} 18.067400$ "	$149^{\circ} 58^{\prime} 32.993200{ }^{\prime \prime}$			

TABLE 1: Points where curves cut meridians of A, B, C, etc at $0^{\circ} 15^{\prime}$ intervals of longitude along Border Line
$\mathrm{N}=$ Normal Section, $\mathrm{G}=$ Geodesic, CoA $=$ Curve of Alignment

```
>> curve_of_alignment_lat
Curve of Alignment
===================
Ellipsoid parameters
a = 6378137.0000
f = 1/298.257222101
Terminal points of curve
Latitude P1 = -36 47 49.223200 (D M S)
Longitude P1 = 148 11 48.333300 (D M S)
Latitude P2 = -37 30 18.067400 (D M S)
Longitude P2 = 149 58 32.993200 (D M S)
Cartesian coordinates
\begin{tabular}{cccc} 
& \(X\) & \(Y\) & \(Z\) \\
P1 & -4345789.609716 & 2694844.030716 & -3799378.032024 \\
P2 & -4386272.668061 & 2534883.268540 & -3862005.992252
\end{tabular}
Given longitude of P3
Longitude P3 = 149 30 0.000000 (D M S)
Latitude of P3 computed from Newton-Raphson iteration
Latitude P3 = -37 19 10.429972 (D M S)
iterations = 4
>>
>> curve_of_alignment_lon
===-==-=-===-===-
Curve of Alignment
Ellipsoid parameters
a=6378137.0000
f = 1/298.257222101
Terminal points of curve
Latitude P1 = -36 47 49.223200 (D M S)
Longitude P1 = 148 11 48.333300 (D M S)
Latitude P2 = -37 30 18.067400 (D M S)
Longitude P2 = 149 58 32.993200 (D M S)
Cartesian coordinates
P1 -4345789.609716 2694844.030716 -3799378.032024
P2 -4386272.668061 2534883.268540 -3862005.992252
Given latitude of P3
Latitude P3 = -37 19 10.429972 (D M S)
Longitude of P3 computed from Newton-Raphson iteration
Longitude P3 = 149 29 60.000000 (D M S)
iterations = 5
Longitude of P3 computed from trigonometric equation
Longitude P3 = 149 29 60.000000 (D M S)
theta P3 = 8 32 44.447661 (D M S)
>>
```


MATLAB function curve_of_alignment_lat.m

```
function curve_of_alignment_lat
%
curve of alignment lat: Given the terminal points P1 and P2 of a curve of
alignment on an ellipsoid, and the longitude of a point P3 on the curve,
% this function computes the latitude of P3.
----------------------------------------------------------------------------
Function: curve_of_alignment_lat
Usage: curve_of_alignment_lat
Author: R.E.Deakin,
        School of Mathematical & Geospatial Sciences, RMIT University
        GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA.
        email: rod.deakin@rmit.edu.au
        Version 1.0 3 October 2009
        Version 1.1 31 December 2009
Purpose: Given the terminal points P1 and P2 of a curve of alignment on
    an ellipsoid, and the longitude of a point P3 on the curve, this
    function computes the latitude of P3.
Functions required:
        [D,M,S] = DMS(DecDeg)
Variables:
    A,D - curve of alignment functions of longitude
    a - semi-major axis of ellipsoid
b - semi-minor axis of ellipsoid
B,C,H,W,U,V - constants of curve of alignment
d2r - degree to radian conversion factor 57.29577951...
d_nu - derivative of nu w.r.t latitude
e\overline{2} - eccentricity of ellipsoid squared
f - f = I/flat is the flattening of ellipsoid
flat - denominator of flattening of ellipsoid
f_lat3 - function of latitude of P3
f\overline{dash_lat3 - derivative of function of latitude of P3}
h1,h2 - ellipsoidal heights of P1 and P2 (Note: h1 = h2 = 0)
iter - number of iterations
lat1,lat2,lat3 - latitude of P1, P1, P3 (radians)
lon1,lon2,lon3 - longitude of P1, P2, P3 (radians)
new_lat3 - next latiude in Newton-Raphson iteration
nu - - radius of curvature in prime vertical plane
rho - radius of curvature in meridain plane
X1,Y1,Z1 - Cartesian coordinates of P1
X2,Y2,Z2 - Cartesian coordinates of P2
Remarks:
    Given the terminal points P1 and P2 of a curve of alignment on an
    ellipsoid, and the longitude of a point P3 on the curve, this function
    computes the latitude of P3.
References:
    [1] Deakin, R.E., 2009, 'The Curve of Alignment on an Ellipsoid',
                Lecture Notes, School of Mathematical and Geospatial Sciences,
                RMIT University, December 2009
    [2] Thomas, P.D., 1952, Conformal Projections in Geodesy and
        Cartography, Special Publication No. 251, Coast and Geodetic
        Survey, U.S. Department of Commerce, Washington, DC: U.S.
        Government Printing Office, pp. 66-67.
% Degree to radian conversion factor
```

```
d2r = 180/pi;
% Set ellipsoid parameters
a = 6378137; % GRS80
flat = 298.257222101;
% Compute ellipsoid constants
f = 1/flat;
e2= f*(2-f);
% Set lat, lon and height of P1 and P2 on ellipsoid
lat1 = -(36 + 47/60 + 49.2232/3600)/d2r; % Spring
lon1 = (148 + 11/60 + 48.3333/3600)/d2r;
lat2 = -(37 + 30/60 + 18.0674/3600)/d2r; % Wauka 1978
lon2 = (149 + 58/60 + 32.9932/3600)/d2r;
h1 = 0;
h2 = 0;
% Compute Cartesian coords of P1 and P2
[X1,Y1,Z1] = Geo2Cart(a,flat,lat1,lon1,h1);
[X2,Y2,Z2] = Geo2Cart(a,flat,lat2,lon2,h2);
% Compute constants of Curve of Alignment
C = e2* (Y2-Y1);
H = e2*(X2-X1);
W = X1*Y2-X2*Y1;
U = (1-e2)*(Y1*Z2-Y2*Z1);
V = (1-e2)* (X2*Z1-X1*Z2);
B = (1-e2)*W;
% Set longitude of P3
lon3 = (149 + 30/60)/d2r;
% Set constants A and D that are functions of longitude only
A = (1-e2)* (C* cos(lon 3) -H* sin(lon 3));
D = U* cos(lon3) +V*}\operatorname{lin}(lon3)
%----------------------------------------------------------------------
% Compute the latitude of P3 using Newton-Raphson iteration
%-----------------------------------------------------------------
% Set starting value of phi = latitude
lat3 = lat1;
iter = 1;
while 1
    % Compute radii of curvature
    [rho,nu] = radii(a,flat,lat3);
    d_nu = nu^3/(a*a)*e2*sin(lat3)*cos(lat3);
    f-lat3 = A*nu*sin(lat3)-B*tan(lat3)-D;
    fdash_lat3 = d_nu*A*sin(lat3) +nu*A* cos(lat3)-B/(cos(lat3)^2);
    new lāt3 = lāt3-(f lat3/fdash lat3);
    if abs(new_lat3 - lat3) < 1e-15
        break;
    end
    lat3 = new lat3;
    if iter > \overline{100}
        fprintf('Iteration for latitude failed to converge after 100 iterations');
        break;
    end
    iter = iter + 1;
end;
%------------------------
% Print result to screen
%------------------------
fprintf('\n==================='');
fprintf('\nCurve of Alignment');
fprintf('\n==================='');
fprintf('\nEllipsoid parameters');
```

```
fprintf('\na = %12.4f',a);
fprintf('\nf = 1/%13.9f',flat);
fprintf('\n\nTerminal points of curve');
% Print lat and lon of P1
[D,M,S] = DMS(lat1*d2r);
if D == 0 && lat1 < 0
    fprintf('\nLatitude P1 = -0 %2d %9.6f (D M S)',M,S);
else
    fprintf('\nLatitude P1 = %4d %2d %9.6f (D M S)',D,M,S);
end
[D,M,S] = DMS(lon1*d2r);
if D == 0 && lon1<0
    fprintf('\nLongitude P1 = -0 %2d %9.6f (D M S)',M,S);
else
    fprintf('\nLongitude P1 = %4d %2d %9.6f (D M S)',D,M,S);
end
% Print lat and lon of P2
[D,M,S] = DMS(lat2*d2r);
if D == 0 && lat2 < 0
    fprintf('\n\nLatitude P2 = -0 %2d %9.6f (D M S)',M,S);
else
    fprintf('\n\nLatitude P2 = %4d %2d %9.6f (D M S)',D,M,S);
end
[D,M,S] = DMS(lon2*d2r);
if D == 0 && lon2 < 0
    fprintf('\nLongitude P2 = -0 %2d %9.6f (D M S)',M,S);
else
    fprintf('\nLongitude P2 = %4d %2d %9.6f (D M S)',D,M,S);
end
% Print Coordinate table
fprintf('\n\nCartesian coordinates');
fprintf('\n X Y Z');
fprintf('\nP1 %15.6f %15.6f %15.6f',X1,Y1,Z1);
fprintf('\nP2 %15.6f %15.6f %15.6f',X2,Y2,Z2);
% Print lat and lon of P3
fprintf('\n\nGiven longitude of P3');
[D,M,S] = DMS(lon3*d2r);
if D == 0 && lon3 < 0
    fprintf('\nLongitude P3 = -0 %2d %9.6f (D M S)',M,S);
else
    fprintf('\nLongitude P3 = %4d %2d %9.6f (D M S)',D,M,S);
end
fprintf('\n\nLatitude of P3 computed from Newton-Raphson iteration');
[D,M,S] = DMS(lat3*d2r);
if D == 0 && lat3< <
    fprintf('\nLatitude P3 = -0 %2d %9.6f (D M S)',M,S);
else
    fprintf('\nLatitude P3 = %4d %2d %9.6f (D M S)',D,M,S);
end
fprintf('\niterations = %4d',iter);
fprintf('\n\n');
```


MATLAB function curve_of_alignment_lon.m

```
function curve_of_alignment_lon
%
curve_of_alignment_lon: Given the terminal points P1 and P2 of a curve of
alignment on an ellipsoid, and the latitude of a point P3 on the curve,
% this function computes the longitude of P3.
---------------------------------------------------------------------------
Function: curve_of_alignment_lon
Usage: curve_of_alignment_lon
Author: R.E.Deakin,
        School of Mathematical & Geospatial Sciences, RMIT University
        GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA.
        email: rod.deakin@rmit.edu.au
        Version 1.0 31 December 2009
Purpose: Given the terminal points P1 and P2 of a curve of alignment on
an ellipsoid, and the latitude of a point P3 on the curve, this function
computes the longitude of P3.
Functions required:
        [D,M,S] = DMS(DecDeg)
        [X,Y,Z] = Geo2Cart(a,flat,lat,lon,h)
        [rm,rp] = radii(a,flat,lat);
Variables:
    a - semi-major axis of ellipsoid
b - semi-minor axis of ellipsoid
C,H,W,U,V - constants of curve of alignment
d2r - degree to radian conversion factor 57.29577951...
d_nu - derivative of nu w.r.t latitude
e\overline{2}
f - f = l/flat is the flattening of ellipsoid
flat - denominator of flattening of ellipsoid
f_lon3 - function of longitude of P3
f\overline{d}ash_lon3 - derivative of function of longitude of P3
h1,h2- - ellipsoidal heights of P1 and P2 (Note: h1 = h2 = 0)
iter - number of iterations
lambda - longitude of P3 computed from trigonometric equation
lat1,lat2,lat3 - latitude of P1, P1, P3 (radians)
lon1,lon2,lon3 - longitude of P1, P2, P3 (radians)
new_lon3 - next longitude in Newton-Raphson iteration
nu - radius of curvature in prime vertical plane
P,Q,S - functions of latitude of a point on the curve of
    - alignment
    rho - radius of curvature in meridain plane
    theta - auxiliary angle in the computation of lambda
    X1,Y1,Z1 - Cartesian coordinates of P1
    X2,Y2,Z2 - Cartesian coordinates of P2
Remarks:
    Given the terminal points P1 and P2 of a curve of alignment on an
    ellipsoid, and the latitude of a point P3 on the curve, this function
    computes the longitude of P3.
References:
    [1] Deakin, R.E., 2009, 'The Curve of Alignment on an Ellipsoid',
                Lecture Notes, School of Mathematical and Geospatial Sciences,
        RMIT University, December 2009
    [2] Thomas, P.D., 1952, Conformal Projections in Geodesy and
        Cartography, Special Publication No. 251, Coast and Geodetic
        Survey, U.S. Department of Commerce, Washington, DC: U.S.
        Government Printing Office, pp. 66-67.
```

```
% Degree to radian conversion factor
d2r = 180/pi;
% Set ellipsoid parameters
a = 6378137; % GRS80
flat = 298.257222101;
% Compute ellipsoid constants
f = l/flat;
e2=f*(2-f);
% Set lat, lon and height of P1 and P2 on ellipsoid
lat1 = -(36 + 47/60 + 49.2232/3600)/d2r; % Spring
lon1 = (148 + 11/60 + 48.3333/3600)/d2r;
lat2 = -(37 + 30/60 + 18.0674/3600)/d2r; % Wauka 1978
lon2 = (149 + 58/60 + 32.9932/3600)/d2r;
h1 = 0;
h2 = 0;
% Compute Cartesian coords of P1 and P2
[X1,Y1,Z1] = Geo2Cart(a,flat,lat1,lon1,h1);
[X2,Y2,Z2] = Geo2Cart(a,flat,lat2,lon2,h2);
% Compute constants of Curve of Alignment
C = e2*(Y2-Y1);
H = e2*(X2-X1);
W = X1*Y2-X2*Y1;
U = (1-e2)*(Y1*Z2-Y2*Z1);
V = (1-e2)* (X2*Z1-X1*Z2);
% Set latitude of P3
lat3 = -(37 + 19/60 + 10.429972/3600)/d2r;
% Set constants P, Q, S that are functions of latitude only
[rho,nu] = radii(a,flat,lat3);
P = C*nu*(1-e2)*sin(lat3)-U;
Q = H* nu*(1-e2)*sin(lat3) +V;
S = W* (1-e2)*tan(lat3);
%---------------------- ------------------------------------------
% Compute the longitude of P3 using Newton-Raphson iteration
%----------------------- ----------------------------------------
% Set starting value of lon3 = longitude of P3
lon3 = lon1;
iter = 1;
while 1
    % Compute radii of curvature
    f_lon3 = P* cos(lon3)-Q*}\operatorname{sin}(lon3)-S
    fdash_lon3 = -P*sin(lon3)-Q*cos(lon3);
    new_lōn3 = lon3-(f_lon3/fdash_lon3);
    if abs(new_lon3 - lon3) < 1e-15
            break;
        end
        lon3 = new lon3;
        if iter > 100
            fprintf('Iteration for longitude failed to converge after 100 iterations');
            break;
    end
    iter = iter + 1;
end;
%---------------------------------------------------------------
% Compute the longitude of P3 using trigonometric equation
%----------------------- ------------------------------------------
theta = atan2(-Q,P);
lambda = acos(S/sqrt(P^2+Q^2))+theta;
%------------------------
% Print result to screen
```

```
%------------------------
```

```
fprintf('\n==================');
fprintf('\nCurve of Alignment');
fprintf('\n==================');
fprintf('\nEllipsoid parameters');
fprintf('\na = %12.4f',a);
fprintf('\nf = 1/%13.9f',flat);
```

fprintf('\n\nTerminal points of curve');
\% Print lat and lon of P1
$[D, M, S]=D M S(l a t 1 * d 2 r)$;
if $D==0$ \&\& lat1 <0
fprintf('\nLatitude $P 1=-0$ \%2d $\% 9.6 f(D M S) ', M, S) ;$
else
fprintf('\nLatitude $P 1=\% 4 d \% 2 d \% 9.6 f(D M S) ', D, M, S) ;$
end
$[D, M, S]=D M S(l o n 1 * d 2 r)$;
if $D==0$ \&\& lon1 < 0
fprintf('\nLongitude $P 1=-0 \% 2 d \% 9.6 f(D M S) ', M, S) ;$
else
fprintf('\nLongitude $P 1=\% 4 d \% 2 d \% 9.6 f(D M S) ', D, M, S)$;
end
\% Print lat and lon of P 2
[D, M, S] = DMS (lat2*d2r);
if $D==0$ \&\& lat2 < 0
fprintf('\n\nLatitude $P 2=-0 \% 2 d \% 9.6 f(D M S) ', M, S) ;$
else
fprintf('\n\nLatitude $P 2=\% 4 d \div 2 d \div 9.6 f(D M S) ', D, M, S) ;$
end
$[\mathrm{D}, \mathrm{M}, \mathrm{S}]=\mathrm{DMS}(\operatorname{lon} 2 * \mathrm{~d} 2 r)$;
if $D==0$ \&\& lon2 < 0
fprintf('\nLongitude $P 2=-0 \% 2 d \div 9.6 f(D M S) ', M, S) ;$
else
fprintf('\nLongitude $P 2=\% 4 d \% 2 d \% 9.6 f(D M S) ', D, M, S) ;$
end
\% Print Coordinate table
fprintf('\n\nCartesian coordinates');
fprintf('\n X Y Z');
fprintf('\nP1 \%15.6f \%15.6f \%15.6f',X1,Y1,Z1);
fprintf('\nP2 \%15.6f \%15.6f \%15.6f', X2,Y2, Z2);
\% Print lat and lon of P3
fprintf('\n\nGiven latitude of P3')
$[\mathrm{D}, \mathrm{M}, \mathrm{S}]=\mathrm{DMS}($ lat $3 * \mathrm{~d} 2 r)$;
if $D==0$ \&\& lat3 < 0
fprintf('\nLatitude $P 3=-0 \% 2 d \div 9.6 f(D M S) ', M, S)$;
else
fprintf('\nLatitude $P 3=\% 4 d$ \%2d $\% 9.6 f(D M S) ', D, M, S) ;$
end
fprintf('\n\nLongitude of P3 computed from Newton-Raphson iteration');
[D,M,S] = DMS(lon3*d2r);
if $D==0$ \&\& lon <0
fprintf('\nLongitude $P 3=-0 \% 2 d \% 9.6 f(D M S) ', M, S) ;$
else
fprintf('\nLongitude $P 3=\% 4 d \% 2 d \% 9.6 f(D M S) ', D, M, S) ;$
end
fprintf('\niterations = \%4d',iter);
fprintf('\n\nLongitude of P3 computed from trigonometric equation');
[D,M,S] = DMS(lambda*d2r);
if $D==0$ \&\& lambda <0
fprintf('\nLongitude P3 = -0 \%2d \%9.6f (D M S)',M,S);
else
fprintf('\nLongitude $P 3=\% 4 d \% 2 d \% 9.6 f(D M S) ', D, M, S) ;$
end
$[D, M, S]=$ DMS(theta*d2r);

```
if D == 0 && theta < 0
    fprintf('\ntheta P3 = -0 %2d %9.6f (D M S)',M,S);
else
    fprintf('\ntheta P3 = %4d %2d %9.6f (D M S)',D,M,S);
end
fprintf('\n\n');
```

MATLAB function Geo2Cart.m

```
function [X,Y,Z] = Geo2Cart(a,flat,lat,lon,h)
[X,Y,Z] = Geo2Cart(a,flat,lat,lon,h)
    Function computes the Cartesian coordinates X,Y,Z of a point
        related to an ellipsoid defined by semi-major axis (a) and the
        denominator of the flattening (flat) given geographical
        coordinates latitude (lat), longitude (lon) and ellipsoidal
        height (h). Latitude and longitude are assumed to be in radians.
Function: Geo2Cart()
Usage: [X,Y,Z] = Geo2Cart(a,flat,lat,lon,h);
Author: R.E.Deakin,
            School of Mathematical & Geospatial Sciences, RMIT University
            GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA.
            email: rod.deakin@rmit.edu.au
            Version 1.0 6 April 2006
            Version 1.0 20 August 2007
Functions required:
    radii()
Purpose:
        Function Geo2Cart() will compute Cartesian coordinates X,Y,Z
        given geographical coordinates latitude, longitude (both in
        radians) and height of a point related to an ellipsoid
        defined by semi-major axis (a) and denominator of flattening
        (flat).
Variables:
    a - semi-major axis of ellipsoid
    e2 - 1st eccentricity squared
    f - flattening of ellipsoid
    flat - denominator of flattening f = l/flat
    h - height above ellipsoid
    lat - latitude (radians)
    lon - longitude (radians)
    p - perpendicular distance from minor axis of ellipsoid
    rm - radius of curvature of meridian section of ellipsoid
    rp - radius of curvature of prime vertical section of ellipsoid
References:
[1] Gerdan, G.P. & Deakin, R.E., 1999, 'Transforming Cartesian
        coordinates X,Y,Z to geogrpahical coordinates phi,lambda,h', The
        Australian Surveyor, Vol. 44, No. 1, pp. 55-63, June 1999.
```

```
% calculate flattening f and ellipsoid constant e2
f = 1/flat;
e2= f*(2-f);
```

\% compute radii of curvature for the latitude
[rm,rp] = radii(a,flat,lat);

```
% compute Cartesian coordinates X,Y,Z
p = (rp+h)*cos(lat);
X = p* cos(lon);
Y = p*sin(lon);
Z = (rp*(1-e2) +h)*sin(lat);
```


MATLAB function radii.m

```
function \([r m, r p]=\) radii(a,flat,lat)
,
[rm,rp]=radii(a,flat,lat) Function computes radii of curvature in
        the meridian and prime vertical planes (rm and rp respectively) at a
        point whose latitude (lat) is known on an ellipsoid defined by
        semi-major axis (a) and denominator of flattening (flat).
        Latitude must be in radians.
        Example: [rm,rp] = radii(6378137,298.257222101,-0.659895044);
            should return \(r m=6359422.96233327\) metres and
                                    \(r p=6386175.28947842\) metres
        at latitude -374833.1234 (DMS) on the GRS80 ellipsoid
    Function: radii(a,flat,lat)
    Syntax: [rm,rp] = radii(a,flat,lat);
    Author: R.E.Deakin,
        School of Mathematical \& Geospatial Sciences, RMIT University
        GPO Box \(2476 \mathrm{~V}, \mathrm{MELBOURNE} ,\mathrm{VIC} \mathrm{3001}, \mathrm{AUSTRALIA}\).
        email: rod.deakin@rmit.edu.au
        Version 1.0 1 August 2003
        Version 2.0 6 April 2006
        Version 3.09 February 2008
    Purpose: Function radii() will compute the radii of curvature in
        the meridian and prime vertical planes, rm and rp respectively
        for the point whose latitude (lat) is given for an ellipsoid
        defined by its semi-major axis (a) and denominator of
        flattening (flat).
Return value: Function radii() returns rm and rp
Variables
    a - semi-major axis of spheroid
    c - polar radius of curvature
    c2 - cosine of latitude squared
    ep2 - 2nd-eccentricity squared
    f - flattening of ellipsoid
    lat - latitude of point (radians)
    rm - radius of curvature in the meridian plane
    rp - radius of curvature in the prime vertical plane
    V - latitude function defined by \(V\)-squared \(=\operatorname{sqrt}\left(1+\operatorname{ep} 2^{*} c 2\right)\)
    V2,V3 - powers of \(V\)
Remarks:
    Formulae are given in [1] (section 1.3.9, page 85) and in
    [2] (Chapter 2, p. 2-10) in a slightly different form.
References:
[1] Deakin, R.E. and Hunter, M.N., 2008, GEOMETRIC GEODESY, School of
        Mathematical and Geospatial Sciences, RMIT University, Melbourne,
        AUSTRALIA, March 2008.
[2] THE GEOCENTRIC DATUM OF AUSTRALIA TECHNICAL MANUAL, Version 2.2,
        Intergovernmental Committee on Surveying and Mapping (ICSM),
        February 2002 (www.anzlic.org.au/icsm/gdatum)
```

```
% compute flattening f eccentricity squared e2
f = 1/flat;
c = a/(1-f);
ep2 = f*(2-f)/((1-f)^2);
% calculate the square of the sine of the latitude
c2 = cos(lat)^2;
% compute latitude function V
V2 = 1+ep2*c2;
V = sqrt(V2);
V3 = V2*V;
% compute radii of curvature
rm = c/V3;
rp = c/V;
```


MATLAB function DMS.m

```
function [D,M,S] = DMS (DecDeg)
% [D,M,S] = DMS (DecDeg) This function takes an angle in decimal degrees and returns
% Degrees, Minutes and Seconds
val = abs(DecDeg);
D = fix(val);
M = fix((val-D)*60);
S = (val-D-M/60)*3600;
if(DecDeg<0)
    D = -D;
end
return
```


REFERENCES

Bowring, B. R., (1972), 'Distance and the spheroid', Correspondence, Survey Review, Vol. XXI, No. 164, April 1972, pp. 281-284.
Clarke, A. R., (1880), Geodesy, Clarendon Press, Oxford.
Deakin, R. E., (2009), 'The Normal Section Curve on an Ellipsoid', Lecture Notes, School of Mathematical \& Geospatial Sciences, RMIT University, Melbourne, Australia, November 2009, 53 pages.
Thomas, P. D., (1952), Conformal Projections in Geodesy and Cartography, Special Publication No. 251, Coast and Geodetic Survey, United States Department of Commerce, Washington, D.C.

THE GREAT ELLIPTIC ARC
 ON AN ELLIPSOID

R. E. Deakin
School of Mathematical \& Geospatial Sciences, RMIT University, GPO Box 2476V, MELBOURNE VIC 3001, AUSTRALIA
email: rod.deakin@rmit.edu.au
January 2010

Abstract

These notes provide a detailed derivation of the equation for the great elliptic arc on an ellipsoid. Using this equation and knowing the terminal points of the curve, a technique is developed for computing the location of points along the curve. A MATLAB function is provided that demonstrates the algorithm developed.

INTRODUCTION

In geodesy, the great elliptic arc between P_{1} and P_{2} on the ellipsoid is the curve created by intersecting the ellipsoid with the plane containing P_{1}, P_{2} and O (the centre of the ellipsoid).

Figure 1: Great elliptic arc on ellipsoid

Figure 1 shows P on the great elliptic arc between P_{1} and $P_{2} . \theta_{P}$ is the geocentric latitude of P and λ_{P} is the longitude of P.

There are an infinite number of planes that cut the surface of the ellipsoid and contain the chord $P_{1} P_{2}$ but only one of these will contain the centre O. Two other planes are the normal section plane $P_{1} P_{2}$ (containing the normal at P_{1}) and the normal section plane $P_{2} P_{1}$ (containing the normal at P_{2}). All of these curves of intersection (including the great elliptic arc and the two normal section curves) are plane curves that are arcs of ellipses (for a proof of this see Deakin, 2009a). All meridians of longitude on an ellipsoid and the ellipsoid equator are great elliptic arcs. Parallels of latitude - excepting the equator - are not great elliptic arcs. So we could say that the great elliptic arc is a unique plane curve on the ellipsoid - since it is created by the single plane containing P_{1}, P_{2} and O. But it is
 belongs to the geodesic.

Great elliptic arcs are not much used in geodesy as they don't have a practical connection with theodolite observations made on the surface of the earth that are approximated as observations made on an ellipsoid; e.g., normal section curves and curves of alignment. Nor are they the shortest distance between points on the ellipsoid; but, if we ignore earth rotation, they are the curves traced out on the geocentric ellipsoid by the ground point of an earth orbiting satellite or a ballistic missile moving in an orbital plane containing the earth's centre of mass. Here geocentric means O (the centre of the ellipsoid) is coincident with the centre of mass.

The equation for the curve developed below is similar to that derived for the curve of alignment in Deakin (2009b) and it is not in a form suitable for computing the distance or azimuth of the curve. But, as it contains functions of both the latitude and longitude of a point on the curve, it is suitable for computing the latitude of a point given a particular longitude; or alternatively the longitude of a point may be computed (iteratively) given a particular latitude.

EQUATION OF GREAT ELLIPTIC ARC

Figure 1 shows P on the great elliptic arc that passes through P_{1} and P_{2} on the ellipsoid. The semi-axes of the ellipsoid are a and $b(a>b)$ and the first-eccentricity squared e^{2} and the flattening f of the ellipsoid are defined by

$$
\begin{align*}
& e^{2}=\frac{a^{2}-b^{2}}{a^{2}}=f(2-f) \tag{1}\\
& f=\frac{a-b}{a}
\end{align*}
$$

Parallels of latitude ϕ and meridians of longitude λ have their respective reference planes; the equator and the Greenwich meridian, and Longitudes are measured 0° to $\pm 180^{\circ}$ (east positive, west negative) from the Greenwich meridian and latitudes are measured 0° to $\pm 90^{\circ}$ (north positive, south negative) from the equator. The x, y, z geocentric Cartesian coordinate system has an origin at O, the centre of the ellipsoid, and the z-axis is the minor axis (axis of revolution). The $x O z$ plane is the Greenwich meridian plane (the origin of longitudes) and the $x O y$ plane is the equatorial plane. The positive x-axis passes through the intersection of the Greenwich meridian and the equator, the positive y-axis is advanced 90° east along the equator and the positive z-axis passes through the north pole of the ellipsoid.

In Figure $1, \theta_{P}$ is the geocentric latitude of P and (geodetic) latitude ϕ and geocentric latitude θ are related by

$$
\begin{equation*}
\tan \theta=\left(1-e^{2}\right) \tan \phi=\frac{b^{2}}{a^{2}} \tan \phi=(1-f)^{2} \tan \phi \tag{2}
\end{equation*}
$$

The geometric relationship between geocentric latitude θ and (geodetic) latitude ϕ is shown in Figure 2.

Figure 2: Meridian plane of P

The great elliptic plane in Figure 1 is defined by points (1), (2) and (3) that are P_{1}, P_{2} and the centre of the ellipsoid O respectively. Cartesian coordinates of (1) and (2) are computed from the following equations

$$
\begin{align*}
& x=\nu \cos \phi \cos \lambda \\
& y=\nu \cos \phi \sin \lambda \tag{3}\\
& z=\nu\left(1-e^{2}\right) \sin \phi
\end{align*}
$$

where $\nu=P H$ (see Figure 2) is the radius of curvature in the prime vertical plane and

$$
\begin{equation*}
\nu=\frac{a}{\sqrt{1-e^{2} \sin ^{2} \phi}} \tag{4}
\end{equation*}
$$

The Cartesian coordinates of point (3) are all zero.
The General equation of a plane may be written as

$$
\begin{equation*}
A x+B y+C z+D=0 \tag{5}
\end{equation*}
$$

And the equation of the plane passing through points (1), (2) and (3) is given in the form of a 3rd-order determinant

$$
\left|\begin{array}{ccc}
x-x_{1} & y-y_{1} & z-z_{1} \tag{6}\\
x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\
x_{3}-x_{2} & y_{3}-y_{2} & z_{3}-z_{2}
\end{array}\right|=0
$$

or expanded into 2 nd-order determinants

$$
\left|\begin{array}{ll}
y_{2}-y_{1} & z_{2}-z_{1} \tag{7}\\
y_{3}-y_{2} & z_{3}-z_{2}
\end{array}\right|\left(x-x_{1}\right)-\left|\begin{array}{ll}
x_{2}-x_{1} & z_{2}-z_{1} \\
x_{3}-x_{2} & z_{3}-z_{2}
\end{array}\right|\left(y-y_{1}\right)+\left|\begin{array}{ll}
x_{2}-x_{1} & y_{2}-y_{1} \\
x_{3}-x_{2} & y_{3}-y_{2}
\end{array}\right|\left(z-z_{1}\right)=0
$$

Expanding the determinants in equation (7) gives

$$
\begin{align*}
& \left(x-x_{1}\right)\left\{\left(y_{2}-y_{1}\right)\left(z_{3}-z_{2}\right)-\left(z_{2}-z_{1}\right)\left(y_{3}-y_{2}\right)\right\} \\
- & \left(y-y_{1}\right)\left\{\left(x_{2}-x_{1}\right)\left(z_{3}-z_{2}\right)-\left(z_{2}-z_{1}\right)\left(x_{3}-x_{2}\right)\right\} \\
+ & \left(z-z_{1}\right)\left\{\left(x_{2}-x_{1}\right)\left(y_{3}-y_{2}\right)-\left(y_{2}-y_{1}\right)\left(x_{3}-x_{2}\right)\right\}=0 \tag{8}
\end{align*}
$$

Now since $x_{3}=y_{3}=z_{3}=0$ and equation (8) becomes

$$
\begin{align*}
& \left(x-x_{1}\right)\left\{\left(y_{2}-y_{1}\right)\left(-z_{2}\right)-\left(z_{2}-z_{1}\right)\left(-y_{2}\right)\right\} \\
- & \left(y-y_{1}\right)\left\{\left(x_{2}-x_{1}\right)\left(-z_{2}\right)-\left(z_{2}-z_{1}\right)\left(-x_{2}\right)\right\} \\
+ & \left(z-z_{1}\right)\left\{\left(x_{2}-x_{1}\right)\left(-y_{2}\right)-\left(y_{2}-y_{1}\right)\left(-x_{2}\right)\right\}=0 \tag{9}
\end{align*}
$$

Expanding and simplifying equation (9) gives

$$
x\left(y_{1} z_{2}-y_{2} z_{1}\right)-y\left(x_{1} z_{2}-x_{2} z_{1}\right)+z\left(x_{1} y_{2}-x_{2} y_{1}\right)=0
$$

Replacing x, y and z with their equivalents, given by equations (3), gives

$$
\nu \cos \phi \cos \lambda\left(y_{1} z_{2}-y_{2} z_{1}\right)-\nu \cos \phi \sin \lambda\left(x_{1} z_{2}-x_{2} z_{1}\right)+\nu\left(1-e^{2}\right) \sin \phi\left(x_{1} y_{2}-x_{2} y_{1}\right)=0
$$

and dividing both sides by $\nu \cos \phi$ gives the equation of the great elliptic arc as

$$
\begin{equation*}
A \cos \lambda-B \sin \lambda+C\left(1-e^{2}\right) \tan \phi=0 \tag{10}
\end{equation*}
$$

where A, B and C are functions of the coordinates of the terminal points P_{1} and P_{2}

$$
\begin{equation*}
A=y_{1} z_{2}-y_{2} z_{1} \quad B=x_{1} z_{2}-x_{2} z_{1} \quad C=x_{1} y_{2}-x_{2} y_{1} \tag{11}
\end{equation*}
$$

Equation (10) is not suitable for computing the distance along a great elliptic arc, nor is it suitable for computing the azimuth of the curve, but by certain re-arrangements it is possible to solve (directly) for the latitude of a point on the curve given a longitude somewhere between the longitudes of the terminal points of the curve. Or alternatively, solve (iteratively) for the longitude of a point given a latitude somewhere between the latitudes of the terminal points.

SOLVING FOR THE LATITUDE

A simple re-arrangement of equation (10) allows the latitude ϕ to be evaluated from

$$
\begin{equation*}
\tan \phi=\frac{B \sin \lambda-A \cos \lambda}{C\left(1-e^{2}\right)} \tag{12}
\end{equation*}
$$

where A and B and C are functions of terminal points P_{1} and P_{2} given by equations (11).

SOLVING FOR THE LONGITUDE

The longitude λ can be evaluated using Newton-Raphson iteration for the real roots of the equation $f(\lambda)=0$ given in the form of an iterative equation

$$
\begin{equation*}
\lambda_{(n+1)}=\lambda_{(n)}-\frac{f\left(\lambda_{(n)}\right)}{f^{\prime}\left(\lambda_{(n)}\right)} \tag{13}
\end{equation*}
$$

where n denotes the $n^{\text {th }}$ iteration and $f(\lambda)$ is given by equation (10) as

$$
\begin{equation*}
f(\lambda)=A \cos \lambda-B \sin \lambda+C\left(1-e^{2}\right) \tan \phi \tag{14}
\end{equation*}
$$

and the derivative $f^{\prime}(\lambda)=\frac{d}{d \lambda}\{f(\lambda)\}$ is given by

$$
\begin{equation*}
f^{\prime}(\lambda)=-A \sin \lambda-B \cos \lambda \tag{15}
\end{equation*}
$$

An initial value of $\lambda_{(1)}(\lambda$ for $n=1)$ can be taken as the longitude of P_{1} and the functions $f\left(\lambda_{(1)}\right)$ and $f^{\prime}\left(\lambda_{(1)}\right)$ evaluated from equations (14) and (15) using $\lambda_{1} \cdot \lambda_{(2)}(\lambda$ for $n=2)$ can now be computed from equation (13) and this process repeated to obtain values $\lambda_{(3)}, \lambda_{(4)}, \ldots$. This iterative process can be concluded when the difference between $\lambda_{(n+1)}$ and $\lambda_{(n)}$ reaches an acceptably small value.

Alternatively, the longitude can be evaluated by a trigonometric equation derived as follows. Equation (10) can be expressed as

$$
\begin{equation*}
B \sin \lambda-A \cos \lambda=C\left(1-e^{2}\right) \tan \phi \tag{16}
\end{equation*}
$$

and A, B and C are given by equations (11). Equation (16) can be expressed as a trigonometric addition of the form

$$
\begin{align*}
C\left(1-e^{2}\right) \tan \phi & =R \cos (\lambda-\theta) \\
& =R \cos \lambda \cos \theta+R \sin \lambda \sin \theta \tag{17}
\end{align*}
$$

Now, equating the coefficients of $\cos \lambda$ and $\sin \lambda$ in equations (17) and (16) gives

$$
\begin{equation*}
A=-R \cos \theta ; \quad B=R \sin \theta \tag{18}
\end{equation*}
$$

and using these relationships

$$
\begin{equation*}
R=\sqrt{A^{2}+B^{2}} ; \quad \tan \theta=\frac{B}{-A} \tag{19}
\end{equation*}
$$

Substituting these results into equation (17) gives

$$
\begin{equation*}
\lambda=\arccos \left\{\frac{C\left(1-e^{2}\right) \tan \phi}{\sqrt{A^{2}+B^{2}}}\right\}+\arctan \left\{\frac{B}{-A}\right\} \tag{20}
\end{equation*}
$$

DIFFERENCE IN LENGTH BETWEEN A GEODESIC AND A GREAT ELLIPTIC ARC

There are five curves of interest in geodesy; the geodesic, the normal section, the great elliptic arc the loxodrome and the curve of alignment.

The geodesic between P_{1} and P_{2} on an ellipsoid is the unique curve on the surface defining the shortest distance; all other curves will be longer in length. The normal section curve $P_{1} P_{2}$ is a plane curve created by the intersection of the normal section plane containing the normal at P_{1} and also P_{2} with the ellipsoid surface. And as we have shown (Deakin

2009a) there is the other normal section curve $P_{2} P_{1}$. The curve of alignment (Deakin 2009b, Thomas 1952) is the locus of all points P such that the normal section plane at P also contains the points P_{1} and P_{2}. The curve of alignment is very close to a geodesic. The great elliptic arc is the plane curve created by intersecting the plane containing P_{1}, P_{2} and the centre O with the surface of the ellipsoid and the loxodrome is the curve on the surface that cuts each meridian between P_{1} and P_{2} at a constant angle.

Approximate equations for the difference in length between the geodesic, the normal section curve and the curve of alignment were developed by Clarke (1880, p. 133) and Bowring (1972, p. 283) developed an approximate equation for the difference between the geodesic and the great elliptic arc. Following Bowring (1972), let

$$
\begin{aligned}
& s=\text { geodesic length } \\
& L=\text { normal section length } \\
& D=\text { great elliptic length } \\
& S=\text { curve of alignment length }
\end{aligned}
$$

then

$$
\begin{align*}
& L-s=\frac{e^{4}}{90} s\left(\frac{s}{R}\right)^{4} \cos ^{4} \phi_{1} \sin ^{2} \alpha_{12} \cos ^{2} \alpha_{12}+\cdots \\
& D-s=\frac{e^{4}}{24} s\left(\frac{s}{R}\right)^{2} \sin ^{2} \phi_{1} \cos ^{2} \phi_{1} \sin ^{2} \alpha_{12}+\cdots \tag{21}\\
& S-s=\frac{e^{4}}{360} s\left(\frac{s}{R}\right)^{4} \cos ^{4} \phi_{1} \sin ^{2} \alpha_{12} \cos ^{2} \alpha_{12}+\cdots
\end{align*}
$$

where R can be taken as the radius of curvature in the prime vertical at P_{1}. Now for a given value of $s, D-s$ will be a maximum if $\phi_{1}=45^{\circ}$ and $\alpha_{12}=90^{\circ}$ in which case $\sin ^{2} \phi_{1} \cos ^{2} \phi_{1} \sin ^{2} \alpha_{12}=\frac{1}{4}$, thus

$$
\begin{equation*}
(D-s)<\frac{e^{4}}{96} s\left(\frac{s}{R}\right)^{4} \tag{22}
\end{equation*}
$$

For the GRS80 ellipsoid where $f=1 / 298.257222101, e^{2}=f(2-f)$, and for $s=1200000 \mathrm{~m}$ (1200 km) and $R=6371000 \mathrm{~m}$, equation (22) gives $D-s<0.001 \mathrm{~m}$.

MATLAB FUNCTIONS

Two MATLAB functions are shown below; they are: great_elliptic_arc_lat.m and great_elliptic_arc_lon.m Assuming that the terminal points of the curve are known, the first function computes the latitude of a point on the curve given a longitude and the second function computes the longitude of a point given the latitude.

Output from the two functions is shown below for points on a great elliptic arc between the terminal points of the straight-line section of the Victorian-New South Wales border. This straight-line section of the border, between Murray Spring and Wauka 1978, is known as the Black-Allan Line in honour of the surveyors Black and Allan who set out the border line in 1870-71. Wauka 1978 (Gabo PM 4) is a geodetic concrete border pillar on the coast at Cape Howe and Murray Spring (Enamo PM 15) is a steel pipe driven into a spring of the Murray River that is closest to Cape Howe. The straight line is a normal section curve on the reference ellipsoid of the Geocentric Datum of Australia (GDA94) that contains the normal to the ellipsoid at Murray Spring. The GDA94 coordinates of Murray Spring and Wauka 1978 are:

$$
\begin{array}{lll}
\text { Murray Spring: } & \phi-37^{\circ} 47^{\prime} 49.2232^{\prime \prime} & \lambda 148^{\circ} 11^{\prime} 48.3333^{\prime \prime} \\
\text { Wauka 1978: } & \phi-37^{\circ} 30^{\prime} 18.0674^{\prime \prime} & \lambda 149^{\circ} 58^{\prime} 32.9932^{\prime \prime}
\end{array}
$$

The normal section azimuth and distance are:

$$
116^{\circ} 58^{\prime} 14.173757^{\prime \prime} \quad 176495.243760 \mathrm{~m}
$$

The geodesic azimuth and distance are:

$$
116^{\circ} 58^{\prime} 14.219146^{\prime \prime} \quad 176495.243758 \mathrm{~m}
$$

Figure 3 shows a schematic view of the Black-Allan line (normal section) and the great elliptic arc. The relationships between the great elliptic arc and the normal section have been computed at seven locations along the line ($\mathrm{A}, \mathrm{B}, \mathrm{C}$, etc.) where meridians of longitude at $0^{\circ} 15^{\prime}$ intervals cut the line. These relationships are shown in Table 1.

BLACK-ALLAN LINE: VICTORIA/NSW BORDER

with respect to the Border Line (normal section)
At longitude $149^{\circ} 00^{\prime} \mathrm{E}$. the Great Elliptic Arc is 1.939 m north of
the Border Line.
At longitude $149^{\circ} 30^{\prime}$ E. the Great Elliptic Arc is 1.522 m north of the Border Line.

Figure 3

BLACK-ALLAN LINE: VICTORIA/NSW BORDER

NAME	GDA94		Ellipsoid values		
	LATITUDE	LONGITUDE	d φ	p	$\mathrm{dm}=\rho \times \mathrm{d} \varphi$
Murray Spring	$-36^{\circ} 47^{\prime} 49.223200{ }^{\prime \prime}$	148 ${ }^{\circ} 11^{\prime} 48.333300{ }^{\prime \prime}$			
A	$\begin{aligned} & -36^{\circ} 49^{\prime} 07.598047^{\prime \prime} \mathrm{N} \\ & -36^{\circ} 49^{\prime} 07.590584^{\prime \prime} \text { GEA } \end{aligned}$	$148^{\circ} 15^{\prime} 00.000000^{\prime \prime}$	+00'00.007463"	6358356.102	+0.2301
B	$-36^{\circ} 55^{\prime} 13.876510^{\prime \prime}$ N $-36^{\circ} 55^{\prime} 13.840305^{\prime \prime}$ GEA	$148^{\circ} 30{ }^{\prime} 00.000000{ }^{\prime \prime}$	+00'00.036205"	6358465.209	+1.1161
C	$\begin{aligned} & -37^{\circ} 01^{\prime} 17.289080^{\prime \prime} \\ & -\mathrm{N} \\ & -37^{\circ} 01^{\prime} 17.234433^{\prime \prime} \\ & \text { GEA } \\ & \hline \end{aligned}$	$148^{\circ} 45^{\prime} 00.000000^{\prime \prime}$	+00'00.054647"	6358573.577	+1.6846
D	$-37^{\circ} 07^{\prime} 17.845554^{\prime \prime}$ N $-37^{\circ} 07^{\prime} 17.782643^{\prime \prime}$ GEA	$149^{\circ} 00^{\prime} 00.000000^{\prime \prime}$	+00'00.062911"	6358681.204	+1.9394
E	$\begin{aligned} & -37^{\circ} 13^{\prime} 15.555723^{\prime \prime} \\ & -\mathrm{N} \\ & -37^{\circ} 13^{\prime} 15.494607^{\prime \prime} \\ & \text { GEA } \\ & \hline \end{aligned}$	149 ${ }^{\circ} 15^{\prime} 00.000000^{\prime \prime}$	+00'00.061116"	6358788.089	+1.8841
F	$\begin{array}{lll} -37^{\circ} 19^{\prime} 10.429372^{\prime \prime} & \mathrm{N} \\ -37^{\circ} 19^{\prime} 10.379991^{\prime \prime} & \text { GEA } \\ \hline \end{array}$	$149^{\circ} 30^{\prime} 00.000000^{\prime \prime}$	+00'00.049381"	6358894.232	+1.5224
G	$\begin{aligned} & -37^{\circ} 25^{\prime} 02.476276^{\prime \prime} \mathrm{N} \\ & -37^{\circ} 25^{\prime} 02.448453^{\prime \prime} \text { GEA } \\ & \hline \end{aligned}$	$149^{\circ} 45^{\prime} 00.000000{ }^{\prime \prime}$	+00'00.027823"	6358999.632	+0.8578
Wauka 1978	$-37^{\circ} 30^{\prime} 18.067400{ }^{\prime \prime}$	$149^{\circ} 58^{\prime} 32.993200{ }^{\prime \prime}$			

TABLE 1: Points where the Great Elliptic Arc cuts meridians of A, B, C, etc at $0^{\circ} 15^{\prime}$ intervals of longitude along Border Line. N = Normal Section, GEA = Great Elliptic Arc

```
>> great_elliptic_arc_lat
Great Elliptic Arc
==================
Ellipsoid parameters
a = 6378137.0000
f = 1/298.257222101
Terminal points of curve
Latitude P1 = -36 47 49.223200 (D M S)
Longitude P1 = 148 11 48.333300 (D M S)
Latitude P2 = -37 30 18.067400 (D M S)
Longitude P2 = 149 58 32.993200 (D M S)
Cartesian coordinates
\begin{tabular}{cccc} 
& X & Y & Z \\
P1 & -4345789.609716 & 2694844.030716 & -3799378.032024 \\
P2 & -4386272.668061 & 2534883.268540 & -3862005.992252
\end{tabular}
Given longitude of P3
Longitude P3 = 149 30 0.000000 (D M S)
Latitude of P3 computed from trigonometric equation
Latitude P3 = -37 19 10.379991 (D M S)
>>
>> great_elliptic_arc_lon
Great Elliptic Arc
================
Ellipsoid parameters
a = 6378137.0000
f = 1/298.257222101
Terminal points of curve
Latitude P1 = -36 47 49.223200 (D M S)
Longitude P1 = 148 11 48.333300 (D M S)
Latitude P2 = -37 30 18.067400 (D M S)
Longitude P2 = 149 58 32.993200 (D M S)
Cartesian coordinates
    X Y Z
P1 -4345789.609716 2694844.030716 -3799378.032024
P2 -4386272.668061 2534883.268540 -3862005.992252
Given latitude of P3
Latitude P3 = -37 19 10.379991 (D M S)
Longitude of P3 computed from Newton-Raphson iteration
Longitude P3 = 149 30 0.000001 (D M S)
iterations = 5
Longitude of P3 computed from trigonometric equation
Longitude P3 = 149 30 0.000001 (D M S)
theta P3 = 8 39 58.683516 (D M S)
>>
```


MATLAB function great elliptic arc lat.m

```
function great_elliptic_arc_lat
%
% great_elliptic_arc_lat: Given the terminal points P1 and P2 of a great
% elliptic arc on an ellipsoid, and the longitude of a point P3 on the
% curve, this function computes the latitude of P3.
%---------------------------------------------------------------------------------
F Function: great_elliptic_arc_lat
Usage: great_elliptic_arc_lat
Author: R.E.Deakin,
    School of Mathematical & Geospatial Sciences, RMIT University
    GPO BOx 2476V, MELBOURNE, VIC 3001, AUSTRALIA.
    email: rod.deakin@rmit.edu.au
    Version 1.0 3 October 2009
    Version 1.1 5 January 2010
Purpose: Given the terminal points P1 and P2 of a great elliptic arc on
    an ellipsoid, and the longitude of a point P3 on the curve, this
    function computes the latitude of P3.
Functions required:
        [D,M,S] = DMS(DecDeg)
        [X,Y,Z] = Geo2Cart(a,flat,lat,lon,h)
        [rm,rp] = radii(a,flat,lat);
Variables:
    A,B,C - constants of great elliptic arc
    a - semi-major axis of ellipsoid
b - semi-minor axis of ellipsoid
d2r - degree to radian conversion factor 57.29577951...
e2 - eccentricity of ellipsoid squared
f - f = l/flat is the flattening of ellipsoid
flat - denominator of flattening of ellipsoid
h1,h2 - ellipsoid heights of P1 and P2
lat1,lat2,lat3 - latitude of P1, P1, P3 (radians)
lon1,lon2,lon3 - longitude of P1, P2, P3 (radians)
nu - radius of curvature in prime vertical plane
rho - radius of curvature in meridain plane
X1,Y1,Z1 - Cartesian coordinates of P1
X2,Y2,Z2 - Cartesian coordinates of P2
Remarks:
References:
    [1] Deakin, R.E., 2010, 'The Great Elliptic Arc on an Ellipsoid',
                Lecture Notes, School of Mathematical and Geospatial Sciences,
                RMIT University, January 2010
%
% Degree to radian conversion factor
d2r = 180/pi;
Set ellipsoid parameters
a =6378137; % GRS80
flat = 298.257222101;
%a = 6378160; % ANS
% flat = 298.25;
a = 20926062; % CLARKE 1866
b = 20855121;
f = 1-(b/a);
% flat = 1/f;
% Compute ellipsoid constants
```

```
f = 1/flat;
e2=f*(2-f);
% Set lat, lon and height of P1 and P2 on ellipsoid
lat1 = -(36 + 47/60 + 49.2232/3600)/d2r; % Spring
lon1 = (148 + 11/60 + 48.3333/3600)/d2r;
lat2 = -(37 + 30/60 + 18.0674/3600)/d2r; % Wauka 1978
lon2 = (149 + 58/60 + 32.9932/3600)/d2r;
h1 = 0;
h2 = 0;
% Compute Cartesian coords of P1 and P2
[X1,Y1,Z1] = Geo2Cart(a,flat,lat1,lon1,h1);
[X2,Y2,Z2] = Geo2Cart(a,flat,lat2,lon2,h2);
% Compute constants of Curve of Alignment
A = Y1*Z2-Y2*Z1;
B = X1*Z2-X2*Z1;
C = X1*Y2-X2*Y1;
% Set longitude of P3
lon3 = (149 + 30/60)/d2r;
% Compute latitude of P3
lat3 = atan((B*sin(lon3)-A* cos(lon3))/(C*(1-e2)));
%-----------------------
% Print result to screen
%-----------------------
fprintf('\n====================');
fprintf('\nGreat Elliptic Arc');
fprintf('\n===================');
fprintf('\nEllipsoid parameters');
fprintf('\na = %12.4f',a);
fprintf('\nf = 1/%13.9f',flat);
fprintf('\n\nTerminal points of curve');
% Print lat and lon of P1
[D,M,S] = DMS(lat1*d2r);
if D == 0 && lat1 < 0
    fprintf('\nLatitude P1 = -0 %2d %9.6f (D M S)',M,S);
else
    fprintf('\nLatitude P1 = %4d %2d %9.6f (D M S)',D,M,S);
end
[D,M,S] = DMS(lon1*d2r);
if D == 0 && lon1 < 0
    fprintf('\nLongitude P1 = -0 %2d %9.6f (D M S)',M,S);
else
    fprintf('\nLongitude P1 = %4d %2d %9.6f (D M S)',D,M,S);
end
% Print lat and lon of P2
[D,M,S] = DMS(lat2*d2r);
if D == 0 && lat2 < 0
    fprintf('\n\nLatitude P2 = -0 %2d %9.6f (D M S)',M,S);
else
    fprintf('\n\nLatitude P2 = %4d %2d %9.6f (D M S)',D,M,S);
end
[D,M,S] = DMS(lon2*d2r);
if D == 0 && lon2 < 0
    fprintf('\nLongitude P2 = -0 %2d %9.6f (D M S)',M,S);
else
    fprintf('\nLongitude P2 = %4d %2d %9.6f (D M S)',D,M,S);
end
% Print Coordinate table
fprintf('\n\nCartesian coordinates');
fprintf('\n X Y Z');
fprintf('\nP1 %15.6f %15.6f %15.6f',X1,Y1,Z1);
fprintf('\nP2 %15.6f %15.6f %15.6f',X2,Y2,Z2);
```

```
% Print lat and lon of P3
fprintf('\n\nGiven longitude of P3');
[D,M,S] = DMS(lon3*d2r);
if D == 0 && lon3 < 0
    fprintf('\nLongitude P3 = -0 %2d %9.6f (D M S)',M,S);
else
    fprintf('\nLongitude P3 = %4d %2d %9.6f (D M S)',D,M,S);
end
fprintf('\n\nLatitude of P3 computed from trigonometric equation');
[D,M,S] = DMS(lat3*d2r);
if D == 0 && lat3 < 0
    fprintf('\nLatitude P3 = -0 %2d %9.6f (D M S)',M,S);
else
    fprintf('\nLatitude P3 = %4d %2d %9.6f (D M S)',D,M,S);
end
fprintf('\n\n');
```


MATLAB function great_elliptic_arc_lon.m

```
function great_elliptic_arc_lon
%
% great_elliptic_arc_lon: Given the terminal points P1 and P2 of a great
% elliptic arc on an ellipsoid, and the latitude of a point P3 on the
% curve, this function computes the longitude of P3.
Function: great_elliptic_arc_lon
Usage: great_elliptic_arc_lon
Author: R.E.Deakin,
    School of Mathematical & Geospatial Sciences, RMIT University
    GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA.
    email: rod.deakin@rmit.edu.au
    Version 1.0 3 October 2009
    Version 1.1 5 January 2010
Purpose: Given the terminal points P1 and P2 of a great elliptic arc on
an ellipsoid, and the latitude of a point P3 on the curve, this
function computes the longitude of P3.
Functions required:
    [D,M,S] = DMS(DecDeg)
    [X,Y,Z] = Geo2Cart(a,flat,lat,lon,h)
    [rm,rp] = radii(a,flat,lat);
Variables:
A,B,C - constants of great elliptic arc
a - semi-major axis of ellipsoid
b - semi-minor axis of ellipsoid
d2r - degree to radian conversion factor 57.29577951...
e2 - eccentricity of ellipsoid squared
f - f = l/flat is the flattening of ellipsoid
flat - denominator of flattening of ellipsoid
f_lat3 - function of latitude of P3
fdash lat3 - derivative of function of latitude of Pp3
h1,h2- - ellipsoid heights of P1 and P2
iter - number of iterations
lambda - longitude of P3 computed from trigonometric equation
lat1,lat2,lat3 - latitude of P1, P1, P3 (radians)
lon1,lon2,lon3 - longitude of P1, P2, P3 (radians)
new_lat3 - next latiude in Newton-Raphson iteration
nu - radius of curvature in prime vertical plane
rho - radius of curvature in meridain plane
```

```
theta - auxiliary angle in the computation of lambda
X1,Y1,Z1 - Cartesian coordinates of P1
X2,Y2,Z2 - Cartesian coordinates of P2
Remarks:
References:
[1] Deakin, R.E., 2010, 'The Great Elliptic Arc on an Ellipsoid',
                Lecture Notes, School of Mathematical and Geospatial Sciences,
                RMIT University, January 2010
%-------------------------------------------------------------------------------------
Degree to radian conversion factor
d2r = 180/pi;
Set ellipsoid parameters
    = 6378137; % GRS80
flat = 298.257222101;
%a = 6378160; % ANS
% flat = 298.25;
%a = 20926062; % CLARKE 1866
% b = 20855121;
% f = 1-(b/a);
% flat = 1/f;
% Compute ellipsoid constants
f = 1/flat;
e2 = f*(2-f);
% Set lat, lon and height of P1 and P2 on ellipsoid
lat1 = -(36 + 47/60 + 49.2232/3600)/d2r; % Spring
lon1 = (148 + 11/60 + 48.3333/3600)/d2r;
lat2 = -(37 + 30/60 + 18.0674/3600)/d2r; % Wauka 1978
lon2 = (149 + 58/60 + 32.9932/3600)/d2r;
h1 = 0;
h2 = 0;
% Compute Cartesian coords of P1 and P2
[X1,Y1,Z1] = Geo2Cart(a,flat,lat1,lon1,h1);
[X2,Y2,Z2] = Geo2Cart(a,flat,lat2,lon2,h2);
% Compute constants of Curve of Alignment
A = Y1*Z2-Y2*Z1;
B = X1*Z2-X2*Z1;
C = X1*Y2-X2*Y1;
% Set latitude of P3
lat3 = - (37 + 19/60 + 10.379991/3600)/d2r;
%-----------------------------------------------------------------
% Compute the longitude of P3 using Newton-Raphson iteration
%---------------------------------------------------------------
% Set starting value of lon3 = longitude of P1
lon3 = lon1;
iter = 1;
while 1
    % Compute radii of curvature
    f_lon3 = A* cos(lon3)-B*}\operatorname{sin}(lon3)+C*(1-e2)*tan(lat3)
    fdash_lon3 = -A*sin(lon3) -B*cos(lon3);
    new_lōn = lon3-(f_lon3/fdash_lon3);
    if abs(new lon3 - lon3) < 1e-15
        break;
    end
    lon3 = new_lon3;
    if iter > 100
        fprintf('Iteration for longitude failed to converge after 100 iterations');
        break;
    end
    iter = iter + 1;
```

end;
\%---
\% Compute the longitude of P 3 using trigonometric equation
\%--10
theta $=\operatorname{atan} 2(B,-A)$;
lambda $=\operatorname{acos}\left(C^{*}(1-e 2) * \tan (l a t 3) / \operatorname{sqrt}\left(A^{\wedge} 2+B^{\wedge} 2\right)\right)+$ theta;

```
%-------------------------
```

\% Print result to screen
\%-------------------------
fprintf(' $\backslash \mathrm{n}==================$ ');
fprintf('\nGreat Elliptic Arc');
fprintf(' $\backslash \mathrm{n}=================$ ');
fprintf('\nEllipsoid parameters');
fprintf('\na = \%12.4f',a);
fprintf('\nf $\left.=1 / \% 13.9 f^{\prime}, f l a t\right) ;$
fprintf('\n\nTerminal points of curve');
\% Print lat and lon of P1
$[\mathrm{D}, \mathrm{M}, \mathrm{S}]=\mathrm{DMS}($ lat $1 * \mathrm{~d} 2 r)$;
if $D==0$ \&\& lat1 < 0
fprintf('\nLatitude $P 1=-0 \% 2 d \% 9.6 f(D M S) ', M, S)$;
else
fprintf('\nLatitude $P 1=\% 4 d \% 2 d \% 9.6 f(D M S) ', D, M, S)$;
end
$[D, M, S]=D M S(l o n 1 * d 2 r)$;
if $D==0$ \&\& lon1 < 0
fprintf('\nLongitude $P 1=-0 \% 2 d \% 9.6 f(D M S) ', M, S)$;
else
fprintf('\nLongitude $P 1=\% 4 d$ \%2d $\% 9.6 f(D M S) ', D, M, S) ;$
end
\% Print lat and lon of P 2
$[\mathrm{D}, \mathrm{M}, \mathrm{S}]=\mathrm{DMS}($ lat $2 * \mathrm{~d} 2 r)$;
if $D==0$ \&\& lat2 < 0
fprintf('\n\nLatitude $P 2=-0 \% 2 d \div 9.6 f(D M S) ', M, S)$;
else
fprintf('\n\nLatitude $P 2=\% 4 d \% 2 d \% 9.6 f(D M S) ', D, M, S) ;$
end
$[D, M, S]=D M S(l o n 2 * d 2 r)$;
if $D==0$ \&\& lon $2<0$
fprintf('\nLongitude $P 2=-0 \% 2 d \% 9.6 f(D M S) ', M, S) ;$
else
fprintf('\nLongitude $P 2=\% 4 d$ \%2d $\% 9.6 f(D M S) ', D, M, S) ;$
end
\% Print Coordinate table
fprintf('\n\nCartesian coordinates');
fprintf('\n X Y Z');
fprintf('\nP1 \%15.6f \%15.6f \%15.6f',X1,Y1,Z1);
fprintf('\nP2 \%15.6f \%15.6f \%15.6f',X2,Y2,Z2);
\% Print lat and lon of P3
fprintf('\n\nGiven latitude of P3');
[D, M, S] = DMS (lat3*d2r);
if $D==0$ \&\& lat3 < 0
fprintf('\nLatitude $P 3=-0 \% 2 d \div 9.6 f(D M S) ', M, S) ;$
else
fprintf('\nLatitude $\left.P 3=\% 4 d \% 2 d \% 9.6 f(D M S)^{\prime}, D, M, S\right)$;
end
fprintf('\n\nLongitude of $P 3$ computed from Newton-Raphson iteration');
$[\mathrm{D}, \mathrm{M}, \mathrm{S}]=\mathrm{DMS}(\operatorname{lon} 3 * \mathrm{~d} 2 r)$;
if $D==0$ \&\& lon3 < 0
fprintf('\nLongitude $P 3=-0 \% 2 d \% 9.6 f(D M S) ', M, S)$;
else
fprintf('\nLongitude $P 3=\% 4 d \% 2 d \% 9.6 f(D M S) ', D, M, S) ;$
end

```
fprintf('\niterations = %4d',iter);
fprintf('\n\nLongitude of P3 computed from trigonometric equation');
[D,M,S] = DMS (lambda*d2r);
if D == 0 && lambda < 0
    fprintf('\nLongitude P3 = -0 %2d %9.6f (D M S)',M,S);
else
    fprintf('\nLongitude P3 = %4d %2d %9.6f (D M S)',D,M,S);
end
[D,M,S] = DMS(theta*d2r);
if D == 0 && theta < 0
    fprintf('\ntheta P3 = -0 %2d %9.6f (D M S)',M,S);
else
    fprintf('\ntheta P3 = %4d %2d %9.6f (D M S)',D,M,S);
end
fprintf('\n\n');
```


MATLAB function Geo2Cart.m

```
function [X,Y,Z] = Geo2Cart(a,flat,lat,lon,h)
%
[X,Y,Z] = Geo2Cart(a,flat,lat,lon,h)
    Function computes the Cartesian coordinates X,Y,Z of a point
        related to an ellipsoid defined by semi-major axis (a) and the
        denominator of the flattening (flat) given geographical
        coordinates latitude (lat), longitude (lon) and ellipsoidal
        height (h). Latitude and longitude are assumed to be in radians.
    Function: Geo2Cart()
    Usage: [X,Y,Z] = Geo2Cart(a,flat,lat,lon,h);
    Author: R.E.Deakin,
        School of Mathematical & Geospatial Sciences, RMIT University
        GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA.
        email: rod.deakin@rmit.edu.au
        Version 1.0 6 April 2006
        Version 1.0 20 August 2007
    Functions required:
        radii()
Purpose:
    Function Geo2Cart() will compute Cartesian coordinates X,Y,Z
        given geographical coordinates latitude, longitude (both in
        radians) and height of a point related to an ellipsoid
        defined by semi-major axis (a) and denominator of flattening
        (flat).
Variables:
    a - semi-major axis of ellipsoid
    e2 - 1st eccentricity squared
    f - flattening of ellipsoid
    flat - denominator of flattening f = 1/flat
    h - height above ellipsoid
    lat - latitude (radians)
    lon - longitude (radians)
    p - perpendicular distance from minor axis of ellipsoid
    rm - radius of curvature of meridian section of ellipsoid
    rp - radius of curvature of prime vertical section of ellipsoid
References:
% [1] Gerdan, G.P. & Deakin, R.E., 1999, 'Transforming Cartesian
```

\% coordinates X, Y, Z to geogrpahical coordinates phi,lambda,h', The

```
% Australian Surveyor, Vol. 44, No. 1, pp. 55-63, June 1999.
```

```
% calculate flattening f and ellipsoid constant e2
f = 1/flat;
e2= f*(2-f);
```

\% compute radii of curvature for the latitude
$[r m, r p]=r a d i((a, f l a t, l a t) ;$
\% compute Cartesian coordinates X,Y,Z
$\mathrm{p}=(r p+h) * \cos (l a t) ;$
$X=p^{*} \cos (l o n)$;
$Y=p^{*} \sin (l o n) ;$
$Z=(r p *(1-e 2)+h) * \sin (l a t) ;$

MATLAB function radii.m

```
function [rm,rp] = radii(a,flat,lat)
%
[rm,rp]=radii(a,flat,lat) Function computes radii of curvature in
    the meridian and prime vertical planes (rm and rp respectively) at a
    point whose latitude (lat) is known on an ellipsoid defined by
        semi-major axis (a) and denominator of flattening (flat).
        Latitude must be in radians.
        Example: [rm,rp] = radii(6378137,298.257222101,-0.659895044);
        should return rm = 6359422.96233327 metres and
                        rp = 6386175.28947842 metres
        at latitude -37 48 33.1234 (DMS) on the GRS80 ellipsoid
    Function: radii(a,flat,lat)
    Syntax: [rm,rp] = radii(a,flat,lat);
Author: R.E.Deakin,
        School of Mathematical & Geospatial Sciences, RMIT University
        GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA.
        email: rod.deakin@rmit.edu.au
        Version 1.0 1 August 2003
        Version 2.0 6 April 2006
        Version 3.0 9 February 2008
Purpose: Function radii() will compute the radii of curvature in
        the meridian and prime vertical planes, rm and rp respectively
        for the point whose latitude (lat) is given for an ellipsoid
        defined by its semi-major axis (a) and denominator of
        flattening (flat).
Return value: Function radii() returns rm and rp
Variables:
    a - semi-major axis of spheroid
    c - polar radius of curvature
c2 - cosine of latitude squared
ep2 - 2nd-eccentricity squared
f - flattening of ellipsoid
lat - latitude of point (radians)
rm - radius of curvature in the meridian plane
rp - radius of curvature in the prime vertical plane
V - latitude function defined by V-squared = sqrt(1 + ep2*c2)
V2,V3 - powers of V
Remarks:
    Formulae are given in [1] (section 1.3.9, page 85) and in
```

```
    [2] (Chapter 2, p. 2-10) in a slightly different form.
%
% References:
[1] Deakin, R.E. and Hunter, M.N., 2008, GEOMETRIC GEODESY, School of
        Mathematical and Geospatial Sciences, RMIT University, Melbourne,
        AUSTRALIA, March 2008.
    [2] THE GEOCENTRIC DATUM OF AUSTRALIA TECHNICAL MANUAL, Version 2.2,
        Intergovernmental Committee on Surveying and Mapping (ICSM),
        February 2002 (www.anzlic.org.au/icsm/gdatum)
% compute flattening f eccentricity squared e2
f = 1/flat;
c = a/(1-f);
ep2=f*(2-f)/((1-f)^2);
% calculate the square of the sine of the latitude
c2 = cos(lat)^2;
% compute latitude function V
V2 = 1+ep2*c2;
V = sqrt(V2);
V3 = V2*V;
% compute radii of curvature
rm = c/V3;
rp = c/V;
```


MATLAB function DMS.m

```
function [D,M,S] = DMS(DecDeg)
% [D,M,S] = DMS (DecDeg) This function takes an angle in decimal degrees and returns
% Degrees, Minutes and Seconds
val = abs(DecDeg);
D = fix(val);
M = fix((val-D)*60);
S = (val-D-M/60)*3600;
if(DecDeg<0)
    D = -D;
end
return
```


REFERENCES

Bowring, B. R., (1972), 'Distance and the spheroid', Correspondence, Survey Review, Vol. XXI, No. 164, April 1972, pp. 281-284.
Clarke, A. R., (1880), Geodesy, Clarendon Press, Oxford.
Deakin, R. E., (2009a), 'The Normal Section Curve on an Ellipsoid', Lecture Notes, School of Mathematical \& Geospatial Sciences, RMIT University, Melbourne, Australia, November 2009, 53 pages.
(2009b), 'The Curve of Alignment on an Ellipsoid', Lecture Notes, School of Mathematical \& Geospatial Sciences, RMIT University, Melbourne, Australia, December 2009, 20 pages.

Thomas, P. D., (1952), Conformal Projections in Geodesy and Cartography, Special Publication No. 251, Coast and Geodetic Survey, United States Department of Commerce, Washington, D.C.

THE LOXODROME ON AN ELLIPSOID

R. E. Deakin
School of Mathematical \& Geospatial Sciences, RMIT University, GPO Box 2476V, MELBOURNE VIC 3001, AUSTRALIA
email: rod.deakin@rmit.edu.au

January 2010

Abstract

These notes provide a detailed explanation of the geometry of the loxodrome on the ellipsoid. Equations are derived for azimuth and distance of a loxodrome between two points on an ellipsoid and these equations enable the development of algorithms for the solution of the direct and inverse problems of the loxodrome. A MATLAB function is provided that demonstrates an algorithm for the inverse problem.

INTRODUCTION

The loxodrome between P_{1} and P_{2} on the ellipsoid is a curved line such that every element of the curve $d s$ intersects a meridian at a constant azimuth α. Unless $\alpha=0^{\circ}, 90^{\circ}, 180^{\circ}$ or 270° the loxodrome will spiral around the ellipsoid and terminate at one of the poles. In other cases the loxodrome will lie along a meridian of longitude $\left(\alpha=0^{\circ}, 180^{\circ}\right)$ or a parallel of latitude $\left(\alpha=90^{\circ}, 270^{\circ}\right)$.

Figure 1: Loxodrome on the earth's surface

In marine and air navigation, aircraft and ships sailing or flying on fixed compass headings are moving along loxodromes, hence knowledge of loxodromes is important in navigation. Mercator's projection - a normal aspect cylindrical conformal projection - has the unique property that loxodromes on the earth's surface are projected as straight lines on the map. In geodesy the direct problem (computing position given azimuth and distance from a known location) and the inverse problem (computing azimuth and distance between known positions) are fundamental operations and can be likened to the equivalent operations of plane surveying; radiations (computing coordinates of points given bearings and distances radiating from a point of known coordinates) and joins; (computing bearings and distances between points having known coordinates). The direct and inverse problems in geodesy are usually associated with the geodesic which is the unique curve defining the shortest path on the ellipsoid but they can also be associated with other curves. So;

The direct problem of the loxodrome on the ellipsoid is: given latitude and longitude of P_{1} and the azimuth α and distance s of a loxodrome between P_{1} and P_{2}; compute the latitude and longitude of P_{2}.

The inverse problem of the loxodrome on the ellipsoid is: given the latitude and longitude of P_{1} and P_{2}; compute the azimuth α and distance s of the loxodrome between P_{1} and P_{2}.

The equations necessary for the solution of the direct and inverse problems are derived from the differential geometry of the ellipsoid and in particular, relationships that can be obtained from the differential rectangle on the ellipsoid. Also, meridian distance (the distance along a meridian from the equator) is used in computing loxodrome distances. Discussions of differential geometry of the ellipsoid and meridian distance can be found in Deakin \& Hunter (2008) or geodesy textbooks (e.g., Lauf 1983; Bomford 1980), and an excellent treatment of the loxodrome on the ellipsoid can be found in Bowring (1985).

THE ELLIPSOID

In geodesy, the ellipsoid is a surface of revolution created by rotating an ellipse about its minor axis. The size and shape of an ellipsoid is defined by one of three pairs of parameters: (i) a, b where a and b are the semi-major and semi-minor axes lengths of an ellipsoid respectively (and $a>b$), or (ii) a, f where f is the flattening of an ellipsoid, or (iii) a, e^{2} where e^{2} is the square of the first eccentricity of an ellipsoid.

Figure 2: The reference ellipsoid

The ellipsoid parameters a, b, f, e^{2} are related by the following equations

$$
\begin{align*}
& f=\frac{a-b}{a}=1-\frac{b}{a} \tag{1}\\
& b=a(1-f) \tag{2}\\
& e^{2}=\frac{a^{2}-b^{2}}{a^{2}}=1-\frac{b^{2}}{a^{2}}=f(2-f) \tag{3}\\
& 1-e^{2}=\frac{b^{2}}{a^{2}}=1-f(2-f)=(1-f)^{2} \tag{4}
\end{align*}
$$

The second eccentricity e^{\prime} of an ellipsoid is also of use and

$$
\begin{gather*}
e^{\prime 2}=\frac{a^{2}-b^{2}}{b^{2}}=\frac{a^{2}}{b^{2}}-1=\frac{e^{2}}{1-e^{2}}=\frac{f(2-f)}{(1-f)^{2}} \tag{5}\\
e^{2}=\frac{e^{\prime 2}}{1+e^{\prime 2}} \tag{6}
\end{gather*}
$$

In Figure 2 the normal to the surface at P intersects the rotational axis of the ellipsoid (the z-axis) at H making an angle ϕ with the equatorial plane of the ellipsoid - this is the latitude of P. The longitude λ is the angle between the Greenwich meridian plane (a reference plane) and the meridian plane (the z - w plane) containing the normal through P. ϕ and λ are curvilinear coordinates and meridians of longitude (curves of constant λ) and parallels of latitude (curves of constant ϕ) are parametric curves on the ellipsoidal surface. At P on the surface of the ellipsoid, planes containing the normal to the ellipsoid intersect the surface creating elliptical sections known as normal sections. Amongst the infinite number of possible normal sections at a P; each having a certain radius of curvature, two
are of interest: (i) the meridian section, containing the axis of revolution of the ellipsoid and having the least radius of curvature, denoted by ρ, and (ii) the prime vertical section, perpendicular to the meridian plane and having the greatest radius of curvature, denoted by ν.

$$
\begin{align*}
& \rho=\frac{a\left(1-e^{2}\right)}{\left(1-e^{2} \sin ^{2} \phi\right)^{\frac{3}{2}}}=\frac{a\left(1-e^{2}\right)}{W^{3}} \tag{7}\\
& \nu=\frac{a}{\left(1-e^{2} \sin ^{2} \phi\right)^{\frac{1}{2}}}=\frac{a}{W} \tag{8}\\
& W^{2}=1-e^{2} \sin ^{2} \phi \tag{9}
\end{align*}
$$

For P, the centre of the radius of curvature of the prime vertical section is at H and $\nu=P H$. The centre of the radius of curvature of the meridian section lies on the normal between P and H.

Alternative equations for the radii of curvature ρ and ν are given by

$$
\begin{align*}
& \rho=\frac{a^{2}}{b\left(1+e^{\prime 2} \cos ^{2} \phi\right)^{\frac{3}{2}}}=\frac{c}{V^{3}} \tag{10}\\
& \nu=\frac{a^{2}}{b\left(1+e^{\prime 2} \cos ^{2} \phi\right)^{\frac{1}{2}}}=\frac{c}{V} \tag{11}\\
& c=\frac{a^{2}}{b}=\frac{a}{1-f} \tag{12}\\
& V^{2}=1+e^{\prime 2} \cos ^{2} \phi \tag{13}
\end{align*}
$$

and c is the polar radius of curvature of the ellipsoid.
The latitude functions W and V are related as follows

$$
\begin{equation*}
W^{2}=\frac{V^{2}}{1+e^{\prime 2}} \quad \text { and } \quad W=\frac{V}{\left(1+e^{\prime 2}\right)^{\frac{1}{2}}}=\frac{b}{a} V \tag{14}
\end{equation*}
$$

Points on the ellipsoid surface have curvilinear coordinates ϕ, λ and Cartesian coordinates x, y, z where the $x-z$ plane is the Greenwich meridian plane, the $x-y$ plane is the equatorial plane and the $y-z$ plane is a meridian plane 90° east of the Greenwich meridian plane. Cartesian and curvilinear coordinates are related by

$$
\begin{align*}
& x=\nu \cos \phi \cos \lambda \\
& y=\nu \cos \phi \cos \lambda \tag{15}\\
& z=\nu\left(1-e^{2}\right) \sin \phi
\end{align*}
$$

Note that $\nu\left(1-e^{2}\right)$ is the distance along the normal from a point on the surface to the point where the normal cuts the equatorial plane.

DIFFERENTIAL RELATIONSHIPS FOR THE LOXODROME ON THE ELLIPSOID

The derivation of equations relating to the loxodrome requires an understanding of the connection between differentially small quantities on the surface of the ellipsoid.

Figure 3: The differential rectangle on an ellipsoid (a,b)

These relationships can be derived from the differential rectangle, with diagonal $P Q$ in Figure 3 which shows P and Q on an ellipsoid whose semi-axes are a and $b(a>b) . P$ and Q are separated by differential changes in latitude $d \phi$ and longitude $d \lambda$ and are connected by a loxodrome of length $d s$ making an angle α (the azimuth) with the meridian through P. The meridians λ and $\lambda+d \lambda$, and the parallels ϕ and $\phi+d \phi$ form a differential rectangle on the surface of the ellipsoid. The differential distances $d p$ along the parallel ϕ and $d m$ along the meridian λ are

$$
\begin{align*}
& d p=w d \lambda=\nu \cos \phi d \lambda \tag{16}\\
& d m=\rho d \phi \tag{17}
\end{align*}
$$

where ρ and ν are radii of curvature in the meridian and prime vertical planes respectively and $w=\nu \cos \phi$ is the perpendicular distance from the rotational axis NOS.

From Figure 3, the differential distance $d s$ is given by

$$
\begin{align*}
d s & =\sqrt{d m^{2}+d p^{2}} \\
& =\sqrt{\rho^{2} d \phi^{2}+\nu^{2} \cos ^{2} \phi d \lambda^{2}} \\
& =\nu \cos \phi \sqrt{\left(\frac{\rho d \phi}{\nu \cos \phi}\right)^{2}+d \lambda^{2}} \\
& =\nu \cos \phi \sqrt{d q^{2}+d \lambda^{2}} \tag{18}
\end{align*}
$$

q is known as the isometric latitude defined by the differential relationship

$$
\begin{equation*}
d q=\frac{\rho}{\nu \cos \phi} d \phi \tag{19}
\end{equation*}
$$

(q, λ) is a curvilinear coordinate system on the ellipsoid with isometric parameters where isometric means of equal measure (iso = equal; metric $=$ able to be measured). We can see this from equation (18) where the differential distances along the parametric curves q and λ are $d m=\nu \cos \phi d q$ and $d p=\nu \cos \phi d \lambda$, i.e., the differential distances are equal for equal angular differentials $d q$ and $d \lambda$.

Also from Figure 3 the azimuth α of the loxodrome is obtained from

$$
\begin{equation*}
\tan \alpha=\frac{\nu \cos \phi d \lambda}{\rho d \phi}=\frac{d \lambda}{d q} \tag{20}
\end{equation*}
$$

and azimuth α and distance s are linked by the differential relationship

$$
\begin{equation*}
d s=\frac{d m}{\cos \alpha}=\frac{1}{\cos \alpha} \rho d \phi \tag{21}
\end{equation*}
$$

ISOMETRIC LATITUDE

The isometric latitude is defined by the differential equation (19) from which we obtain

$$
\begin{equation*}
q=\int \frac{\rho}{\nu \cos \phi} d \phi+C_{1} \tag{22}
\end{equation*}
$$

where C_{1} is a constant of integration.
Substituting into equation (22) expressions for ρ and ν given by equations (7) and (8), and simplifying gives

$$
\begin{equation*}
q=\int \frac{\left(1-e^{2}\right)}{\left(1-e^{2} \sin ^{2} \phi\right) \cos \phi} d \phi+C_{1} \tag{23}
\end{equation*}
$$

The integrand of equation (23) can be separated into partial fractions

$$
\begin{equation*}
\frac{\left(1-e^{2}\right)}{\left(1-e^{2} \sin ^{2} \phi\right) \cos \phi}=\frac{A}{\left(1-e^{2} \sin ^{2} \phi\right)}+\frac{B}{\cos \phi} \tag{24}
\end{equation*}
$$

Expanding and simplifying equation (24) gives

$$
\begin{align*}
1-e^{2} & =A \cos \phi+B\left(1-e^{2} \sin ^{2} \phi\right) \\
& =A \cos \phi+B-B e^{2}\left(1-\cos ^{2} \phi\right) \\
& =B\left(1-e^{2}\right)+\left(A+B e^{2} \cos \phi\right) \cos \phi \tag{25}
\end{align*}
$$

A and B are obtained by comparing the coefficients of $1-e^{2}$ and $\cos \phi$ in equation (25) giving

$$
B=1 ; \quad A=-e^{2} \cos \phi
$$

Substituting these results into equation (24) gives the isometric latitude as

$$
\begin{equation*}
q=\int \frac{1}{\cos \phi} d \phi-\int \frac{e^{2} \cos \phi}{1-e^{2} \sin ^{2} \phi} d \phi+C_{1} \tag{26}
\end{equation*}
$$

Put $e \sin \phi=\sin u$ then $e \cos \phi d \phi=\cos u d u$ and

$$
\begin{align*}
q & =\int \frac{1}{\cos \phi} d \phi-e \int \frac{\cos u}{1-\sin ^{2} u} d u+C_{1} \\
& =\int \frac{1}{\cos \phi} d \phi-e \int \frac{\cos u}{\cos ^{2} u} d u+C_{1} \\
& =\int \frac{1}{\cos \phi} d \phi-e \int \frac{1}{\cos u} d u+C_{1} \tag{27}
\end{align*}
$$

From standard integrals $\int \frac{1}{\cos x} d x=\ln \left\{\tan \left(\frac{\pi}{4}+\frac{x}{2}\right)\right\}$ and from half-angle trigonometric formula $\tan \left(\frac{A}{2}\right)= \pm \sqrt{\frac{1-\cos A}{1+\cos A}}$ giving $\tan \left(\frac{\pi}{4}+\frac{x}{2}\right)=\sqrt{\frac{1-\cos (x+\pi / 2)}{1+\cos (x+\pi / 2)}}=\sqrt{\frac{1+\sin x}{1-\sin x}}$.
Substituting these results into equation (27) gives the isometric latitude as

$$
q=\ln \tan \left(\frac{\pi}{4}+\frac{\phi}{2}\right)+C_{2}-e \ln \left(\frac{1+e \sin \phi}{1-e \sin \phi}\right)^{\frac{1}{2}}-C_{3}+C_{1}
$$

where C_{1}, C_{2} and C_{3} are constants of integration. Using the laws of logarithms: $\log _{a} M N=\log _{a} M+\log _{a} N, \log _{a} \frac{M}{N}=\log _{a} M-\log _{a} N$ and $\log _{a} M^{p}=p \log _{a} M$, and defining a new constant of integration $C=C_{2}-C_{3}+C_{1}$ gives

$$
\begin{align*}
q & =\ln \tan \left(\frac{\pi}{4}+\frac{\phi}{2}\right)+\ln \left(\frac{1-e \sin \phi}{1+e \sin \phi}\right)^{\frac{e}{2}}+C \\
& =\ln \left\{\tan \left(\frac{\pi}{4}+\frac{\phi}{2}\right)\left(\frac{1-e \sin \phi}{1+e \sin \phi}\right)^{\frac{e}{2}}\right\}+C \tag{28}
\end{align*}
$$

The constant C in equation (28) equals zero since if $\phi=0$ then $q=0$ and the isometric latitude q is obtained from

$$
\begin{equation*}
q=\ln \left\{\tan \left(\frac{\pi}{4}+\frac{\phi}{2}\right)\left(\frac{1-e \sin \phi}{1+e \sin \phi}\right)^{\frac{e}{2}}\right\} \tag{29}
\end{equation*}
$$

This derivation follows Lauf (1983) where an integral identical to equation (22) is evaluated as part of the derivation of the equations for the ellipsoidal Mercator projection - a conformal projection of the ellipsoid. Thomas (1952) derives a similar equation in his development of conformal representation of the ellipsoid upon a plane.

THE EQUATION OF THE LOXODROME

By re-arranging equation (20) we have

$$
d \lambda=\tan \alpha d q
$$

and integrating both sides, noting that $\tan \alpha$ is a constant, gives

$$
\begin{aligned}
\int_{\lambda_{1}}^{\lambda_{2}} d \lambda & =\tan \alpha \int_{q_{1}}^{q_{2}} d q \\
\lambda_{2}-\lambda_{1} & =\tan \alpha\left(q_{2}-q_{1}\right)
\end{aligned}
$$

And the equation of the loxodrome between P_{1} and P_{2} on the ellipsoid is

$$
\begin{equation*}
\Delta \lambda=\Delta q \tan \alpha \tag{30}
\end{equation*}
$$

where $\Delta \lambda=\lambda_{2}-\lambda_{1}$ and $\Delta q=q_{2}-q_{1}$ are differences in longitude and isometric latitude respectively and α is the (constant) azimuth of the loxodrome.

THE AZIMUTH OF A LOXODROME

The azimuth α of a loxodrome between P_{1} and P_{2} on an ellipsoid can be obtained from equation (30) as

$$
\begin{equation*}
\alpha=\arctan \left(\frac{\Delta \lambda}{\Delta q}\right)=\arctan \left(\frac{\lambda_{2}-\lambda_{1}}{q_{2}-q_{1}}\right) \tag{31}
\end{equation*}
$$

where q_{1}, q_{2} are isometric latitudes of P_{1} and P_{2} respectively and q is given by equation (29). λ_{1}, λ_{2} are the longitudes of P_{1} and P_{2}.

DISTANCE ALONG A LOXODROME

Consider a loxodrome of constant azimuth α that crosses the equator and passes through P_{1} and P_{2}. The distance s between P_{1} and P_{2} can be defined as $s=s_{2}-s_{1}$ where s_{1} and s_{2} are distances from the equator to P_{1} and P_{2} respectively and from equations (21) and (7) we may write

$$
\begin{equation*}
s_{1}=\frac{1}{\cos \alpha} \int_{0}^{\phi_{1}} \rho d \phi=\frac{a\left(1-e^{2}\right)}{\cos \alpha} \int_{0}^{\phi_{1}} \frac{1}{W^{3}} d \phi=\frac{m_{1}}{\cos \alpha} \tag{32}
\end{equation*}
$$

and similarly

$$
\begin{equation*}
s_{2}=\frac{m_{2}}{\cos \alpha} \tag{33}
\end{equation*}
$$

m_{1} and m_{2} are meridian distances and meridian distance m is defined as the length of the arc of the meridian to a point in latitude $\phi . m$ is obtained from the differential relationship given by equation (17) and

$$
\begin{equation*}
m=\int_{0}^{\phi} \rho d \phi=a\left(1-e^{2}\right) \int_{0}^{\phi}\left(1-e^{2} \sin ^{2} \phi\right)^{-\frac{3}{2}} d \phi=a\left(1-e^{2}\right) \int_{0}^{\phi} \frac{1}{W^{3}} d \phi \tag{34}
\end{equation*}
$$

This is an elliptic integral of the second kind and cannot be evaluated directly; instead, the integrand $\frac{1}{W^{3}}=\left(1-e^{2} \sin ^{2} \phi\right)^{-\frac{3}{2}}$ is expanded by using the binomial series and then evaluated by term-by-term integration. Following Deakin \& Hunter (2008) we obtain an expression for the meridian distance as

$$
\begin{equation*}
m=a\left\{A_{0} \phi-A_{2} \sin 2 \phi+A_{4} \sin 4 \phi-A_{6} \sin 6 \phi+A_{8} \sin 8 \phi-A_{10} \sin 10 \phi+\cdots\right\} \tag{35}
\end{equation*}
$$

where

$$
\begin{align*}
& A_{0}=1-\frac{1}{4} e^{2}-\frac{3}{64} e^{4}-\frac{5}{256} e^{6}-\frac{175}{16384} e^{8}-\frac{441}{65536} e^{10}+\cdots \\
& A_{2}=\frac{3}{8}\left(e^{2}+\frac{1}{4} e^{4}+\frac{15}{128} e^{6}+\frac{35}{512} e^{8}+\frac{735}{16384} e^{10}+\cdots\right) \\
& A_{4}=\frac{15}{256}\left(e^{4}+\frac{3}{4} e^{6}+\frac{35}{64} e^{8}+\frac{105}{256} e^{10}+\cdots\right) \\
& A_{6}=\frac{35}{3072}\left(e^{6}+\frac{5}{4} e^{8}+\frac{315}{256} e^{10}+\cdots\right) \tag{36}\\
& A_{8}=\frac{315}{131072}\left(e^{8}+\frac{7}{4} e^{10}+\cdots\right) \\
& A_{10}=\frac{693}{131072}\left(e^{10}+\cdots\right)
\end{align*}
$$

Combining equations (32) and (33) gives the length of the loxodrome between P_{1} and P_{2} as

$$
\begin{equation*}
s=\frac{m_{2}-m_{1}}{\cos \alpha} \tag{37}
\end{equation*}
$$

where α is the (constant) azimuth and m_{1} and m_{2} are meridian distances for ϕ_{1} and ϕ_{2} obtained from equation (35).

THE DIRECT PROBLEM OF THE LOXODROME ON THE ELLIPSOID

The direct problem is: Given latitude and longitude of P_{1}, azimuth α_{12} of the loxodrome $P_{1} P_{2}$ and the arc length s along the loxodrome curve; compute the latitude and longitude of P_{2} and the reverse azimuth α_{21}.

With the ellipsoid constants a, f, and e^{2} and given $\phi_{1}, \lambda_{1}, \alpha_{12}$ and s the problem may be solved by the following sequence.

1. Compute m_{1} the meridian distance of P_{1} using equation (35).
2. Compute meridian distance m_{2} from equation (37) where

$$
m_{2}=s \cos \alpha_{12}+m_{1}
$$

3. Use Newton-Raphson iteration to compute latitude ϕ_{2} using equation (35) rearranged as

$$
f(\phi)=a\left\{A_{0} \phi-A_{2} \sin 2 \phi+A_{4} \sin 4 \phi-A_{6} \sin 6 \phi+A_{8} \sin 8 \phi-A_{10} \sin 10 \phi\right\}-m=0
$$

and the iterative equation $\phi_{(n+1)}=\phi_{(n)}-\frac{f\left(\phi_{(n)}\right)}{f^{\prime}\left(\phi_{(n)}\right)}$ where $f^{\prime}(\phi)=\frac{d}{d \phi}\{f(\phi)\}$ and $f^{\prime}(\phi)=a\left\{A_{0}-2 A_{2} \cos 2 \phi+4 A_{4} \cos 4 \phi-6 A_{6} \cos 6 \phi+8 A_{8} \cos 8 \phi-10 A_{10} \cos 10 \phi\right\}$
An initial value of $\phi_{(1)}(\phi$ for $n=1)$ can be taken as the latitude of P_{1} and the functions $f\left(\phi_{(1)}\right)$ and $f^{\prime}\left(\phi_{(1)}\right)$ evaluated using $\phi_{1} . \phi_{(2)}(\phi$ for $n=2)$ can now be computed from the iterative equation and this process repeated to obtain values $\phi_{(3)}, \phi_{(4)}, \ldots$. This iterative process can be concluded when the difference between $\phi_{(n+1)}$ and $\phi_{(n)}$ reaches an acceptably small value.
4. Compute isometric latitudes q_{1} and q_{2} using equation (29) and then the difference in isometric latitudes $\Delta q=q_{2}-q_{1}$
5. Compute the difference in longitude $\Delta \lambda=\lambda_{2}-\lambda_{1}$ from equation (30)
6. Compute longitude λ_{2} from $\lambda_{2}=\lambda_{1}+\Delta \lambda$
7. Compute reverse azimuth from $\alpha_{21}=\alpha_{12} \pm 180^{\circ}$

THE INVERSE PROBLEM OF THE LOXODROME ON THE ELLIPSOID

The inverse problem is: Given latitudes and longitudes of P_{1} and P_{2} on the ellipsoid, compute the azimuth α_{12} of the loxodrome $P_{1} P_{2}$, the arc length s along the loxodrome curve and the reverse azimuth α_{21}.

With the ellipsoid constants a, f, and e^{2} and given ϕ_{1}, λ_{1} and ϕ_{2}, λ_{2} the problem may be solved by the following sequence.

1. Compute isometric latitudes q_{1} and q_{2} using equation (29) and then the difference in isometric latitudes $\Delta q=q_{2}-q_{1}$
2. Compute the longitude difference $\Delta \lambda=\lambda_{2}-\lambda_{1}$ and then the azimuth α_{12} using equation (31).
3. Compute meridian distances m_{1} and m_{2} using equation (35).
4. Compute the arc length s from equation (37).
5. Compute reverse azimuth from $\alpha_{21}=\alpha_{12} \pm 180^{\circ}$

MATLAB FUNCTIONS

A MATLAB function loxodrome_inverse.m is shown below. This function computes the inverse problem of the loxodrome on the ellipsoid.

Output from the function is shown below for points on a great elliptic arc between the terminal points of the straight-line section of the Victorian-New South Wales border. This straight-line section of the border, between Murray Spring and Wauka 1978, is known as the Black-Allan Line in honour of the surveyors Black and Allan who set out the border line in 1870-71. Wauka 1978 (Gabo PM 4) is a geodetic concrete border pillar on the coast at Cape Howe and Murray Spring (Enamo PM 15) is a steel pipe driven into a spring of the Murray River that is closest to Cape Howe. The straight line is a normal section curve on the reference ellipsoid of the Geocentric Datum of Australia (GDA94) that contains the normal to the ellipsoid at Murray Spring. The GDA94 coordinates of Murray Spring and Wauka 1978 are:

$$
\begin{array}{lll}
\text { Murray Spring: } & \phi-37^{\circ} 47^{\prime} 49.2232^{\prime \prime} & \lambda 148^{\circ} 11^{\prime} 48.3333^{\prime \prime} \\
\text { Wauka 1978: } & \phi-37^{\circ} 30^{\prime} 18.0674^{\prime \prime} & \lambda 149^{\circ} 58^{\prime} 32.9932^{\prime \prime}
\end{array}
$$

The normal section azimuth and distance are:

$$
116^{\circ} 58^{\prime} 14.173757^{\prime \prime} \quad 176495.243760 \mathrm{~m}
$$

The geodesic azimuth and distance are:

$$
116^{\circ} 58^{\prime} 14.219146^{\prime \prime} \quad 176495.243758 \mathrm{~m}
$$

The loxodrome azimuth and distance are:

$$
116^{\circ} 26^{\prime} 08.400701^{\prime \prime} \quad 176497.829952 \mathrm{~m}
$$

Figure 4 shows a schematic view of the Black-Allan line (normal section) and the great elliptic arc. The relationships between the great elliptic arc and the normal section have been computed at seven locations along the line ($\mathrm{A}, \mathrm{B}, \mathrm{C}$, etc.) where meridians of longitude at $0^{\circ} 15^{\prime}$ intervals cut the line. These relationships are shown in Table 1.

BLACK-ALLAN LINE: VICTORIA/NSW BORDER

Border Line (normal section).
At longitude $149^{\circ} 0^{\prime}$. the loxodrome is 457.918 m north of the Border Line. At longitude $149^{\circ} 30^{\prime}$ E. the loxodrome is 361.250 m north of the Border Line.

Figure 4

BLACK-ALLAN LINE: VICTORIA/NSW BORDER

NAME	GDA94		Ellipsoid values		
	LATITUDE	LONGITUDE	d φ	ρ	$\mathrm{dm}=\rho \times \mathrm{d} \varphi$
Murray Spring	$-36^{\circ} 47^{\prime} 49.223200{ }^{\prime \prime}$	$148^{\circ} 11^{\prime} 48.333300{ }^{\prime \prime}$			
A	$\begin{array}{ll} -36^{\circ} 49^{\prime} 07.598047^{\prime \prime} & \mathrm{N} \\ -36^{\circ} 49^{\prime} 05.849245^{\prime \prime} & \text { Lox } \\ \hline \end{array}$	$148^{\circ} 15^{\prime} 00.000000{ }^{\prime \prime}$	+00'01.748802"	6358356.102	+53.9089
B	$-36^{\circ} 55^{\prime} 13.876510^{\prime \prime} \mathrm{N}$ $-36^{\circ} 55^{\prime} 05.371035^{\prime \prime}$ Lox	$148^{\circ} 30{ }^{\prime} 00.000000{ }^{\prime \prime}$	+00'08.505475"	6358465.209	+262.1958
C	$\begin{aligned} & -37^{\circ} 01^{\prime} 17.289080^{\prime \prime} \\ & -\mathrm{N} \\ & -37^{\circ} 01^{\prime} 04.418599^{\prime \prime} \end{aligned}$	$148^{\circ} 45^{\prime} 00.000000{ }^{\prime \prime}$	+00'12.870481"	6358573.577	+396.7613
D	$-37^{\circ} 07^{\prime} 17.845554^{\prime \prime} \mathrm{N}$ $-37^{\circ} 07^{\prime} 02.991484^{\prime \prime}$ Lox	$149^{\circ} 00^{\prime} 00.000000{ }^{\prime \prime}$	+00'14.854070"	6358681.204	+457.9177
E	$-37^{\circ} 13^{\prime} 15.555723^{\prime \prime} \mathrm{N}$ $-37^{\circ} 13^{\prime} 01.089240^{\prime \prime}$ Lox	$149^{\circ} 15^{\prime} 00.000000{ }^{\prime \prime}$	+00'14.466483"	6358788.089	+459.9767
F	$-37^{\circ} 19^{\prime} 10.429372^{\prime \prime}$ N $-37^{\circ} 18^{\prime} 58.711427^{\prime \prime}$ Lox	$149^{\circ} 30^{\prime} 00.000000^{\prime \prime}$	+00'11.717945"	6358894.232	+361.2501
G	$\begin{array}{ll} -37^{\circ} 25^{\prime} 02.476276^{\prime \prime} & \mathrm{N} \\ -37^{\circ} 24^{\prime} 55.857608^{\prime \prime} & \text { Lox } \end{array}$	$149^{\circ} 45^{\prime} 00.000000$ "	+00'06.618668"	6358999.632	+204.0489
Wauka 1978	-37 ${ }^{\circ} 30^{\prime} 18.067400$ "	$149^{\circ} 58^{\prime} 32.993200{ }^{\prime \prime}$			

TABLE 1: Points where the Great Elliptic Arc cuts meridians of A, B, C, etc at $0^{\circ} 15^{\prime}$ intervals of longitude along Border Line. N = Normal Section, Lox = Loxodrome

```
>> help loxodrome_inverse
    loxodrome inverse: This function computes the inverse case for a
        loxodrome on the reference ellipsoid. That is, given the latitudes and
        longitudes of two points on the ellipsoid, compute the azimuth and the
    arc length of the loxodrome on the surface.
>> loxodrome_inverse
========================
Loxodrome: Inverse Case
=======================
Ellipsoid parameters
a = 6378137.0000
f = 1/298.257222101
Terminal points of curve
Latitude P1 = -36 47 49.223200 (D M S)
Longitude P1 = 148 11 48.333300 (D M S)
Latitude P2 = -37 30 18.067400 (D M S)
Longitude P2 = 149 58 32.993200 (D M S)
isometric lat P1 = -39 23 36.268670 (D M S)
isometric lat P2 = -40 16 40.540366 (D M S)
diff isometric lat P2-P1 = -0 53 4.271697 (D M S)
diff in longitude P2-P1 = 1 46 44.659900 (D M S)
meridian distance P1 = -4073983.614420
meridian distance P2 = -4152559.155874
diff in mdist P2-P1 = -78575.541454
Azimuth of loxodrome P1-P2
Az12 = 116 26 8.400701 (D M S)
loxodrome distance P1-P2
s = 176497.829952
>>
```

```
function loxodrome_inverse
%
loxodrome_inverse: This function computes the inverse case for a
        loxodrome on the reference ellipsoid. That is, given the latitudes and
        longitudes of two points on the ellipsoid, compute the azimuth and the
        arc length of the loxodrome on the surface.
    Function: loxodrome_inverse()
Usage: loxodrome_inverse
Author: R.E.Deakin,
    School of Mathematical & Geospatial Sciences, RMIT University
    GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA.
    email: rod.deakin@rmit.edu.au
    Version 1.0 5 October 2009
    Version 1.1 11 January 2010
Purpose: This function computes the inverse case for a loxodrome on the
        reference ellipsoid. That is, given the latitudes and longitudes of
        two points on the ellipsoid, compute the azimuth and the arc length of
        the loxodrome on the surface.
Functions required:
        [D,M,S] = DMS(DecDeg)
        isolat = isometric(flat,lat)
        mdist = meridian_dist(a,flat,lat)
Variables:
    Az12 - azimuth of loxodrome P1-P2 (radians)
    a - semi-major axis of spheroid
    d2r - degree to radian conversion factor 57.29577951...
    disolat - difference in isometric latitudes (isolat2-isolat1)
    dlon - difference in longitudes (radian)
    dm - difference in meridian distances (dm = m2-m1)
    e - eccentricity of ellipsoid
    e2 - eccentricity of ellipsoid squared
    f - f = l/flat is the flattening of ellipsoid
    flat - denominator of flattening of ellipsoid
    isolat1 - isometric latitude of P1 (radians)
    isolat2 - isometric latitude of P2 (radians)
    lat1 - latitude of P1 (radians)
    lat2 - latitude of P2 (radians)
    lon1 - longitude of P1 (radians)
    lon2 - longitude of P2 (radians)
    lox_s - distance along loxodrome
    m1,\overline{m}2 - meridian distances of P1 and P2 (metres)
    pion2 - pi/2
Remarks:
References:
    [1] Deakin, R.E., 2010, 'The Loxodrome on an Ellipsoid', Lecture Notes,
        School of Mathematical and Geospatial Sciences, RMIT University,
        January 2010
    [2] Bowring, B.R., 1985, 'The geometry of the loxodrome on the
        ellipsoid', The Canadian Surveyor, Vol. 39, No. 3, Autumn 1985,
        pp.223-230.
    [3] Snyder, J.P., 1987, Map Projections-A Working Manual. U.S.
        Geological Survey Professional Paper 1395. Washington, DC: U.S.
        Government Printing Office, pp.15-16 and pp. 44-45.
    [4] Thomas, P.D., 1952, Conformal Projections in Geodesy and
        Cartography, Special Publication No. 251, Coast and Geodetic
        Survey, U.S. Department of Commerce, Washington, DC: U.S.
        Government Printing Office, p. 66.
```

```
%
%-------------------------------------------------------------------------------------
% Degree to radian conversion factor
d2r = 180/pi;
% Set ellipsoid parameters
a = 6378137; % GRS80
flat = 298.257222101;
% Set lat and long of P1 and P2 on ellipsoid
lat1 = -(36 + 47/60 + 49.2232/3600)/d2r; % Spring
lon1 = (148 + 11/60 + 48.3333/3600)/d2r;
lat2 = -(37 + 30/60 + 18.0674/3600)/d2r; % Wauka 1978
lon2 = (149 + 58/60 + 32.9932/3600)/d2r;
% Compute isometric latitude of P1 and P2
isolat1 = isometric(flat,lat1);
isolat2 = isometric(flat,lat2);
% Compute changes in isometric latitude and longitude between P1 and P2
disolat = isolat2-isolat1;
dlon = lon2-lon1;
% Compute azimuth
Az12 = atan2(dlon,disolat);
% Compute distance along loxodromic curve
m1 = meridian_dist(a,flat,lat1);
m2 = meridian dist(a,flat,lat2);
dm = m2-m1;
lox_s = dm/cos(Az12);
%-----------------------
% Print result to screen
%-----------------------
fprintf('\n========================');
fprintf('\nLoxodrome: Inverse Case');
fprintf('\n=========================');
fprintf('\nEllipsoid parameters');
fprintf('\na = %12.4f',a);
fprintf('\nf = 1/%13.9f',flat);
fprintf('\n\nTerminal points of curve');
% Print lat and lon of Point 1
[D,M,S] = DMS(lat1*d2r);
if D == 0 && lat1 < 0
    fprintf('\nLatitude P1 = -0 %2d %9.6f (D M S)',M,S);
else
    fprintf('\nLatitude P1 = %4d %2d %9.6f (D M S)',D,M,S);
end
[D,M,S] = DMS(lon1*d2r);
if D == 0 && lon1<0
    fprintf('\nLongitude P1 = -0 %2d %9.6f (D M S)',M,S);
else
    fprintf('\nLongitude P1 = %4d %2d %9.6f (D M S)',D,M,S);
end
% Print lat and lon of point 2
[D,M,S] = DMS(lat2*d2r);
if D == 0 && lat1 < 0
    fprintf('\n\nLatitude P2 = -0 %2d %9.6f (D M S)',M,S);
else
    fprintf('\n\nLatitude P2 = %4d %2d %9.6f (D M S)',D,M,S);
end
[D,M,S] = DMS(lon2*d2r);
if D == 0 && lon2 < 0
    fprintf('\nLongitude P2 = -0 %2d %9.6f (D M S)',M,S);
else
```

fprintf('\nLongitude $P 2=\% 4 d \% 2 d \% 9.6 f(D M S) ', D, M, S)$;
end
\% Print isometric latitudes of P1 and P2
[D, M, S] = DMS (isolat1*d2r);
if $D==0$ \&\& isolat1 <0
fprintf('\n\nisometric lat $P 1=-0 \% 2 d \% 9.6 f(D M S) ', M, S) ;$
else
fprintf('\n\nisometric lat $P 1=\% 4 d \div 2 d \% 9.6 f(D M S) ', D, M, S)$;
end
$[\mathrm{D}, \mathrm{M}, \mathrm{S}]=\mathrm{DMS}($ isolat $2 * \mathrm{~d} 2 r)$;
if $D==0$ \&\& isolat2 < 0
fprintf('\nisometric lat $P 2=-0 \% 2 d \% 9.6 f(D M S) ', M, S)$;
else
fprintf('\nisometric lat $P 2=\% 4 d \% 2 d \% 9.6 f(D M S) ', D, M, S)$;
end
\% Print differences in isometric latitudes and longitudes
$[D, M, S]=$ DMS (disolat*d2r);
if $D==0$ \&\& disolat <0
fprintf('\n\ndiff isometric lat $P 2-P 1=-0 \% 2 d \% 9.6 f(D M S) ', M, S) ;$
else
fprintf('\ndiff isometric lat $P 2-P 1=\% 4 d \% 2 d \% 9.6 f(D M S) ', D, M, S)$; end
$[D, M, S]=D M S(d l o n * d 2 r) ;$
if $D==0$ \&\& dlon <0
fprintf('\ndiff in longitude $P 2-P 1=-0 \% 2 d \% 9.6 f(D M S) ', M, S)$;
else
fprintf('\ndiff in longitude $P 2-P 1=\% 4 d \div 2 d \div 9.6 f(D M S) ', D, M, S)$;
end
\% Print meridian distances of P1 and P2
fprintf('\n\nmeridian distance $\mathrm{P} 1=\% 15.6 \mathrm{f}$ ', m1);
fprintf('\nmeridian distance $\mathrm{P} 2=\% 15.6 \mathrm{f}$ ', m2);
fprintf('\n\ndiff in mdist $\left.P 2-P 1=\% 15.6 f^{\prime}, d m\right)$;
\% Print azimuth of loxodrome
fprintf('\n\nAzimuth of loxodrome P1-P2');
[D, M, S] = DMS (Az12*d2r);
fprintf('\nAz12 = \%3d \%2d \%9.6f (D M S)',D,M,S);
\% Print loxodrome distance P1-P2
fprintf('\n\nloxodrome distance P1-P2');
fprintf('\ns = \%15.6f',lox_s);
fprintf('\n\n');

MATLAB function isometric.m

```
function isolat = isometric(flat,lat)
%
isolat=isometric(flat,lat) Function computes the isometric latitude
        (isolat) of a point whose latitude (lat) is given on an ellipsoid whose
        denominator of flattening is flat.
        Latitude (lat) must be in radians and the returned value of isometric
        latitude (isolat) will also be in radians.
        Example: isolat = isometric(298.257222101,-0.659895044028705);
            should return isolat = -0.709660227088983 radians,
            equal to -40 39 37.9292417795658 (DMS) for latitude equal to
            -0.659895044028705 radians (-37 48 33.1234 (DMS)) on the GRS80
            ellipsoid.
    Function: isometric(flat,lat)
    Syntax: isolat = isometric(flat,lat);
    Author: R.E.Deakin,
        School of Mathematical & Geospatial Sciences, RMIT University
        GPO BOx 2476V, MELBOURNE, VIC 3001, AUSTRALIA.
        email: rod.deakin@rmit.edu.au
        Version 1.0 5 October 2009
    Purpose: Function computes the isometric latitude of a point whose
        latitude is given on an ellipsoid defined by semi-major axis (a) and
        denominator of flattening (flat).
Return value: Function isometric() returns isolat (isometric latitude in
    radians)
Variables:
    e - eccentricity of ellipsoid
    e2 - eccentricity-squared
    f - flattening of ellipsoid
    flat - denominator of flattening
Remarks:
        Isometric latitude is an auxiliary latitude proportional to the spacing
        of parallels of latitude on an ellipsoidal Mercator projection.
References:
        [1] Snyder, J.P., 1987, Map Projections-A Working Manual. U.S.
        Geological SurveyProfessional Paper 1395. Washington, DC: U.S.
        Government Printing Office, pp.15-16.
    compute flattening f eccentricity squared e2
    = 1/flat;
2 = f* (2-f);
    = sqrt(e2);
= e*sin(lat);
= (1-x)/(1+x);
= pi/4 + lat/2;
% calculate the isometric latitude
isolat = log(tan(z)*(y^(e/2)));
```


MATLAB function meridian_dist.m

```
function mdist = meridian_dist(a,flat,lat)
%
mdist = meridian dist(a,flat,lat) Function computes the meridian distance
        on an ellipsoid defined by semi-major axis (a) and denominator of
        flattening (flat) from the equator to a point having latitude (lat) in
        radians.
        e.g. mdist = (6378137, 298.257222101, -0.659895044028705) will compute
        the meridian distance for a point having latitude -37 deg 48 min
        33.1234 sec on the GRS80 ellipsoid (a = 6378137, f = 1/298.257222101).
Function: meridian_dist()
Usage: mdist = meridian_dist(a,flat,lat)
Author: R.E.Deakin,
        School of Mathematical & Geospatial Sciences, RMIT University
        GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA.
        email: rod.deakin@rmit.edu.au
        Version 1.0 5 October 2009
    Purpose: Function computes the meridian distance
        on an ellipsoid defined by semi-major axis (a) and denominator of
        flattening (flat) from the equator to a point having latitude (lat) in
        radians.
    Functions required:
    Variables: a - semi-major axis of spheroid
        A,B,C... - coefficients
        e2 - eccentricity squared
        e4,e6,... - powers of e2
        f - f = l/flat is the flattening of ellipsoid
        flat - denominator of flattening of ellipsoid
        mdist - meridian distance
Remarks: The formulae used are given in Baeschlin, C.F., 1948,
        "Lehrbuch Der Geodasie", Orell Fussli Verlag, Zurich, pp.47-50.
        See also Deakin, R. E. and Hunter M. N., 2008, "Geometric
        Geodesy - Part A", Lecture Notes, School of Mathematical and
        geospatial Sciences, RMIT University, March 2008, pp. 60-65.
% compute eccentricity squared
f = 1/flat;
e2 = f*(2-f);
% powers of eccentricity
e4 = e2*e2;
e6 = e4*e2;
e8 = e6*e2;
e10 = e8*e2;
% coefficients of series expansion for meridian distance
A = 1+(3/4)*e2+(45/64)*e4+(175/256)*e6+(11025/16384)*e8+(43659/65536)*e10;
B = (3/4)*e2+(15/16)*e4+(525/512)*e6+(2205/2048)*e8+(72765/65536)*e10;
C = (15/64)*e4+(105/256)*e6+(2205/4096)*e8+(10395/16384)*e10;
D = (35/512)*e6+(315/2048)*e8+(31185/131072)*e10;
E = (315/16384)*e8+(3465/65536)*e10;
F = (693/131072)*e10;
term1 = A*lat;
term2 = (B/2)*sin(2*lat);
term3 = (C/4)*sin(4*lat);
term4 = (D/6)*sin(6*lat);
```

```
term5 = (E/8)*sin(8*lat);
term6 = (F/10)*sin(10*lat);
mdist = a*(1-e2)*(term1-term2+term3-term4+term5-term6);
```


MATLAB function DMS.m

```
function [D,M,S] = DMS(DecDeg)
% [D,M,S] = DMS(DecDeg) This function takes an angle in decimal degrees and returns
% Degrees, Minutes and Seconds
val = abs(DecDeg);
D = fix(val);
M = fix((val-D)*60);
S = (val-D-M/60)*3600;
if(DecDeg<0)
    D = -D;
end
return
```


REFERENCES

Bowring, B. R., (1985), 'The Geometry of the Loxodrome on the Ellipsoid', The Canadian Surveyor, Vol. 39, No. 3, Autumn 1985, pp. 223-230.
Bomford, G., (1980), Geodesy, 4th edition, Clarendon Press, Oxford.
Deakin, R. E. and Hunter, M. N., (2008), 'Geometric Geodesy - Part A', Lecture Notes, School of Mathematical \& Geospatial Sciences, RMIT University, Melbourne, Australia, March 2008, 140 pages.
Lauf, G. B., (1983), Geodesy and Map Projections, TAFE Publications Unit, Collingwood, Vic, Australia.
Thomas, P. D., (1952), Conformal Projections in Geodesy and Cartography, Special Publication No. 251, Coast and Geodetic Survey, United States Department of Commerce, Washington, D.C.

[^0]: ${ }^{3}$ The minus signs appear in 1 because α is the back azimuth, pointing to A, while $d s$ advances the geodesic away from A. In this section, Bessel assumes an easterly geodesic so that $d s / d w>0$. However the final result, Eq. (2), is general.
 ${ }^{4}$ The notation here employs partial derivatives instead of Bessel's less formal use of differentials.

[^1]: ${ }^{5}$ This is the Euler-Lagrange equation of the calculus of variations.
 ${ }^{6}$ This is now known as the Beltrami identity.
 ${ }^{7}$ A. C. Clairaut gives a geometric derivation of this result in Mém. de l'Acad. Roy. des Sciences de Paris, 1733, 406-416 (1735) The equation also follows from conservation of angular momentum for a mass sliding without friction on a spheroid of revolution.
 ${ }^{8}$ The quantity u is the reduced or parametric latitude.

[^2]: ${ }^{9}$ See the triangle $A B N$ on the "auxiliary sphere" in Fig. [1 Equation (3) is the sine rule applied to angles A and B of the triangle.
 ${ }^{10}$ Here and in the rest of the paper, the differentials give the movement of point B along the geodesic defined with point A and α^{\prime} held fixed.
 ${ }^{11}$ In Bessel's time, it was known that the earth could be approximated by an oblate ellipsoid, $a>b$, but the eccentricity had not been determined accurately. Therefore, Bessel computes tables which are applicable to oblate ellipsoids with a range of eccentricities. However, the series expansions that Bessel obtains, (11) and (12), can also to applied to prolate ellipsoids, $a<b$, by allowing $e^{2}<0$.

[^3]: 12 Referring to Fig. 1 consider two central cartesian coordinate systems with the $x y$ plane containing the geodesic $E A B$, and either A or B lying on the x axis. Equations (6) give the transformation between the coordinates of N in the two systems, $\left[\sin u^{\prime}, \cos u^{\prime} \cos \alpha^{\prime}, \cos u^{\prime} \sin \alpha^{\prime}\right]$ and [$\sin u,-\cos u \cos \alpha,-\cos u \sin \alpha$], namely a rotation by σ about the z axis.
 ${ }^{13}$ The auxiliary angles m and M are an angle and a side of the spherical triangle $E A N$ shown in Fig. 1 Equations (7) are the sine rule on angles E and F of triangle $A E F$, the cosine rule on angle F of triangle $A E F$, and the sine rule on angles A and E of triangle $A N E$.

[^4]: ${ }^{14}$ These are analogs of Eqs. (7) with meridian $N A F$ replaced by $N B G$.
 ${ }^{15}$ A. M. Legendre, Exercices du calcul intégral. Vol. 1 (Courcier, Paris, 1811).
 ${ }^{16}$ Even though good numerical algorithms for elliptic integrals are available, these usually require linking to an additional library and, for that reason, computations of geodesics are still usually in terms of a series.
 ${ }^{17}$ The notation has been simplified here compared to Bessel's original formulation in which k and ϵ are expressed in terms of E through $k=\tan E$ and $\epsilon=\tan ^{2} \frac{1}{2} E$. By using ϵ as the expansion parameter and by dividing out the factor $1-\epsilon$, Bessel has ensured that the terms that he is expanding are invariant under the transformation $\epsilon \rightarrow-\epsilon, M+\sigma \rightarrow \pi / 2-(M+\sigma)$. This symmetry causes half the terms in the expansions in ϵ to vanish.
 ${ }^{18}$ The use of complex exponentials facilitates the series expansions by avoiding the need to employ awkward trigonometric identities. If we write $\sqrt{1-x}=1-\frac{1}{2} x-\frac{1 \cdot 1}{2 \cdot 4} x^{2}-\frac{1 \cdot 1 \cdot 3}{2 \cdot 4 \cdot 6} x^{3}-\frac{1 \cdot 1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 8} x^{4}-\ldots=\sum_{j} a_{j} x^{j}$, then the coefficient of $\cos (2 l(M+\sigma)) \epsilon^{l+2 j}$ is a_{j}^{2} for $l=0$ and $2 a_{j} a_{j+l}$ for $l>0$.

[^5]: 19 The units for $\sigma, \alpha, \beta, \ldots$ are arc seconds. Bessel here adopts a conflicting notation for the coefficient α which should not be confused with the azimuth.

[^6]: ${ }^{20}$ In this paper, $\log x$ denotes the common logarithm (base 10) and we use $\operatorname{colog} x=\log (1 / x)$. The tables in the original paper contained a number of errors of one unit in the last place. These errors do not, for the most part, affect the results obtained from the tables when rounded to $0.001^{\prime \prime}$. In addition, there were systematic errors in the tabulated values of $\log \beta$ equivalent to a relative error of order ϵ^{2} in β which result in discrepancies from 1 to 17 units in the last place on the final page (the 6 -figure portion) of the tables. In calculations involving logarithms, a bar over a numeral indicates that that numeral should be negated, e.g., $\log 0.02 \approx \overline{2} .3=$ $(-2)+0.3$. In the original paper, logarithms are written modulo 10 , e.g., $\log 0.02 \approx 8.3$. The notation " $(-)$ " in these calculations indicates that the quantity whose logarithm is being taken is negative.
 ${ }^{21}$ The columns headed Δ give the first differences of the immediately preceding columns and aid in interpolating the data. Bessel would have used a table of "proportional parts" to compute the interpolated values.
 22 Working with 8 -figure logarithms provides about 2 bits more precision than IEEE single precision floating point numbers.
 ${ }^{23}$ The toise was a French unit of length. It can be converted to meters by 1 toise $=864$ ligne, 443.296 ligne $=1 \mathrm{~m}$, or 1 toise $\approx 1.949 \mathrm{~m}$.
 ${ }^{24}$ F. K. F. von Müffling, Astron. Nachr. 2(27), 33-38 (1824)

[^7]: ${ }^{25}$ Seeberg: $50^{\circ} 56^{\prime} \mathrm{N} 10^{\circ} 44^{\prime}$ E; Dunkirk: $51^{\circ} 2^{\prime} \mathrm{N} 2^{\circ} 23^{\prime} \mathrm{E}$.
 ${ }^{26}$ In present-day units, this is $a \approx 6377 \mathrm{~km}$, flattening $f \approx 1 / 308.6, s \approx$ 586 km . In this example, Bessel uses the toise as the unit of length and the second as the unit of arc.
 ${ }^{27}$ Bessel solves 3 equations (7) for 2 unknowns M and m. The redundancy serves as a check for the hand calculation and can also improve the accuracy of the calculation, for example, in the case where $\sin m \approx 1$.
 ${ }^{28}$ It is necessary to use second differences when interpolating in the table for $\log \alpha$. The argument, $\overline{2} .797216$, lies $q=0.7216$ of the way between $\overline{2} .79$ and $\overline{2} .80$. Bessel's central 2nd-order interpolation formula for the last 6 digits of $\log \alpha$ gives $401284+q(-1941)+\frac{1}{4} q(q-1)(1853-1004-$ $1028)=399892$. For the other table look-ups, linear interpolation using first differences suffices.

[^8]: ${ }^{29}$ As a practical matter, it would have been impossible for Bessel to provide a complete tabulation of a function of two parameters. He could have tabulated the function for a fixed value of e, which would greatly reduced the utility of his method, especially given the uncertainties in the measurements of e. Instead, Bessel manipulates the expression for $d w$ to move the dependence on the second parameter into a small term that may be neglected.

[^9]: ${ }^{30}$ For a flattening of $\frac{1}{128}$, the error in the longitude difference over a distance equivalent to a quarter meridian, i.e., 10000 km , is less than $0.00005^{\prime \prime}$.
 ${ }^{31}$ Bessel gives the relationship between k^{\prime} and ϵ^{\prime} in terms of E^{\prime}, where $k^{\prime}=$ $\tan E^{\prime}$ and $\epsilon^{\prime}=\tan ^{2} \frac{1}{2} E^{\prime}$.
 ${ }^{32}$ There are a series of errors in the original paper leading up to [12. Here we assume that the original Eq. (12) defines $\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}, \ldots$, which makes this equation analogous to (11), and correct the preceding equations to be consistent.

[^10]: ${ }^{33}$ See footnote 18 and set $(1-x)^{-1 / 3}=1+\frac{1}{3} x+\frac{1 \cdot 4}{3 \cdot 6} x^{2}+\frac{1 \cdot 4 \cdot 7}{3 \cdot 6 \cdot 9} x^{3}+$ $\frac{1 \cdot 4 \cdot 7 \cdot 10}{3 \cdot 6 \cdot 9 \cdot 12} x^{4}+\ldots$
 ${ }^{34}$ The value of β^{\prime} in the tables includes the factor of $648000 / \pi$ necessary to convert from radians to arc seconds.
 ${ }^{35}$ The first two relations are the sine rule for angle N of triangle $A B N$ of Fig. 1 The last relation is obtained, for example, by substituting for $\sin \alpha^{\prime}$ from (7).
 ${ }^{36}$ These are Napier's analogies for angle N of triangle $A B N$.

[^11]: ${ }^{1}$ A technique named after Lewis Fry Richardson (1881-1953) a British applied mathematician, physicist, meteorologist, psychologist and pacifist who developed the numerical methods used in weather forecasting and also applied his mathematical techniques to the analysis of the causes and prevention of wars. He was also a pioneer in the study of fractals. Richardson extrapolation is also known as Richardson's deferred approach to the limit.

