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ABSTRACT 

These notes provide a detailed derivation of series formula for (i) Meridian distance M as a 

function of latitude φ and the ellipsoid constant eccentricity-squared e2, and φ and the 

ellipsoid constant third flattening n; (ii) Rectifying latitude µ as functions of φ,e2 and φ,n; 

and (iii) latitude φ as functions of µ,e2 and µ,n  These series can then be used in solving 

the direct and inverse problems on the ellipsoid (using great elliptic arcs) and are easily 

obtained using the Computer Algebra System Maxima. 

In addition, a detailed derivation of the equation for the great elliptic arc on an ellipsoid is 

provided as well as defining the azimuth and the vertex of a great elliptic.  And to assist in 

the solution of the direct and inverse problems the auxiliary sphere is introduced and 

equations developed. 

 

INTRODUCTION 

In geodesy, the great elliptic arc between 
1

P  and 
2

P  on the ellipsoid is the curve created 

by intersecting the ellipsoid with the plane containing 
1

P , 
2

P  and O (the centre of the 

ellipsoid) and these planes are great elliptic planes or sections.  Figure 1 shows P on the 

great elliptic arc between 
1

P  and 
2

P .  
P
  is the geocentric latitude of P and 

P
  is the 

longitude of P.   

There are an infinite number of planes that cut the surface of the ellipsoid and contain the 

chord 
1 2

PP  but only one of these will contain the centre O.  Two other planes are the 

normal section plane 
1 2

PP  (containing the normal at 
1

P ) and the normal section plane 
2 1

P P  

                                      
1 This paper follows on from an earlier paper The Great Elliptic Arc on an Ellipsoid and is the result of work 

done for a review of a paper titled The General Solutions for Great Ellipse on the Spheroid by Wei-Kuo 

Tseng (Department of Merchant Marine, National Taiwan Ocean University).  The methods and equations 

developed here follow Tseng (in part) and others mentioned in the References. 
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(containing the normal at 
2

P ).  All of these curves of intersection (including the great 

elliptic arc and the two normal section curves) are plane curves that are arcs of ellipses 

(for a proof of this see Deakin & Hunter, 2010a).   
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Figure 1:  Great elliptic arc on ellipsoid 

All meridians of longitude on an ellipsoid and the ellipsoid equator are great elliptic arcs.  

Parallels of latitude – excepting the equator – are not great elliptic arcs.  So we could say 

that the great elliptic arc is a unique plane curve on the ellipsoid – since it is created by 

the single plane containing 
1

P , 
2

P  and O.  But it is not the shortest distance between 
1

P  

and 
2

P ; this unique property (shortest length) belongs to the geodesic. 

Great elliptic arcs are seldom used in geodesy as they don't have a practical connection 

with theodolite observations made on the surface of the earth that are approximated as 

observations made on an ellipsoid; e.g., normal section curves and curves of alignment.  

Nor are they the shortest distance between points on the ellipsoid; but, if we ignore earth 

rotation, they are the curves traced out on the geocentric ellipsoid by the ground point of 

an earth orbiting satellite or a ballistic missile moving in an orbital plane containing the 

earth's centre of mass.  Here geocentric means O (the centre of the ellipsoid) is coincident 

with the centre of mass. 

The series that we will develop are based on meridian distance M; the distance along the 

arc of a meridian from the equator to the point of latitude   and meridian distances are 

identical to distances from E on the equator to 
1

P  and 
2

P  on the great elliptic (Figure 1).  
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Every great elliptic section intersects the equatorial plane of the ellipsoid along a line of 

intersection passing the centre O, and the equator at E and E   that are ‘nodes’ of the 

great elliptic.  The line 2EE a   is the major axis of the great elliptic.  Every great 

elliptic will have two vertices V and V   (north and south of the equator) where a point 

moving along the great elliptic will attain a maximum latitude and the line 2VV b   is 

the minor axis of the great elliptic; perpendicular to EE   and passing through O (note 

that V   is not shown in Figure 1 and that OV b  is the semi-minor axis of the great 

elliptic).  The meridian passing through the vertex will be advanced 90° in longitude from 

the meridian passing through the node; i.e., 90
V E
     and we will show how the 

latitude and longitude of the vertex can be obtained from the equation of the great elliptic 

plane.  Knowing these relationships is the key to solving the direct and inverse problems of 

the great elliptic arc on the ellipsoid where the direct problem is: given latitude and 

longitude of 
1

P  and the azimuth 
12

  and distance s to 
2

P ; compute the latitude and 

longitude of 
2

P  and the reverse azimuth 
21

 .  The inverse problem is: given the latitudes 

and longitudes of 
1

P  and 
2

P ; compute the forward and reverse azimuths 
12 21
,   and the 

great elliptic arc distance s. 

Before proceeding, some definitions of terms relating to the ellipsoid (and including a 

definition the ellipsoid itself) will be useful 

Ellipsoid 

The ellipsoid is a surface of revolution created by rotating an ellipse (whose semi-axes are 

a and b and a b ) about its minor axis.  It is the mathematical approximation of the 

earth and has geometric constants: flattening f; third flattening n; eccentricity e ; second 

eccentricity e  and polar radius of curvature c given by 

 
a b

f
a


  (1) 

 
2 2

2 2

1 1 1 1
2 1 1 1 1

a b f e e
n

a b f e e

    
   

     
 (2) 

  
 

2 2 2
2

2 2 2

4
2

1 1

a b e n
e f f

a e n


    

 
 (3) 

 
 

   

2 2 2
2

2 2 2 2

2 4

1 1 1

f fa b e n
e

b e f n

    
  

 (4) 
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2 1

1
a n

c a
b n

         
 (5) 

The ellipsoid radii of curvature   (meridian plane) and   (prime vertical plane) at a point 

whose latitude is   are (Deakin & Hunter 2010a) 

 
 

 
 2 2

3 2 3 3
2 2

1 1

1 sin

a e a e c

W Ve




 
  


 and 

 1 2
2 21 sin

a a c
W Ve




  


 (6) 

where latitude functions V and W are 

 
 

2
2 2 2 2 2 2

2

1 2 cos2
1 sin ; 1 cos   and  

1

n n b
W e V e W V

an


 

      


 (7) 

Meridian distance M 

Meridian distance M is defined as the arc of the meridian ellipse from the equator to the 

point of latitude   (in Figure 1 the meridian distance of P is the arc FP) 

 
 2

3 3
0 0 0

1a c
M d d d

W V

  
   


      (8) 

This is an elliptic integral that cannot be expressed in terms of elementary functions; 

instead, the integrand is expanded by into a series using Taylor’s theorem (see Appendix 

2) then evaluated by term-by-term integration.  The usual form of the series formula for M 

is a function of   and powers of 2e  obtained from (Deakin & Hunter 2010a) 

     3 2
2 2 2

0

1 1 sinM a e e d


 


    (9) 

But the German geodesist F.R. Helmert (1880) gave a formula for meridian distance as a 

function of   and powers of n that required fewer terms for the same accuracy.  Helmert's 

method of development is given in Deakin & Hunter (2010a) and with some algebra we 

may write 

    2 3 2
2 2

0

1 1 2 cos2
1

a
M n n n d

n



 


   
   (10) 

We will show, using Maxima, that (9) and (10) can easily be evaluated and M written as 

   2
0 2 4 6 8 10

1 sin2 sin 4 sin 6 sin 8 sin10M a e b b b b b b              (11) 

where the coefficients  n
b  are to order 10e  as follows 
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2 4 6 8 10

0

2 4 6 8 10

2

4 6 8 10

4

6 8 10

6

8

3 45 175 11025 43659
1

4 64 256 16384 65536
3 15 525 2205 72765

8 32 1024 4096 131072
15 105 2205 10395

256 1024 16384 65536
35 105 10395

3072 4096 262144
315

b

b

b

b

b

e e e e e

e e e e e

e e e e

e e e

     

  

 

 





   

  

  









8 10

10

10

3465

131072 524288
693

1310720
b

e e

e 

 







 (12) 

or 

  0 2 4 6 8 10
sin2 sin 4 sin 6 sin 8 sin10

1
a

M c c c c c c
n

           


  (13) 

where the coefficients  n
c  are to order 5n  as follows 

 

2 4 3 2 4

0 2 4

3 4 5

6 8 10

5

5

1 1 3 3 15 15
1

4 64 2 16 16 64
35 315 693

48 512 1280

3
128

175
768

c n n c n n c n n

c n c n c n

n

n

         

     

 

  

  

  

 (14) 

Note here that for WGS84 ellipsoid (the reference ellipsoid of the World Geodetic System 

1984) where a = 6378137 m and f = 1/298.257223563 the ellipsoid constants 

1.679220386383705 003n e   and 2 6.694379990141317 003e e  , and 
10 12

5

1007 6.7
e e

n   .  

This demonstrates that the series (13) with fewer terms in the coefficients  n
c  is at least 

as ‘accurate’ as the series (11).  To test this consider the meridian distance expressed as a 

sum of terms 
0 2 4

M M M M    where for series (11)  2
0 0

1M a e b   , 

 2
2 2

1 sin2M a e b   ,  2
4 4

1 sin 4M a e b   , etc. and for series (13) 
0 01

a
M c

n



, 

2 2
sin2

1
a

M c
n




, 
4 4

sin 4
1

a
M c

n



, etc.  Maximum values for 

0 2 4
, , ,M M M  occur 

at latitudes 90 ,45 ,22.5 ,    

 when max   or sin 1k   and testing the differences 

between terms at these maximums revealed no differences greater than 0.5 micrometres.  

So series (13) should be the preferable method of computation.  Indeed, further truncation 

of the coefficients  n
c  to order 4n  and truncating series (13) at 

8
sin 8c   revealed no 

differences greater than 1 micrometre. 
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Quadrant length Q 

The quadrant length of the ellipsoid Q is the length of the meridian arc from the equator 

to the pole and is obtained from equation (11) by setting 1
2

  , and noting that 

sin2 , sin 4 , sin 6 ,    all equal zero, giving 

 

 
  2 4 6 8 10

2
0 2

2 3 45 175 11025 43659
1

4 64 256 16384 65536

1

1
2

Q a e b

a e e e e e e




    

 
         

  (15) 

Similarly, using equation (13) 

 2 4

0 2

1 1
1

4 641 1 2
n n

aa
Q c

n n
 

  
           

  (16) 

Rectifying latitude µ  and rectifying radius A 

If the meridian distance M on the ellipsoid is equivalent to a meridian distance (great 

circle arc) on a (rectifying) sphere of radius A then the rectifying latitude   is defined by 

 M A  (17) 

An expression for A is obtained by considering the case when 1
2

   and M is equal to 

the quadrant distance Q and (17) may be rearranged to give 2A Q   and then using 

(15) to give A to order 10e  as 

 

 
  2 4 6 8 10

2
0

2 3 45 175 11025 43659
1

4 64 256 16384 65536

1

1

A a e b

a e e e e e e    

 
         

  (18) 

Similarly, using (16) 

 2 41 1
1

4 641
n n

a
A

n
  

         
  (19) 

Re-arranging (17) and using (11) and (18) gives the rectifying latitude as 

      2 0 4 0 6 0
sin2 sin 4 sin 6M A b b b b b b          (20) 

or 

 
2 4 6 8 10
sin2 sin 4 sin 6 sin 8 sin10g g g g g             (21) 

where the coefficients  0n n
g b b  are to order 10e  
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256 256 8192 4096
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131072 65536 1310720

g

g

g g

e e e e e

e e e e

g e e e

e e e

  

 

 

  

   

  

  

  







 

 (22) 

Similarly, we may obtain 

 
2 4 6 8 10
sin2 sin 4 sin 6 sin 8 sin10d d d d d             (23) 

where the coefficients  n
d  are to order 5n  as follows 

 

3 2 4 3

2 4 6

4

8 10

5 5

5

3 9 15 15 35

2 16 16 32 48
315

512

3 105
32 256

693
1280

d n n d n n d n

d n d

n n

n

         

   

 



  

 

 (24) 

Maxima can easily perform the algebra required for (21) and (23) by using a Taylor series 

representation of 1
0

b  for the ‘e-series’ and 1
0

c  for the ‘n-series’. 

Latitude φ  as a function of rectifying latitude   

An expression for   as a function of   and powers of e is obtained by reversion of series 

(21) using Lagrange’s theorem (see Appendix 3) giving 

 
2 4 6 8 10
sin2 sin 4 sin 6 sin 8 sin10G G G G G             (25) 

where the coefficients  n
G  are to order 10e  as follows 

 

2 4 6 8 10

2

4 6 8 10

4

6 8 10

6

8 10 10

8 10

3 3 213 255 20861

8 16 2048 4096 524288
21 21 533 197

256 256 8192 4096
151 151 5019

6144 4096 131072
1097 1097 8011

65536 131072 2621440

G

G

G G

e e e e e

e e e e

G e e e

e e e

 

 



 

   

  

  

  







 

 (26) 

Similarly, reversion of series (23) gives  

 
2 4 6 8 10
sin2 sin 4 sin 6 sin 8 sin10D D D D D             (27) 

where the coefficients  n
D  are to order 5n  as follows 
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3 5 3 5

2 6

4 5

8 10

2 4
4

3 27 269 151 417

2 32 512 96 128
1097 8011

512 2560

21 55
16 32

D n n n D n n

D n D n

D n n      

   

   

 



 (28) 

Again, Maxima can easily perform the calculus and algebra required to obtain ‘e-series’ 

(25) or ‘n-series’ (27) using Lagrange’s theorem. 

The series developed above can be used in the direct and inverse problems on the ellipsoid 

using the great elliptic arc. 

 

EQUATION OF A GREAT ELLIPTIC ARC SECTION 

Figure 1 shows P on the great elliptic arc that passes through 
1

P  and 
2

P  on the ellipsoid.  

Parallels of latitude   and meridians of longitude   have their respective reference planes; 

the equator and the Greenwich meridian, and longitudes are measured 0  to 180   (east 

positive, west negative) from the Greenwich meridian and latitudes are measured 0  to 

90   (north positive, south negative) from the equator.  The x,y,z geocentric Cartesian 

coordinate system has an origin at O, the centre of the ellipsoid, and the z-axis is the 

minor axis (axis of revolution).  The xOz plane is the Greenwich meridian plane (the origin 

of longitudes) and the xOy plane is the equatorial plane.  The positive x-axis passes 

through the intersection of the Greenwich meridian and the equator, the positive y-axis is 

advanced 90  east along the equator and the positive z-axis passes through the north pole 

of the ellipsoid.   

In Figure 1, 
P
  is the geocentric latitude of P and (geodetic) latitude   and geocentric 

latitude   are related by 

    
2 22

2
tan 1 tan tan 1 tan

b
e f

a
         (29) 

The geometric relationship between geocentric latitude   and (geodetic) latitude   is 

shown in Figure 2, noting that the normal to the ellipsoid does not pass through the centre 

O but instead cuts the rotation axis of the ellipsoid at H and the distance 2 sinOH e   

and PH   is the radius of curvature in the prime vertical plane. 

 



 
Great Elliptic Arc Distance.docx  9 

·

·

· P

O

H

no
rm

al

tangent

a

b

z

ellipse

equator

N

F

r

-

 

 

Figure 2:  Meridian plane of P 

The distance r OP  will be useful and is given by the polar equation for an ellipse as 

 
2 2 2 2sin cos

ab
r

a b 



 (30) 

And after some algebra and the use of equations (3) and (4) we may obtain 

 
2 2 2 21 cos 1 sin

b a
r

e e 
 

 
 (31) 

The great elliptic plane in Figure 1 is defined by points ,  and  that are 
1

P , 
2

P  and 

the centre of the ellipsoid O respectively.  Cartesian coordinates of  and  are computed 

from the following equations 

 

 2

cos cos cos cos cos cos

cos sin cos sin cos sin

1 sin sin sin

c
x r

V
c

y r
V
b

z e r
V

      

      

   

  

  

   

 (32) 

The Cartesian coordinates of point  are all zero. 

The general equation of a plane may be written as 

 0Ax By Cz D     (33) 

And the equation of the plane passing through points ,  and  is given in the form of 

a 3rd-order determinant 

 
1 1 1

2 1 2 1 2 1

3 2 3 2 3 2

0

x x y y z z

x x y y z z

x x y y z z

  
   
  

 (34) 
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or expanded into 2nd-order determinants 

      2 1 2 1 2 1 2 1 2 1 2 1
1 1 1

3 2 3 2 3 2 3 2 3 2 3 2

0
y y z z x x z z x x y y

x x y y z z
y y z z x x z z x x y y

     
     

     
 (35) 

Expanding the determinants in equation (35) gives 

 

        
        
        

1 2 1 3 2 2 1 3 2

1 2 1 3 2 2 1 3 2

1 2 1 3 2 2 1 3 2
0

x x y y z z z z y y

y y x x z z z z x x

z z x x y y y y x x

     

      

         (36) 

Now since 
3 3 3

0x y z    equation (36) becomes 

 

        
        
        

1 2 1 2 2 1 2

1 2 1 2 2 1 2

1 2 1 2 2 1 2
0

x x y y z z z y

y y x x z z z x

z z x x y y y x

     

      

         (37) 

Expanding and simplifying equation (37) gives 

      1 2 2 1 1 2 2 1 1 2 2 1
0x y z y z y x z x z z x y x y     
 (38)

 

or 

 0Ax By Cz    (39) 

where A, B and C are functions of the coordinates of the terminal points 
1

P  and 
2

P  

 
1 2 2 1 1 2 2 1 1 2 2 1

A y z y z B x z x z C x y x y       (40) 

Replacing x, y and z with their equivalents, given by equations (32), gives 

        2
1 2 2 1 1 2 2 1 1 2 2 1

cos cos cos sin 1 sin 0y z y z x z x z e x y x y               

and dividing both sides by cos   gives the equation of the great elliptic as 

  2cos sin 1 tan 0A B C e       (41) 

Equation (41) is not suitable for computing the distance along a great elliptic arc, nor is it 

suitable for computing the azimuth of the curve, but by certain re-arrangements it is 

possible to solve (directly) for the latitude of a point on the curve given a longitude 

somewhere between the longitudes of the terminal points of the curve.  Or alternatively, 

solve (iteratively) for the longitude of a point given a latitude somewhere between the 

latitudes of the terminal points. 
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Solving for the latitude 

A simple re-arrangement of equation (41) allows the latitude   to be evaluated from 

 
 2

sin cos
tan

1

B A

C e

 






 (42) 

where A and B and C are functions of terminal points 
1

P  and 
2

P  given by equations (40). 

Solving for the longitude 

The longitude   can be evaluated using Newton-Raphson iteration for the real roots of the 

equation   0f    given in the form of an iterative equation 

    
  
  1

n

n n

n

f

f


 




 


 (43) 

where n denotes the nth iteration and  f   is given by equation (41) as 

    2cos sin 1 tanf A B C e        (44) 

and the derivative     d
f f

d
 


   is given by 

   sin cosf A B       (45) 

An initial value of  1  (  for 1n  ) can be taken as the longitude of 
1

P  and the functions 

  1
f   and   1

f   evaluated from equations (44) and (45) using 
1

 .   2  (  for 2n  ) 

can now be computed from equation (43) and this process repeated to obtain values 

   3 4
, ,   .  This iterative process can be concluded when the difference between  1n




 and 

 n
  reaches an acceptably small value. 

Alternatively, the longitude can be evaluated by a trigonometric equation derived as 

follows.  Equation (41) can be expressed as 

  2sin cos 1 tanB A C e      (46) 

and A, B and C are given by equations (40).  Equation (46) can be expressed as a 

trigonometric addition of the form 

 
   21 tan cos

cos cos sin sin

C e q

q q

  

   

  

   (47) 

Now, equating the coefficients of cos  and sin  in equations (47) and (46) gives 
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 cos ; sinA q B q     (48) 

and using these relationships 

 2 2 ; tan
B

q A B
A

  


 (49) 

Substituting these results into equation (47) gives 

 
 2

2 2

1 tan
arccos arctan

C e B
AA B




                       

 (50) 

 

THE VERTEX OF THE GREAT ELLIPTIC 

As P moves along a great elliptic its latitude and longitude is varying (unless the great 

elliptic is the equator or a meridian, in which case either latitude or longitude will be 

constant) and differentiating equation (41) with respect to latitude   and re-arranging 

gives the derivative 

 
 2 2

sin cos

1 sec

d A B
d C e

  
 





 (51) 

Now when 0
d
d



  the latitude will be a maximum and P will have reached a vertex 

,
V V
   and (51) becomes 0 sin cos

V V

d
A B

d


 


    from which we obtain 

 arctan
V

B
A


        

 (52) 

And substituting (52) into (41) and re-arranging gives 

 
 2

sin cos
arctan

1
V V

V

B A

C e

 


          

 (53) 

Using (29) gives the geocentric latitude of the vertex as 

 
sin cos

arctan V V
V

B A

C

 


        
 (54) 
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GEOMETRIC PARAMETERS OF THE GREAT ELLIPTIC 

The semi-major axis of the great elliptic is a, the radius of the equator and the semi-major 

axis of the ellipsoid.  The semi-minor axis of the great elliptic is the distance OV b  (see 

Figure 1) and an expression for b  is obtained from (31) [the polar equation for an ellipse] 

 
2 2 2 21 sin 1 cos

V V

a b
b

e e 
  

 
 (55) 

Denoting   and   as the first and second eccentricities of the great elliptic (having semi-

axes ,a b  and a b )   and   are defined by 

 
2 2

2

2

a b

a



  (56) 

 
2 2

2

2

a b

b


 


 (57) 

And using (55) and (56) the second eccentricity of the great elliptic is 

 2 2 2sin
V

e    (58) 

 

THE AZIMUTH   OF THE GREAT ELLIPTIC 

The azimuth   of a great elliptic at P (
1

  at 
1

P  in Figure 1) is the clockwise angle 

between the tangent to the ellipsoid meridian and the tangent to the great elliptic.  Both 

tangents lie in the tangent plane to the ellipsoid at P.  The forward azimuth of the great 

elliptic from 
1

P  to 
2

P  is denoted 
12

  and 
12 1

   (see Figure 1)  The reverse azimuth (
2

P  

to 
1

P ) is denoted 
21

  and 
21 2

180    . 

The azimuth can be obtained by a series of vector manipulations (scalar and vector 

products; see Appendix 1) that are outlined below. 

The position vector of P on the surface of the ellipsoid is (Deakin & Hunter 2010a) 

  , cos cos cos sin sin
c c b
V V V

         r r i j k  (59) 

and the partial derivatives of the position vector are 

   3 3 3
, sin cos sin sin cos

c c c

V V V       



    


r r i j k  (60) 

  , cos sin cos cos 0
c c
V V      




    


r r i j k  (61) 
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where 
r  and r  are orthogonal and tangential to the parametric curves constant   

(meridian) and constant   (parallel).  
r  points north and r  points east and both 

vectors lie in the tangent plane to the ellipsoid at P.   

Now, denote two unit vectors pointing north and east respectively as ˆ 




r

n
r

 and ˆ 




r

e
r

 

and 

 ˆ sin cos sin sin cos       n i j k  (62) 

 ˆ sin cos 0    e i j k  (63) 

The unit vector normal to the surface (pointing inwards) is denoted N̂  and found from the 

vector cross product as 

 ˆ ˆ ˆ cos cos cos sin sin         N n e i j k  (64) 

n̂ , ê  and N̂  form a triplet of orthogonal unit vectors. 

Now, the great elliptic plane is given by (39) as 0Ax By Cz    and the unit vector 

normal to this plane (directed outwards from the origin) is denoted by p̂  and 

 ˆ l m n  p i j k  (65) 

where l, m and n are direction cosines ( 2 2 2 1l m n   ) given by 

 
2 2 2 2 2 2 2 2 2

;   ;   
A B C

l m n
A B C A B C A B C


  

     
 (66) 

and A, B and C are constants of the great elliptic given by (40). 

Now the vector cross product of the two unit vectors N̂  and p̂  at 
1

P  will produce a vector 

perpendicular to both and in the direction to 
2

P .  This vector denoted g  (and its unit 

vector ĝ ) will lie in the tangent plane at 
1

P  and 

 ˆ ˆ ˆ    and      
g

g N p g
g

 (67) 

The vector dot product can now be used to compute angles   and   in the tangent plane; 

where   is the angle between the unit vectors n̂  (pointing north) and ĝ  

  ˆ ˆarccos  n g  (68) 

and   is the angle between the unit vector ê  (pointing east) and ĝ  
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  ˆ ˆarccos  e g  (69) 

The azimuth 
1 12

   of the great elliptic from 
1

P  to 
2

P  is then determined from the rule: 

 IF 90    THEN 
12

360    ELSE 
12

   (70) 

 

THE AZIMUTH   OF THE GREAT ELLIPTIC – THOMAS’ APPROACH 

The American mathematician Paul D. Thomas (Thomas 1965) developed a trigonometric 

formula for azimuth, based on vector manipulations, which is outlined here.  Consider a 

rotated Cartesian frame , ,x y z    where the -x y   plane is the plane of the equator, the z  -

axis is coincident with z-axis and the -z x plane is the meridian plane of 
1

P .  The 

Cartesian coordinates of 
1

P  and 
2

P  in this rotated system are 

 

2 2
1 1 2

1

1 2 2
2

1 1
2 21

2

cos cos
cos

0      and     cos sin

sin
sin

c
c x

x V
V

c
y y

V
b

bz
zV

V

 


 




   

   

   

 (71) 

where 
2 1

     , c is the polar radius and V is a latitude function (see equations (5), 

(6) and (7)).  Substituting these expressions into equation (38) and simplifying gives the 

great elliptic plane as 

 0A x B y C z         (72) 

where 

     2 2
1 2 1

1 tan sin 1 tan tan cos sinA e B e C                  (73) 

The unit vector perpendicular to the great elliptic plane (pointing outwards from the 

origin) is ˆ
A B C
d d d

     p i j k  where 2 2 2d A B C      and the unit vector normal 

to the tangent plane at 
1

P  (pointing inwards) is 
1 1 1

ˆ cos 0 sin     N i j k .  The 

tangent to the meridian at 
1

P  (pointing north) is 
1 1 1

ˆ sin 0 cos     n i j k  and 

similarly to before, the vector tangential to the great elliptic and in the tangent plane at 

1
P  is 

1 1 1 1 1 1
ˆ ˆ sin cos sin cos

B C A B
d d d d

   
                

g N p i j k  having magnitude 

 22
1 1

1
cos sinB C A

d
      g  and unit vector ˆ


 


g

g
g

.   
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Using unit vectors, 
1 1

ˆ ˆcos   n g  which after some algebra reduces to 

 
1 22

1 1

cos
cos sin

B

B C A


 




   
 and with the trigonometric identity 

2 2sin cos 1x x   we obtain 

 
1 1

1 22
1 1

cos sin
sin

cos sin

C A

B C A

 


 

 


   
; and then 

1 1
1

cos sin
tan

C A

B

 


 



.  Substituting expressions for , ,A B C    given by (73) and 

simplifying gives 

 
  

2

1 2 2
1 2 1 1

sin
arctan

1 tan tan cos cos

a

e




    

            

 (74) 

Evaluating 
1

  in the range 
1

180 180     gives the azimuth 
12

  from the rule: 

 IF 
1

0   THEN 
12 1

360    ELSE 
12 1

   (75) 

Following Thomas (1965); by symmetrical interchange of subscripts and replacing   by 

  the azimuth from 
2

P  to 
1

P  is 

 
  

2

2 2 2
2 2 1 2

sin
arctan

1 tan cos tan cos

a

e




    

            

 (76) 

Evaluating 
2

  in the range 
2

180 180     gives the azimuth 
21

  from the rule: 

 IF 
2

0   THEN 
21 2

540    ELSE 
21 2

180     (77) 

 [Note that Thomas’ equations for azimuth (Thomas 1965, p. 47, equations (15),(16)) are 

different from (74) and (76) as Thomas defines azimuth as a clockwise angle measured 

from south, see p. 45, equation (9)] 

 

GREAT ELLIPTIC LATITUDES 

A point P on the great elliptic has ‘great elliptic’ latitudes   and   that are analogous to 

(geodetic) latitude   and geocentric latitude   noting that the great elliptic arc EPV of 

Figure 1 is similar to the meridian arc FPN.  In fact we could consider the vertex V of the 

great elliptic as analogous to the pole N of a meridian.  Expressions for   and   are 

developed below. 
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In Figure 1, consider two vectors 
E E E

OE x y z   E i j j


 and OP x y z   P i j j


 

where , ,i j k  are unit vectors in the direction of the Cartesian axes and , ,
E E E

x y z  and , ,x y z  

are Cartesian coordinates of E and P respectively.  The vector dot product is 

 cos
E E E

x x y y z z   E P E P  (78) 

and a re-arrangement of (78) gives an expression for great elliptic geocentric latitude   as 

 cos E E E
x x y y z z


 

 
E P

 (79) 

where the Cartesian coordinates are obtained from (32) as 

 

 2

cos cos cos

sin   and  cos sin

0 1 sin

E E

E E

E

x a x

y a y

z z e

   
   

 

 
 
  

 (80) 

2 2 2
E E E

x y z  E  and 2 2 2
1

x y z  P  are the magnitudes of vectors E and P.   

Now E  is just the semi-major axis a; and    2 2 22 1
a

W e e
W

   P  is obtained after 

some algebra noting that W is a latitude function defined by (7).  Substituting these 

results and (80) into (79) and simplifying gives 

 
 

   2 2 2

cos cos
arccos

2 1

E

W e e

  


               

 (81) 

And using the relationships between latitudes given in (29) we have 

 
2

tan
arctan

1






         
 (82) 

 

THE AUXILIARY SPHERE AND THE GREAT ELLIPTIC 

Following Bowring (1984) several formula, useful in the solution of the direct and inverse 

problems, can be developed using spherical trigonometry and an auxiliary sphere.  This 

auxiliary sphere has a radius 
1 1
r OP  1

b r a   and is centred at O the centre of the 

ellipsoid.   
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Figure 3a: 

Great elliptic through 
1

P  and 
2

P  

Figure 3b: 

Great circle through 
1

P  and 
2

P   

Figure 3a shows the great elliptic arc 
1 2

s PP  on the ellipsoid having (forward) azimuth 

12 1
   and reverse azimuth 

21 2
180    ; and azimuth 90    at the vertex V.  

Figure 3b shows the great elliptic plane 
1 2

OPP  intersecting the auxiliary sphere along the 

great circle arc 
1 2

PV P  .  The great circle arc of length 
1 2

PP   has spherical azimuth 
1

A  

at 
1

P , 
2

A  at 
2

P   and 90A    at the vertex V  .  And points 
1

P , V   and 
2

P   have spherical 

latitudes equal to the geocentric latitudes of 
1

P , V  and 
2

P  on the ellipsoid. 

In the spherical triangle 
1 2

PN P   in Figure 3b with 
2 1

      the cotangent formula 

(four-parts rule) of spherical trigonometry may be used to give expressions for spherical 

azimuth 
1

A  (Bowring 1984) and longitude difference   

 
1

1 2 1

sin
arctan

cos tan sin cos
A


   

         
 (83) 

 1

1
1 1

sin
arctan

cos
sin cos

tan

A

A







               

 (84) 

In the same spherical triangle, the cosine formula for spherical trigonometry gives 

expressions for geocentric latitude 
2
  and spherical arc length   

  2 1 1 1
arcsin sin cos cos sin cosA       (85) 

  1 2 1 2
arccos sin sin cos cos cos         (86) 
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When distances are small the spherical angles   and   will be small and equation (86) 

may give unreliable results.  Two better formula for evaluating   are: 

    2 2

1 2 1 2 2
arcsin cos sin sin cos cos cos sin             (87) 

and 

 2arctan
1

x
x

 


 (88) 

where 2 21 1
1 22 2

sin cos cos sinx        , 
2 1

      and 
2 1

     . 

Equation (87) can be obtained from the five-parts cosine formula for spherical 

trigonometry and is used by Vincenty (1975, eq. 14, p. 90) in the equations for solving the 

inverse problem of the geodesic on the ellipsoid.  Equation (88) is the ‘haversine’ formula 

(Sinnott 1984) where versine (versed sine) and haversine (half versine) are trigonometric 

functions defined as versine 1 cos    and   21 1
2 2

haversine 1 cos sin     . 

In the right-angled spherical triangle 
1

PN V   in Figure 3b we may use Napier’s rules of 

circular parts to give expressions for geocentric latitude and the longitude of the vertex 

  1 1
arccos sin cos

V
A   (89) 

 
1

1 1

1
arctan

sin tanV A
 



        
 (90) 

Bowring (1984) gives an expression for 2sin
V
  that can be obtained from (89) using the 

trigonometric identity 2 2sin cos 1x x   to give 

 2 2 2 2
1 1 1

sin sin cos cos
V

A     (91) 

Equation (91) can be used in (55) to compute the semi-major axis of the great elliptic. 

 

RELATIONSHIP BETWEEN AZIMUTH 
1

  AND SPHERICAL AZIMUTH A1 

The azimuth   of a great elliptic at P (
1

  at 
1

P  and 
2

  at 
2

P  in Figure 3a) is the 

clockwise angle between the tangent to the ellipsoid meridian and the tangent to the great 

elliptic.  Both these tangents lie in the tangent plane to the ellipsoid at P.  The spherical 

azimuth A (
1

A  at 
1

P  and 
2

A  at 
2

P   in Figure 3b) is an angle in a spherical triangle and is 

equal to the angle between the tangents to the intersecting great circle planes.  These 

tangents lie in the tangent plane to the auxiliary sphere.  At 
1

P , where the radius of the 

auxiliary sphere is 
1 1
r OP  the two tangent planes will intersect (the line of intersection is 
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perpendicular to the meridian plane at 
1

P ) and a relationship can be established between 

1
  and 

1
A  by considering Figure 4 

P1

Q R

S

R
Q

to O centre of ellipsoid and sphere

to H on the ellipsoid minor axis

1 1 -

A1 1

¢
¢

 

Figure 4: Tangent planes at 
1

P  on the ellipsoid 

Figure 4 shows two tangent planes at 
1

P : (i) the plane 
1

PQRS  that is tangential to the 

auxiliary sphere, and (ii) the plane 
1

PQ R S   tangential to the ellipsoid.  The plane 
1

PRR  

is coincident with the great elliptic plane and the great circle plane that both contain the 

centre of the ellipsoid O and the point 
2

P .  
1

PR  and 
1

PR  are tangential to the great circle 

and the great elliptic respectively.  The plane 
1

PQQ   is coincident with the meridian 

planes of the auxiliary sphere and the ellipsoid.  And both planes contain the centre of the 

ellipsoid O, the point H on the minor axis and both poles N and N   (see Figures 2 and 3).  

The directions from 
1

P  to H and 
1

P  to O are the directions of the normal to the ellipsoid 

and the normal to the auxiliary sphere respectively and their difference 
1 1

   is the angle 

1
QPQ  .  The spherical azimuth 

1
A  is the angle 

1
QPR  and the azimuth 

1
  is the angle 

1
Q PR  . 

In triangle 
1

PQR  we have 
1

1

tan
QR

A
PQ

  and in triangle 
1

PQ R   we have 
1

1

tan
Q R
PQ


 



.  

But, QR Q R   and  1 1 1 1
cosPQ PQ    , hence 

 1

1 1 1

tan
cos

Q R
A

PQ  

 


 
 and 

  1 1 1 1
tan tan cosA     (92) 

Hence 

   1 1 1 1
arctan tan cosA     (93) 
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 

1
1

1 1

tan
arctan

cos
A



 

          
 (94) 

 

THE DIRECT PROBLEM ON THE ELLIPSOID USING A GREAT ELLIPTIC 

The direct problem is: Given latitude and longitude of 
1

P , azimuth 
12

  of the great 

elliptic section 
1 2

PP  and the arc length s along the great elliptic 

curve; compute the latitude and longitude of 
2

P . 

With the ellipsoid constants 2 2, ,  and a f e e  and given 
1 1 12
, ,    and s the problem may be 

solved by the following sequence. 

 

1. Compute the geocentric latitude 
1
  at 1P  using equation (29) expressed as 

   2
1 1

arctan 1 tane    

2. Compute the spherical azimuth 
1

A  at 
1

P  using equation (94). 

3. Compute the geocentric latitude 
V
  and longitude 

V
  of the vertex V and the 

latitude 
V
  of the vertex and the longitude 

E
  of the node E of the great elliptic (see 

Figures 1 and 3) using equations (89), (29) and (90)  

4. Compute the geometric parameters of the great elliptic using equations (55) and 

equations (1) to (4) given here again as 

  
2

2 2

22 2
; ; ; 2 ;

2 11 sin
V

a a b f
b f n f f

a fe


 



           
 

 

5. Compute x,y,z Cartesian coordinates of 
1

P  using equations (6), (7) and (32) 

combined as 

 
1 1 1 1 1 1 1 1

1 1 1

cos cos ; cos sin ; sin
c c b

x y z
V V V

        

6. Compute elliptic geocentric latitude 
1
  and elliptic latitude 

1
  of 

1
P  using equations 

(81) and (82) 

7. Compute the meridian distance 
1 1

M EP  and the quadrant distance Q EV  of the 

great elliptic using the series (13) with   and n   replacing   and n.  Then compute 

meridian distance  2 1
2M Q M s    or 

2 1
M M s   depending on whether 

1
P  
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and 
2

P  are on opposite sides of the vertex (see Figure 1) or on the same side of the 

vertex.  

8. Compute elliptic latitude 
2

  of 
2

P  using series (27) with   and n   replacing   and 

n and then the elliptic geocentric latitude 
2
  from equation (29) expressed as 

   2
2 1

arctan 1 tan      

9. Compute the great circle distance    1 2 1 2
90 90PP          on the auxiliary 

sphere. 

10. Compute geocentric latitude 
2
  of 

2
P  from spherical trigonometry using equation 

(85) and then latitude 
2

  from equation (29) expressed as 

 2
2 2

tan
arctan

1 e




        
 

11. Compute longitude difference 
2 1

      from spherical trigonometry using 

equation (84) and then longitude of 
2

P  

12. Compute reverse azimuth 
21

  using equation (76). 

Shown below is the output of a MATLAB function GEA_direct.m that solves the direct 

problem on the ellipsoid for great elliptic sections. 

The ellipsoid is the WGS84 ellipsoid and ,   for 1P  are 35 45 55    and 140 23 08    

respectively with 
12

54 57 06.932985     and 8246278.910557 ms  .  ,   computed for 

2P  are 37 37 08    and 122 22 30    respectively. 

 

 
>> GEA_direct 
 
///////////////////////////////// 
// Great Elliptic: Direct Case // 
///////////////////////////////// 
 
ellipsoid parameters 
a   =  6378137.000000000 
f   = 1/298.257223563000 
b   =  6356752.314245179 
c   =  6399593.625758493 
e2  =  6.694379990141e-003 
ep2 =  6.739496742276e-003 
n   =  9.362215099742e-004 
 
Latitude  P1 =   35 45 55.000000 (D M S) 
Longitude P1 =  140 23  8.000000 (D M S) 
 
Azimuth of Great Elliptic section P1-P2 
Az12  =  54 57  6.932985  (D M S) 
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Great Elliptic section distance P1-P2 
s =   8246278.910557 
 
Cartesian coordinates 
            X               Y               Z 
P1   -3991399.691755  3303668.240372  3707090.313132 
 
Latitude   V =   48 26 49.347671 (D M S) 
Longitude  V = -169 17 28.736206 (D M S) 
Longitude  E =  100 42 31.263794 (D M S) 
 
t = lat-theta =    0 10 56.345218 (D M S) 
 
spherical azimuth of Great Elliptic section P1-P2 
A1    =  54 57  7.423927  (D M S) 
 
Great Elliptic parameters 
a   =  6378137.000000000 
f   = 1/534.561645319167 
b   =  6366205.472446818 
e2  =  3.737883789191e-003 
ep2 =  3.751907985228e-003 
n   =  9.362215099742e-004 
 
Great Elliptic Arc distances 
M1 =  5702548.255834075 
Q  = 10009385.364900846 
M2 = 2*Q-(s+M1) =  6069943.563410141 
 
Latitude  P2 =   37 37  8.000000 (D M S) 
Longitude P2 = -122 22 30.000000 (D M S) 
 
Azimuth of Great Elliptic section P2-P1 using Thomas' eq. 15 
Az21  = 303  1 14.140673  (D M S) 
 
>> 
 
 

THE INVERSE PROBLEM ON THE ELLIPSOID USING A GREAT ELLIPTIC 

SECTION 

The inverse problem is: Given latitudes and longitudes of 1P  and 2P  on the ellipsoid 

compute the azimuth 12  of the great elliptic section 
1 2

PP  and 

the arc length s of the great elliptic curve. 

With the ellipsoid constants 2 2, , and a f e e  and given 1 1 2 2,  and ,     the problem may be 

solved by the following sequence. 

 

1. Compute Cartesian coordinates of 1P  and 
2

P  using equations (32). 

2. Compute forward and reverse azimuths using equations (74) and (76) 

3. Compute great elliptic constants A, B and C using equations (40) 

4. Compute latitude and longitude of vertex using equations (52) and (53); and then 

the geocentric latitude of the vertex using (54) 

5. Compute the geometric parameters of the great elliptic (see step 4 in the direct case) 
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6. Compute elliptic geocentric latitudes 
1 2
,    and elliptic latitudes 

1 2
,    of 

1
P  and 

2
P  

using equations (81) and (82) 

7. Compute great elliptic meridian distances 
1 1

M EP  and 
2 2

M EP  (or 
2 2

M E P  

depending on whether 
2

P  is on the other side of the vertex as in Figure 1) and the 

quadrant distance Q using the series (13). 

8. Compute the great elliptic arc length from 
2 1

s M M   or  1 2
2s Q M M    

 

Shown below is the output of a MATLAB function GEA_inverse.m that solves the inverse 

problem on the ellipsoid for great elliptic sections. 

The ellipsoid is the WGS84 ellipsoid and ,   for 1P  are 35 45 55    and 140 23 08    

respectively and ,   for 
2

P  are 37 37 08    and 122 22 30    respectively.   

Computed azimuths are 
12

54 57 06.932985       and 
21

303 01 14.140673    , and 

8246278.910557 ms  . 

 
 
>> GEA_inverse 
 
////////////////////////////////////// 
// Great Elliptic Arc: Inverse Case // 
////////////////////////////////////// 
 
ellipsoid parameters 
a   =  6378137.000000000 
f   = 1/298.257223563000 
b   =  6356752.314245179 
e2  =  6.694379990141e-003 
ep2 =  6.739496742276e-003 
n   =  9.362215099752e-004 
 
Great Elliptic parameters 
a   =  6378137.000000000 
f   = 1/534.561645318583 
b   =  6366205.472446805 
e2  =  3.737883789195e-003 
ep2 =  3.751907985232e-003 
n   =  9.362215099752e-004 
 
Latitude  P1 =   35 45 55.000000 (D M S) 
Longitude P1 =  140 23  8.000000 (D M S) 
 
Latitude  P2 =   37 37  8.000000 (D M S) 
Longitude P2 = -122 22 30.000000 (D M S) 
 
Latitude   V =   48 26 49.347671 (D M S) 
Longitude  V = -169 17 28.736205 (D M S) 
Longitude  E =  100 42 31.263795 (D M S) 
 
Cartesian coordinates 
            X               Y               Z 
P1   -3991399.691755  3303668.240372  3707090.313132 
P2   -2708541.636331 -4272097.791174  3872024.259791 
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Constants of Great Elliptic Section 
A   = 28628935911436.754000000 
B   = -5413987974240.103500000 
C   = 25999772788510.516000000 
 
Azimuth of Great Elliptic section P1-P2 
Az12  =  54 57  6.932985  (D M S) 
 
Azimuth of Great Elliptic section P2-P1 
Az21  = 303  1 14.140673  (D M S) 
 
Great Elliptic Arc distances 
M1 =  5702548.255829644 
M2 =  6069943.563414550 
Q  = 10009385.364900835 
s = 2*Q-(M1+M2) =  8246278.910557477 
s = M2-M1       =   367395.307584906 
 
 
>> 
 

 

TEST LINE: TOKYO → SAN FRANCISCO 

Tokyo (NRT Airport): 35 45 55     140 23 08     

San Francisco (SFO Airport): 37 37 08     122 22 30     

WGS84 ellipsoid: 6378137 ma   1 298.257223563f   

 

 
Point Latitude Longitude Distance (m) Forward Az Reverse Az 
Tokyo 35°45′55.0000″ 140°23′08.0000″  54°57′06.9330″  
1 40°32′14.5095″ 150° 994460.854  240°52′49.1340″ 
2 44°07′38.1588″ 160° 1909191.293  247°36′09.3254″ 
3 46°32′28.3797″ 170° 2737000.671  254°42′06.2015″ 
4 47°56′48.7303″ 180° 3509459.054  262°01′50.4887″ 
5 48°26′41.5154″ -170° 4254408.310  269°28′16.4459″ 
Vertex 48°26′49.3477″ -169°17′28.7362″ 4306837.109  270° 
6 48°04′16.1310″ -160° 4997564.511  276°55′08.3743″ 
7 46°47′55.4369″ -150° 5764499.807  284°16′13.7972″ 
8 44°32′10.8186″ -140° 6582642.262  291°24′37.1081″ 
9 41°07′32.7972″ -130° 7482970.389  298°11′47.3337″ 
San 
Francisco 37°37′08.0000″ -122°37′08.0000″ 8246278.910 54°57′06.9330″ 303°01′14.1407″ 

 

Table 1:  Great elliptic arc Tokyo→San Francisco and ten intermediate points (including 

the vertex).  Distances are great elliptic arc lengths from Tokyo. 
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Line Distance (m) Forward Az Reverse Az 
Tokyo – San Francisco 8246278.910 54°57′06.9330″ 303°01′14.1407″ 
Tokyo – 1 994460.854 54°57′06.9330″ 240°52′49.1340″ 
1 – 2 914730.439 60°52′49.1340″ 247°36′09.3254″ 
2 – 3 827809.378 67°36′09.3254″ 254°42′06.2015″ 
3 – 4 772458.383 74°42′06.2015″ 262°01′50.4887″ 
4 – 5 744949.256 82°01′50.4887″ 269°28′16.4459″ 
5 – 6 743138.201 89°28′16.4459″ 276°55′08.3743″ 
6 – 7 766935.296 96°55′08.3743″ 284°16′13.7972″ 
7 – 8 818142.455 104°16′13.7972″ 291°24′37.1081″ 
8 – 9 900328.127 111°24′37.1081″ 298°11′47.3337″ 
9 – San Francisco 763308.521 118°11′47.3337″ 303°01′14.1407″ 

 

Table 2:  Distances and azimuths of sections of great elliptic arc Tokyo→San Francisco. 

 

Geodesic Tokyo→San Francisco: 

12 21
54 49 04.5523 8246271.872 m  303 09 21.9006s         

Geodesic − great elliptic arc = 7.038 m. 

 

DIFFERENCE IN LENGTH BETWEEN A GEODESIC AND A GREAT ELLIPTIC 

ARC LENGTH 

There are five curves of interest in geodesy; the geodesic, the normal section, the great 

elliptic arc the loxodrome and the curve of alignment.   

The geodesic between 
1

P  and 
2

P  on an ellipsoid is the unique curve on the surface defining 

the shortest distance; all other curves will be longer in length.  The normal section curve 

1 2
PP  is a plane curve created by the intersection of the normal section plane containing the 

normal at 
1

P  and also 
2

P  with the ellipsoid surface.  And as we have shown (Deakin & 

Hunter 2010b) there is the other normal section curve 
2 1

P P .  The curve of alignment 

(Deakin & Hunter 2010b, Thomas 1952) is the locus of all points P such that the normal 

section plane at P also contains the points 
1

P  and 
2

P .  The curve of alignment is very 

close to a geodesic.  The great elliptic arc is the plane curve created by intersecting the 

plane containing 
1

P , 
2

P  and the centre O with the surface of the ellipsoid and the 

loxodrome is the curve on the surface that cuts each meridian between 
1

P  and 
2

P  at a 

constant angle. 

Approximate equations for the difference in length between the geodesic, the normal 

section curve and the curve of alignment were developed by Clarke (1880, p. 133) and 
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Bowring (1972, p. 283) developed an approximate equation for the difference between the 

geodesic and the great elliptic arc.  Following Bowring (1972), let 

 

 geodesic length

 normal section length

 great elliptic length

 curve of alignment length

s

L

D

S






 

then 
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4 2 2

1 12 12

24
2 2 2

1 1 12
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4 2 2

1 12 12
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cos sin cos
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e s
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e s
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R

e s
S s s

R
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  

       
       
       







 (95) 

where R can be taken as the radius of curvature in the prime vertical at 
1

P .  Now for a 

given value of s, say the geodesic Tokyo to San Francisco on the WGS84 ellipsoid, D s  

will be a maximum if 
1

45    and 
12

90    in which case 2 2 2
1 1 12

1
sin cos sin

4
    , thus 

  
44

96
e s

D s s
R

       
 (96) 

For the WGS84 ellipsoid where  21 298.257223563, 2f e f f   , and for 

8246271.872 ms   (8246.272 km) and 6385442.306 mR  , equation (96) gives 

10.707 mD s  .  And from Table 1 D = 8246278.910 and 7.038 mD s   which 

satisfies inequality (96). 
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APPENDIX 1:  Vectors 

Vectors are very useful for describing various physical quantities or relationships such as 

force, velocity, acceleration, distance between objects, etc., that have both magnitude and 

direction.  Vectors are represented by arrows between points or analytically by symbols 

such as OP


, or boldface characters A or a.  The magnitude of a vector is denoted by 

,  or OP A a


 but it is also common to use A or a to represent the magnitude of vectors A 

or a. 

A scalar, on the other hand, is a quantity having magnitude but no direction, e.g., mass, 

length, time, temperature and any real number. 

Laws of Vector Algebra:  If A, B and C are vectors and m and n are scalars then 

 1.   A B B A  Commutative law for Addition 

 2.        A B C A B C  Associative law for Addition 

 3. m mA A  Commutative law for Multiplication 

 4.    m n mnA A  Associative law for Multiplication 

 5.  m n m n  A A A  Distributive law 

 6.  m m m  A B A B  Distributive law 

A unit vector is a vector having unit magnitude (a magnitude of one).  Unit vectors are 

denoted by ˆ ˆ or A a  and 

 ˆ
A

 
A A

A
A

 

Any vector A can be represented by a unit vector Â  in the direction of A multiplied by 

the magnitude of A.  That is, ˆAA A  

In an x,y,z Cartesian reference frame, the vector 

 
1 2 3

A A A  A i j k  

has component vectors 
1

A i , 
2

A j  and 
3

A k  in the x, y and z directions respectively, where i, 

j and k are unit vectors in the x, y and z directions.  
1 2 3
,  and A A A  are scalar components.  

The magnitude of A is 

 2 2 2
1 2 3

A A A A   A  
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The unit vector of A is 

 1 2 3ˆ A A A

A A A A
    

A A
A i j k

A
 

The scalar product (or dot product) of two vectors 
1 2 3

A A A  A i j k  and 

1 2 3
B B B  B i j k  is defined as the product of the magnitudes of A and B multiplied by 

the cosine of the angle between them, or 

 cos cosAB  A B A B  

and    1 2 3 1 2 3 1 1 2 2 3 3
A A A B B B AB A B A B       A B i j k i j k   

Note that A B  is a scalar and not a vector. 

The following laws are valid for scalar products: 

 1. A B B A   Commutative law 

 2.    A B C A B A C    Distributive law 

 3.      m m m A B A B A B    where m is a scalar 

 4. 1; 0     i i j j k k i j j k k i       

 5. 2 2 2 2
1 2 3

a a a a   A A  

 6. If 0A B , and A and B are not null vectors then A and B are perpendicular. 

The vector product (or cross product) of two vectors 
1 2 3

A A A  A i j k  and 

1 2 3
B B B  B i j k  is a vector  P A B  where P is a vector perpendicular to the plane 

containing A and B.  The magnitude of P is defined as the product of the magnitudes of A 

and B multiplied by the sine of the angle between them.  The vector product is often 

expressed as 

 ˆ ˆsin sinAB   A B A B P P  

where P̂  is a perpendicular unit vector and the direction of P is given by the right-hand-

screw rule, i.e., if A and B are in the plane of the head of a screw, then a clockwise 

rotation of A to B through an angle   would mean that the direction of P would be the 

same as the direction of advance of a right-handed screw turned clockwise. The cross 

product can be written as the expansion of a determinant as 

 

     

     1 2 3 2 3 3 2 1 3 3 1 1 2 2 1

1 2 3

A A A A B A B AB A B AB A B

B B B

  

        P A B i j k

i j k
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Note here that the mnemonics      , ,    are an aid to the evaluation of the 

determinant.  The perpendicular vector 
1 2 3

P P P  P i j k  has scalar components 

 1 2 3 3 2
P A B A B  ,  2 1 3 3 1

P AB A B    and  3 1 2 2 1
P AB A B  .  

The following laws are valid for vector products: 

 1.    A B B A  [Commutative law for cross products fails] 

 2.       A B C A B A C  Distributive law 

 3.        m m m m      A B A B A B A B  where m is a scalar 

 4. ; , ,           i i j j k k 0 i j k j k i k i j  

Triple products 

Scalar and vector multiplication of three vectors A, B and C may produce meaningful 

products of the form  A B C ,  A B C  and   A B C .  The following laws are valid: 

 1.    A B C A B C   

 2.          A B C B C A C A B    (scalar triple products) 

 3.        A B C A B C  

 4.      
     
   

   

A B C A C B A B C

A B C A C B B C A

 

 

 (vector triple products) 

Differentiation of vectors 

If A, B and C are differentiable vector functions of a scalar u, and   is a differentiable 

scalar function of u, then 

 1.  d d d
du du du

  
A B

A B  

 2.  d d d
du du du

 
B A

A B A B    

 3.  d d d
du du du

    
B A

A B A B  

 4.  d d d
du du du


  

A
A A  

 5.     d d d d
du du du du

                    

C B A
A B C A B A C B C     

 6.     d d d d
du du du du

                        

C B A
A B C A B A C B C  
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Appendix 2: Taylor's theorem 

This theorem, due to the English mathematician Brook Taylor (1685–1731) enables a 

function ( )f x  near a point x a  to be expressed from the values ( )f a  and the 

successive derivatives of ( )f x  evaluated at x a . 

Taylor's polynomial may be expressed in the following form 

 

   

 
 

 

2 3

1

1

( ) ( ) ( ) ( ) ( ) ( )
2! 3!

( )
1 !

n

n

n

x a x a
f x f a x a f a f a f a

x a
f a R

n





 
       


 





 (97) 

where 
n

R  is the remainder after n terms and ( )f a , ( ), etc.f a
 are derivatives of the 

function  f x  evaluated at x a . 

Taylor's theorem can also be expressed as power series 

  
    

0 !

k
k

k

f a
f x x a

k





   (98) 

where      
k

k

k
x a

d
f a f x

dx


 
   
 

 

The Taylor series for the function  
3
22 21 sine 


  evaluated at 0e   is 

  
3
22 2 2 2 4 4 6 63 15 35

1 sin 1 sin sin sin
2 8 16

e e e e   


      

and the coefficients of even powers of e are binomial coefficients 
3
2

, 
3 5
2 4



, 
3 5 7
2 4 6
 
 

, etc. 
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APPENDIX 3:  Reversion of a series 

If we have an expression for a variable z as a series of powers or functions of another 

variable y then we may, by a reversion of the series, find an expression for y as series of 

functions of z.  Reversion of a series can be done using Lagrange's theorem, a proof of 

which can be found in Bromwich (1991). 

Suppose that 

       or   y z xF y z y xF y     (99) 

then Lagrange's theorem states that for any f 

 

       

    

    

    

2 2

3 2 3

2

1

1

1!

2!

3!

!

n n n

n

x
f y f z F z f z

x d
F z f z

dz
x d

F z f z
dz

x d
F z f z

n dz





 

   
  
   
  



   
  





  (100) 

As an example, consider the series for rectifying latitude   

 
2 4 6
sin2 sin 4 sin 6d d d         (101) 

And we wish to find an expression for   as a function of  . 

Comparing the variables in equations (101) and (99), z  , y   and 1x   ; and if we 

choose  f y y  then  f z z  and   1f z  .  So equation (101) can be expressed as 

  F     (102) 

and Lagrange's theorem gives 

 

          
    

2 32 3 4

2 3

1

1

1 1 1
2 6 24

1

!

n
n n

n

d d d
F F F F

d d d

d
F

n d

     
  








     
          

          
  

  
  



  (103) 

where 

   2 4 6
sin2 sin 4 sin 6F d d d       

and so   2 4 6
sin2 sin 4 sin 6F d d d       
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APPENDIX 4:  Maxima 

We now show the Maxima ‘program’ used in determining the coefficients of equations (13), 

(23) and (27) saved as a text file Tseng_nSeries_Horner.mac and run in batch mode 

silently. 

 

/**************************************************************************  
   Maxima program to develop series equations for: 
 
    1. meridian distance M as a function of latitude B 
       M = a/(1+n){c0*B + c2*sin(2B) + c4*sin(4B) + c6*sin(6B) + ...} 
 
    2. rectifying latitude u as a function of latitude B 
       u = B + d2*sin(2B) + d4*sin(4B) + d6*sin(6B) + ... 
 
    3. latitude B as a function of rectifying latitude u 
       B = u + D2*sin(2u) + D4*sin(4u) + D6*sin(6u) + ... 
 
   The coefficients in each of these equations are functions of powers  
   of the third flattening n = (a-b)/(a+b) where a and b (a>b) are the  
   semi-axes of the reference ellipsoid. 
    
   path and file name: 
   D:\Projects\Geospatial\Geodesy\Great Elliptic Arc\Tseng 
     \Tseng_nSeries_Horner.mac 
****************************************************************************/ 
 
/* ------------------ 
   Lagrange reversion 
   ------------------ 
    
   Suppose that we have a series expression for conformal latitude b as a  
   function of latitude B having the form 
 
   b = B + g2*sin(2*B) + g4*sin(4*B) + g6*sin(6*B) + ...      (1) 
 
   g2, g4, g6, etc. are coefficients containing powers of eps. 
 
   We wish to reverse the series (1) to obtain latitude B as a function 
   of conformal latitude b having the form  
 
   B = b + G2*sin(2*b) + G4*sin(4*b) + G6*sin(6*b) + ...      (2) 
    
   G2, G4, G6, etc. are coefficients containing powers of eps. 
 
   Write 
 
   b = B + F(B) 
   B = b + f(b) 
   F(B) = sum(g[2*k]*sin(2*k*B)), k = 1 to inf 
   F(b) = sum(g[2*k]*sin(2*k*b)), k = 1 to inf 
   f(b) = sum(G[2*k]*sin(2*k*b)), k = 1 to inf 
    
   Lagrange's inversion theorem gives  
 
   f(b) = - F(b) 
          + 1/2!*diff1[{F(b)}^2] 
          - 1/3!*diff2[{F(b)}^3] 
          + 1/4!*diff3[{F(b)}^4] 
          - ...                           (3) 
   or      
                        
   f(b) = sum((-1)^n/n! * diff(F(b)^n,b,n-1)), n = 1 to inf                
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   The following Maxima code for function Lagrange() was sent to me by  
   Charles Karney 03-Jun-2010 and has been slightly modified by changing 
   the function name and certain variable names. 
 
       reverse 
          var2 = expr(var1) = series in eps 
       to 
          var1 = revertexpr(var2) = series in eps 
   Require that expr(var1) = var1 to order eps^0.  This throws in a 
   trigreduce to convert to multiple angle trig functions.  
*/ 
 
Lagrange(expr,var1,var2,eps,pow):=block 
  ([b_acc:1,B_acc:0,dB], 
   dB:ratdisrep(taylor(expr-var1,eps,0,pow)), 
   dB:subst([var1=var2],dB), 
   for n:1 thru pow do  
       (b_acc:trigreduce(ratdisrep(taylor(-dB*b_acc/n,eps,0,pow))), 
        B_acc:B_acc+expand(diff(b_acc,var2,n-1))), 
   var2+B_acc)$ 
 
/********************************************************* 
  FIRST: derive the series for meridian distance M as a 
  function of the latitude B 
*********************************************************/ 
 
/* the order to compute */ 
maxpow:5$ 
 
/* Integrand of the function for meridian distance */ 
Fintegrand:((1-n^2)^2*(1+n^2+2*n*cos(2*B))^(-3/2))$ 
 
/* expand the integrand into a Taylor series */ 
F:taylor(Fintegrand,n,0,maxpow)$ 
 
/* integrate the Taylor series w.r.t. latitude B */ 
f:integrate(F,B)$ 
 
/* reduce products and powers of sines and cosines to those of multiples */ 
f:trigreduce(f)$ 
 
/* expand the function */ 
f:expand(f)$ 
 
/* print equation for MERIDIAN DISTANCE */ 
print(" "); 
print("equation for MERIDIAN DISTANCE M as a function of LATITUDE B"); 
print("M = a/(1+n){c0*B + c2*sin(2B) + c4*sin(4B) + c6*sin(6B) + ...}"); 
print(" "); 
 
/* gather the coefficients of B and assign to c0 */ 
c0:coeff(f,B)$ 
 
/* print coefficients c0, c2, c4, c6, ... */ 
print("c0 = ",c0); 
for i thru maxpow do 
  print(c[2*i] = coeff(f,sin(2*i*B))); 
 
/* print coefficients c0, c2, c4, c6, ... in Horner form */ 
print(" "); 
print("coefficients in Horner form"); 
print(" "); 
print("c0 = ",horner(c0,n)); 
for i thru maxpow do 
  print(c[2*i] = horner(coeff(f,sin(2*i*B)),n)); 
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/********************************************************** 
  SECOND: derive the series for rectifying latitude u as a 
  function of the latitude B 
***********************************************************/ 
 
/* Divide all the coefficients of f by c0 which is the same 
   as multiplying f by 1/c0 */ 
 
/* find a Taylor series for X = 1/c0 */ 
X:taylor(c0^-1,n,0,maxpow)$ 
 
/* multiply f with X and assign the result to u 
   u will now contain the coefficients of the series 
   for rectifying latitude */ 
u:f*X$ 
 
/* Expand the function u */ 
u:expand(u)$ 
 
/* group coefficients of u and sin(2*i*B) */ 
coeff(u,B)*B+sum(coeff(u,sin(2*i*B))*sin(2*i*B),i,1,maxpow)$ 
 
/* print equation for RECTIFYING LATITUDE */ 
print(" "); 
print("equation for RECTIFYING LATITUDE u as a function of LATITUDE B"); 
print("u = B + d2*sin(2B) + d4*sin(4B) + d6*sin(6B) + ..."); 
print(" "); 
 
/* print coefficients d2, d4, d6, ... */ 
for i thru maxpow do 
  print(d[2*i] = coeff(u,sin(2*i*B))); 
 
/* print coefficients d2, d4, d6, ... in Horner form */ 
print(" "); 
print("coefficients in Horner form"); 
print(" "); 
for i thru maxpow do 
  print(d[2*i] = horner(coeff(u,sin(2*i*B)),n)); 
 
/************************************************************ 
  THIRD: Reverse the series u = B + d2*sin(2B) + ...  
  to give B = u + D2*sin(2B) + ... 
************************************************************/ 
 
/* copy u into uexpr and kill the earlier definition of u */ 
uexpr:u$ 
kill(u)$ 
 
/* reverse the series u = F(B,n) to give B = f(u,n) */ 
Bexpr:Lagrange(uexpr,B,u,n,maxpow)$ 
 
/* print equation for LATTUDE B */ 
print(" "); 
print("equation for LATITUDE B as a function of RECTIFYING LATITUDE u"); 
print("B = u + D2*sin(2u) + D4*sin(4u) + D6*sin(6u) + ..."); 
print(" "); 
 
/* print coefficients D2, D4, D6, ... */ 
for i thru maxpow do 
  print(D[2*i] = coeff(Bexpr,sin(2*i*u))); 
 
/* print coefficients D2, D4, D6, ... in Horner form */ 
print(" "); 
print("coefficients in Horner form"); 
print(" "); 
for i thru maxpow do 
  print(D[2*i] = horner(coeff(Bexpr,sin(2*i*u)),n)); 
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SERIES FOR GREAT ELLIPTIC ARC COMPUTATIONS: 
Meridian distance M,  
Rectifying latitude u, 

Latitude B, 
(normal and Horner form) 

 
 
In the Maxima output that follows: 
B is latitude 
u is rectifying latitude 
n is third flattening of the ellipsoid 
a,b are semi-axes of reference ellipsoid (a>b) 
 
 
OUTPUT FROM MAXIMA RUNNING “Tseng_nSeries_Horner.mac” IN BATCH MODE SILENTLY 
 
coefficients to order n^5 
 
 
Maxima 5.24.0 http://maxima.sourceforge.net 
using Lisp GNU Common Lisp (GCL) GCL 2.6.8 (a.k.a. GCL) 
Distributed under the GNU Public License. See the file COPYING. 
Dedicated to the memory of William Schelter. 
The function bug_report() provides bug reporting information. 
(%i1)  
   
equation for MERIDIAN DISTANCE M as a function of LATITUDE B  
M = a/(1+n){c0*B + c2*sin(2B) + c4*sin(4B) + c6*sin(6B) + ...}   
   
       4    2 
      n    n 
c0 =  -- + -- + 1  
      64   4 
        5      3 
     3 n    3 n    3 n 
c  = ---- + ---- - ---  
 2   128     16     2 
         2       4 
     15 n    15 n 
c  = ----- - -----  
 4    16      64 
          5       3 
     175 n    35 n 
c  = ------ - -----  
 6    768      48 
          4 
     315 n 
c  = ------  
 8    512 
             5 
        693 n 
c   = - ------  
 10      1280 
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equation for MERIDIAN DISTANCE M as a function of LATITUDE B  
M = a*(1-e^2){c0*B + c2*sin(2B) + c4*sin(4B) + c6*sin(6B) + ...}  
coefficients in Horner form  
   
       2   2 
      n  (n  + 16) + 64 
c0 =  -----------------  
             64 
         2     2 
     n (n  (3 n  + 24) - 192) 
c  = ------------------------  
 2             128 
      2           2 
     n  (60 - 15 n ) 
c  = ---------------  
 4         64 
      3       2 
     n  (175 n  - 560) 
c  = -----------------  
 6          768 
          4 
     315 n 
c  = ------  
 8    512 
             5 
        693 n 
c   = - ------  
 10      1280 
   
 

equation for RECTIFYING LATITUDE u as a function of LATITUDE B  
u = B + d2*sin(2B) + d4*sin(4B) + d6*sin(6B) + ...  
   
          5      3 
       3 n    9 n    3 n 
d  = - ---- + ---- - ---  
 2      32     16     2 
         2       4 
     15 n    15 n 
d  = ----- - -----  
 4    16      32 
          5       3 
     105 n    35 n 
d  = ------ - -----  
 6    256      48 
          4 
     315 n 
d  = ------  
 8    512 
             5 
        693 n 
d   = - ------  
 10      1280 
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equation for RECTIFYING LATITUDE u as a function of LATITUDE B  
u = B + d2*sin(2B) + d4*sin(4B) + d6*sin(6B) + ...  
coefficients in Horner form  
   
         2          2 
     n (n  (18 - 3 n ) - 48) 
d  = -----------------------  
 2             32 
      2           2 
     n  (30 - 15 n ) 
d  = ---------------  
 4         32 
      3       2 
     n  (315 n  - 560) 
d  = -----------------  
 6          768 
          4 
     315 n 
d  = ------  
 8    512 
             5 
        693 n 
d   = - ------  
 10      1280 
   
 

equation for LATITUDE B as a function of RECTIFYING LATITUDE u  
B = u + D2*sin(2u) + D4*sin(4u) + D6*sin(6u) + ...  
   
          5       3 
     269 n    27 n    3 n 
D  = ------ - ----- + ---  
 2    512      32      2 
         2       4 
     21 n    55 n 
D  = ----- - -----  
 4    16      32 
          3        5 
     151 n    417 n 
D  = ------ - ------  
 6     96      128 
           4 
     1097 n 
D  = -------  
 8     512 
            5 
      8011 n 
D   = -------  
 10    2560 
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equation for LATITUDE B as a function of RECTIFYING LATITUDE u  
B = u + D2*sin(2u) + D4*sin(4u) + D6*sin(6u) + ...  
coefficients in Horner form  
   
         2       2 
     n (n  (269 n  - 432) + 768) 
D  = ---------------------------  
 2               512 
      2           2 
     n  (42 - 55 n ) 
D  = ---------------  
 4         32 
      3              2 
     n  (604 - 1251 n ) 
D  = ------------------  
 6          384 
           4 
     1097 n 
D  = -------  
 8     512 
            5 
      8011 n 
D   = -------  
 10    2560 
(%i2) 
 

 

The batch file contains a function Lagrange() that performs the series reversion using 

Lagrange’s theorem.  This function was sent to me by Charles F.F. Karney (email 03-Jun-

2010 at 12:39), the author of ‘Transverse Mercator with an accuracy of a few nanometres’ 

Journal of Geodesy, Vol. 85, pp. 475-485, published online: 09-Feb-2011. 

Changing a few lines of the batch file allows the coefficients of the ‘e-series’ in equations 

(11), (21) and (25).  The output is shown below. 

 

SERIES FOR GREAT ELLIPTIC ARC COMPUTATIONS: 
Meridian distance M,  
Rectifying latitude u, 

Latitude B, 
(normal and Horner form) 

 
In the Maxima output that follows: 
B is latitude 
u is rectifying latitude 
e is the eccentricity of the reference ellipsoid 
a,b are semi-axes of reference ellipsoid (a>b) 
 
 
OUTPUT FROM MAXIMA RUNNING “Tseng_eSeries_Horner.mac” IN BATCH MODE SILENTLY 
 
coefficients to order e^10 
 
Maxima 5.24.0 http://maxima.sourceforge.net 
using Lisp GNU Common Lisp (GCL) GCL 2.6.8 (a.k.a. GCL) 
Distributed under the GNU Public License. See the file COPYING. 
Dedicated to the memory of William Schelter. 
The function bug_report() provides bug reporting information. 
(%i1)  
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equation for MERIDIAN DISTANCE M as a function of LATITUDE B  
M = a*(1-e^2){b0*B + b2*sin(2B) + b4*sin(4B) + b6*sin(6B) + ...}  
   
             10          8        6       4      2 
      43659 e     11025 e    175 e    45 e    3 e 
b0 =  --------- + -------- + ------ + ----- + ---- + 1  
        65536      16384      256      64      4 
              10         8        6       4      2 
       72765 e     2205 e    525 e    15 e    3 e 
b  = - --------- - ------- - ------ - ----- - ----  
 2      131072      4096      1024     32      8 
            10         8        6       4 
     10395 e     2205 e    105 e    15 e 
b  = --------- + ------- + ------ + -----  
 4     65536      16384     1024     256 
              10        8       6 
       10395 e     105 e    35 e 
b  = - --------- - ------ - -----  
 6      262144      4096    3072 
           10        8 
     3465 e     315 e 
b  = -------- + ------  
 8    524288    131072 
             10 
        693 e 
b   = - -------  
 10     1310720 
   
coefficients in Horner form  
   
       2   2   2   2         2 
      e  (e  (e  (e  (43659 e  + 44100) + 44800) + 46080) + 49152) + 65536 
b0 =  --------------------------------------------------------------------  
                                     65536 
      2   2   2   2           2 
     e  (e  (e  (e  (- 72765 e  - 70560) - 67200) - 61440) - 49152) 
b  = --------------------------------------------------------------  
 2                               131072 
      4   2   2         2 
     e  (e  (e  (10395 e  + 8820) + 6720) + 3840) 
b  = --------------------------------------------  
 4                      65536 
      6   2           2 
     e  (e  (- 31185 e  - 20160) - 8960) 
b  = -----------------------------------  
 6                 786432 
      8        2 
     e  (3465 e  + 1260) 
b  = -------------------  
 8         524288 
             10 
        693 e 
b   = - -------  
 10     1310720 
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equation for RECTIFYING LATITUDE u as a function of LATITUDE B  
u = B + g2*sin(2B) + g4*sin(4B) + g6*sin(6B) + ...  
   
             10        8        6      4      2 
       1533 e     141 e    111 e    3 e    3 e 
g  = - -------- - ------ - ------ - ---- - ----  
 2      32768      2048     1024     16     8 
          10        8       6       4 
     165 e     405 e    15 e    15 e 
g  = ------- + ------ + ----- + -----  
 4    4096      8192     256     256 
             10       8       6 
       4935 e     35 e    35 e 
g  = - -------- - ----- - -----  
 6      262144    2048    3072 
          10        8 
     315 e     315 e 
g  = ------- + ------  
 8    65536    131072 
             10 
        693 e 
g   = - -------  
 10     1310720 
   
coefficients in Horner form  
   
      2   2   2   2          2 
     e  (e  (e  (e  (- 1533 e  - 2256) - 3552) - 6144) - 12288) 
g  = ----------------------------------------------------------  
 2                             32768 
      4   2   2       2 
     e  (e  (e  (330 e  + 405) + 480) + 480) 
g  = ---------------------------------------  
 4                    8192 
      6   2           2 
     e  (e  (- 14805 e  - 13440) - 8960) 
g  = -----------------------------------  
 6                 786432 
      8       2 
     e  (630 e  + 315) 
g  = -----------------  
 8        131072 
             10 
        693 e 
g   = - -------  
 10     1310720 
   



 
Great Elliptic Arc Distance.docx  42 

 

equation for LATITUDE B as a function of RECTIFYING LATITUDE u  
B = u + G2*sin(2u) + G4*sin(4u) + G6*sin(6u) + ...  
   
            10        8        6      4      2 
     20861 e     255 e    213 e    3 e    3 e 
G  = --------- + ------ + ------ + ---- + ----  
 2    524288      4096     2048     16     8 
          10        8       6       4 
     197 e     533 e    21 e    21 e 
G  = ------- + ------ + ----- + -----  
 4    4096      8192     256     256 
           10        8        6 
     5019 e     151 e    151 e 
G  = -------- + ------ + ------  
 6    131072     4096     6144 
           10         8 
     1097 e     1097 e 
G  = -------- + -------  
 8    65536     131072 
            10 
      8011 e 
G   = --------  
 10   2621440 
   
coefficients in Horner form  
   
      2   2   2   2         2 
     e  (e  (e  (e  (20861 e  + 32640) + 54528) + 98304) + 196608) 
G  = -------------------------------------------------------------  
 2                              524288 
      4   2   2       2 
     e  (e  (e  (394 e  + 533) + 672) + 672) 
G  = ---------------------------------------  
 4                    8192 
      6   2         2 
     e  (e  (15057 e  + 14496) + 9664) 
G  = ---------------------------------  
 6                393216 
      8        2 
     e  (2194 e  + 1097) 
G  = -------------------  
 8         131072 
            10 
      8011 e 
G   = --------  
 10   2621440 
(%i2)  
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