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ABSTRACT

These notes provide a detailed derivation of the equation for the great elliptic arc on an
ellipsoid. Using this equation and knowing the terminal points of the curve, a technique is
developed for computing the location of points along the curve. A MATLAB function is
provided that demonstrates the algorithm developed.

INTRODUCTION

In geodesy, the great elliptic arc between P and P, on the ellipsoid is the curve created

by intersecting the ellipsoid with the plane containing P, P, and O (the centre of the

2

ellipsoid).
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Figure 1: Great elliptic arc on ellipsoid
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Figure 1 shows P on the great elliptic arc between P, and P,. 0, is the geocentric

1 P
latitude of P and A, is the longitude of P.

There are an infinite number of planes that cut the surface of the ellipsoid and contain the
chord PP, but only one of these will contain the centre 0. Two other planes are the
normal section plane PP, (containing the normal at P ) and the normal section plane PP,
(containing the normal at P,). All of these curves of intersection (including the great
elliptic arc and the two normal section curves) are plane curves that are arcs of ellipses
(for a proof of this see Deakin, 2009a). All meridians of longitude on an ellipsoid and the

ellipsoid equator are great elliptic arcs. Parallels of latitude — excepting the equator — are

not great elliptic arcs. So we could say that the great elliptic arc is a unique plane curve

on the ellipsoid — since it is created by the single plane containing P,, P, and O. But it is

not the shortest distance between P and P, ; this unique property (shortest length)
belongs to the geodesic.

Great elliptic arcs are not much used in geodesy as they don't have a practical connection
with theodolite observations made on the surface of the earth that are approximated as
observations made on an ellipsoid; e.g., normal section curves and curves of alignment.
Nor are they the shortest distance between points on the ellipsoid; but, if we ignore earth
rotation, they are the curves traced out on the geocentric ellipsoid by the ground point of
an earth orbiting satellite or a ballistic missile moving in an orbital plane containing the
earth's centre of mass. Here geocentric means O (the centre of the ellipsoid) is coincident

with the centre of mass.

The equation for the curve developed below is similar to that derived for the curve of
alignment in Deakin (2009b) and it is not in a form suitable for computing the distance or
azimuth of the curve. But, as it contains functions of both the latitude and longitude of a
point on the curve, it is suitable for computing the latitude of a point given a particular
longitude; or alternatively the longitude of a point may be computed (iteratively) given a

particular latitude.

EQUATION OF GREAT ELLIPTIC ARC

Figure 1 shows P on the great elliptic arc that passes through P, and P, on the ellipsoid.
The semi-axes of the ellipsoid are a and b (a > b) and the first-eccentricity squared e* and

the flattening f of the ellipsoid are defined by
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@ (1)

Parallels of latitude ¢ and meridians of longitude A have their respective reference planes;
the equator and the Greenwich meridian, and Longitudes are measured 0° to £180° (east
positive, west negative) from the Greenwich meridian and latitudes are measured 0° to
+90° (north positive, south negative) from the equator. The z,y,z geocentric Cartesian
coordinate system has an origin at O, the centre of the ellipsoid, and the z-axis is the
minor axis (axis of revolution). The zOz plane is the Greenwich meridian plane (the origin
of longitudes) and the zOy plane is the equatorial plane. The positive z-axis passes
through the intersection of the Greenwich meridian and the equator, the positive y-axis is
advanced 90° east along the equator and the positive z-axis passes through the north pole

of the ellipsoid.

In Figure 1, 0, is the geocentric latitude of P and (geodetic) latitude ¢ and geocentric
latitude 6 are related by

2

tan9:(1—e2>tan¢>:b—2tan¢:(1—f)2tangz5 (2)
a

The geometric relationship between geocentric latitude 6 and (geodetic) latitude ¢ is

shown in Figure 2.
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Figure 2: Meridian plane of P

The great elliptic plane in Figure 1 is defined by points ®, @ and @ that are P, P, and
the centre of the ellipsoid O respectively. Cartesian coordinates of ® and @ are computed

from the following equations
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T = I COS ) COS A
Yy = v cos¢sin A (3)
z= 1/(1—62>sinq§

where v = PH (see Figure 2) is the radius of curvature in the prime vertical plane and

a
- 4
J1—e*sin® ¢ @)

The Cartesian coordinates of point @ are all zero.

UV =

The General equation of a plane may be written as
Az +By+Cz+D =0 (5)
And the equation of the plane passing through points @, @ and ® is given in the form of

a 3rd-order determinant

rT—zr, Y-y Z—Z

~0 (6)

Ly, =2 Yy~ Y 2T H

Ty =%y Yy =Yy 275
or expanded into 2nd-order determinants

=49 24 (x_w)_
Yy =Y, 2 — % '

Ly =T, 2, —%2 I, =T, Y, Y

Ly — T, Yy —Y,

l=u)+

1’3—{172 23—22

(z—zl):0 (7)

Expanding the determinants in equation (7) gives

(o= (s = 9)(20 = 2) = (2 = =), — wa)}
B (y B yl){(% _xl)(z‘s _Z2) - (22 B z1>(:z:3 _‘T2)}
o= ]l = o )w — ) = (n—0) (- =)} =0 (®)

Now since z, =y, = 2z, = 0 and equation (8) becomes

(o =2 ){{o. =v) (=) = (= = =) (-w.)}
~(r=v )iz —a)(=2) = (% - ) (=)}
=z o =) () = —u) (=)} = 0 ©)

Expanding and simplifying equation (9) gives
x(y1z2 - y221> - y<$122 - x221) + Z<x1y2 - Q:le) =0
Replacing z, y and z with their equivalents, given by equations (3), gives

U COS ¢ COS A (y1z2 — 9221) —vcosgsin A (xle - a:Qzl) +v (1 - €2>Sin¢($ly2 - 3621/1) =0
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and dividing both sides by v cos¢ gives the equation of the great elliptic arc as

Acos)\—BsinA—FC(l—eg)tan(b:O (10)

where A, B and C are functions of the coordinates of the terminal points P and P,

A=yz —yz B=zz -2z C=1y —1y, (11)
Equation (10) is not suitable for computing the distance along a great elliptic arc, nor is it
suitable for computing the azimuth of the curve, but by certain re-arrangements it is
possible to solve (directly) for the latitude of a point on the curve given a longitude
somewhere between the longitudes of the terminal points of the curve. Or alternatively,
solve (iteratively) for the longitude of a point given a latitude somewhere between the

latitudes of the terminal points.

SOLVING FOR THE LATITUDE

A simple re-arrangement of equation (10) allows the latitude ¢ to be evaluated from

Bsin A — Acos A
0(1—62)

tan¢ = (12)

where A and B and C are functions of terminal points P, and P, given by equations (11).

SOLVING FOR THE LONGITUDE

The longitude A can be evaluated using Newton-Raphson iteration for the real roots of the

equation f (A) = 0 given in the form of an iterative equation

(n+1) = )\(n) B f, ()\ ) (13)
()
where n denotes the n'” iteration and f (/\) is given by equation (10) as
f()\>:Acos)\—Bsin)\+C’(1—62>tan¢ (14)
and the derivative f’()\) = i{f(x\)} is given by
d\
f'()\) = —Asin\ — Bcos A (15)
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An initial value of )\( ) (A for n =1) can be taken as the longitude of P, and the functions

f ()\(1>) and f' (/\(1)

can now be computed from equation (13) and this process repeated to obtain values

evaluated from equations (14) and (15) using A . )\(2) (X for n=2)

)\(3),)\( FERE This iterative process can be concluded when the difference between /\(n,+1) and
)\(n> reaches an acceptably small value.
Alternatively, the longitude can be evaluated by a trigonometric equation derived as
follows. Equation (10) can be expressed as
Bsin)\—Acos/\:C(l—eQ)tangb (16)
and A, B and C are given by equations (11). Equation (16) can be expressed as a
trigonometric addition of the form
C’(l —eQ)tan¢ = Rcos()\ —9)
= RcosAcosf + Rsin Asin6 (17)
Now, equating the coefficients of cos A and sin A in equations (17) and (16) gives
A= —Rcosf; B = Rsinf (18)
and using these relationships
2 2 B
R=+A + B; tan@z—A (19)

Substituting these results into equation (17) gives
C (1 —é ) tan ¢

+ arctan B (20)
VA + B? —A

A\ = arccos

DIFFERENCE IN LENGTH BETWEEN A GEODESIC AND A GREAT ELLIPTIC
ARC

There are five curves of interest in geodesy; the geodesic, the normal section, the great

elliptic arc the loxodrome and the curve of alienment.

The geodesic between P, and P, on an ellipsoid is the unique curve on the surface defining
the shortest distance; all other curves will be longer in length. The normal section curve
PP, is a plane curve created by the intersection of the normal section plane containing the

2

normal at P, and also P, with the ellipsoid surface. And as we have shown (Deakin
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2009a) there is the other normal section curve P P. The curve of alignment (Deakin
2009b, Thomas 1952) is the locus of all points P such that the normal section plane at P
also contains the points P, and P,. The curve of alignment is very close to a geodesic.
The great elliptic arc is the plane curve created by intersecting the plane containing P, P,
and the centre O with the surface of the ellipsoid and the loxodrome is the curve on the

surface that cuts each meridian between P, and P, at a constant angle.

Approximate equations for the difference in length between the geodesic, the normal
section curve and the curve of alignment were developed by Clarke (1880, p. 133) and
Bowring (1972, p. 283) developed an approximate equation for the difference between the
geodesic and the great elliptic arc. Following Bowring (1972), let

s = geodesic length

L = normal section length

D = great elliptic length

S = curve of alignment length

then
4 4
I e ) 4 ) 2
—3 _%S[E] cos” ¢, sin” ay, cos” oy, + -+
4 2
D—s :;—43[%] sin® ¢, cos” ¢, sin” ar, + -+ (21)
4 4
g e S 4 .2 2
— 8 —%S[E] COS ¢ISIH OCHCOS O[l2+"'

where R can be taken as the radius of curvature in the prime vertical at . Now for a

given value of s, D —s will be a maximum if ¢ = 45" and a, = 90" in which case
. . 1
sin” ?, cos’ ?, sin’ a,, = —, thus

(D — s) < %S[E] (22)

For the GRS80 ellipsoid where f = 1/298.257222101, > = f(2 - f), and for s = 1200000 m
(1200 km) and R = 6371000 m , equation (22) gives D —s < 0.001 m .
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MATLAB FUNCTIONS

Two MATLAB functions are shown below; they are: great elliptic _arc_lat.m and
great_ elliptic_arc_lon.m Assuming that the terminal points of the curve are known, the
first function computes the latitude of a point on the curve given a longitude and the

second function computes the longitude of a point given the latitude.

Output from the two functions is shown below for points on a great elliptic arc between
the terminal points of the straight-line section of the Victorian—-New South Wales border.
This straight-line section of the border, between Murray Spring and Wauka 1978, is known
as the Black-Allan Line in honour of the surveyors Black and Allan who set out the border
line in 1870-71. Wauka 1978 (Gabo PM 4) is a geodetic concrete border pillar on the coast
at Cape Howe and Murray Spring (Enamo PM 15) is a steel pipe driven into a spring of
the Murray River that is closest to Cape Howe. The straight line is a normal section curve
on the reference ellipsoid of the Geocentric Datum of Australia (GDA94) that contains the
normal to the ellipsoid at Murray Spring. The GDA94 coordinates of Murray Spring and
Wauka 1978 are:

Murray Spring: ¢ —37°47/49.2232" )\ 148°11'48.3333"
Wauka 1978: ¢ —37°30"18.0674" X\ 149° 58’ 32.9932"

The normal section azimuth and distance are:

116° 58'14.173757"  176495.243760 m

The geodesic azimuth and distance are:

116°58'14.219146”  176495.243758 m
Figure 3 shows a schematic view of the Black-Allan line (normal section) and the great
elliptic arc. The relationships between the great elliptic arc and the normal section have

been computed at seven locations along the line (A, B, C, etc.) where meridians of

longitude at 0°15" intervals cut the line. These relationships are shown in Table 1.
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BLACK-ALLAN LINE:

Murray Spring

148°15"

148°30

Normal Section

148°45"

VIC

149°00"

149°15"

149°30"

The Great Elliptic Arc is shown plotted at an exaggerated scale

with respect to the Border Line
At longitude 149°00'E.

the Border Line.
At longitude 149°30’E. the Great Elliptic Arc is 1.522 m north of
the Border Line.

BLACK-ALLAN LINE:

(normal section) .

the Great Elliptic Arc is 1.939 m north of

149°45"

Figure 3

VICTORIA/NSW BORDER

The Black-Allan Line is a normal section curve
on the reference ellipsoid between Pl (Murray
Spring) and P2 (Wauka 1978) . This curve is the
intersection of the normal section plane and the
ellipsoid, and the normal section contains P1,
the normal to the ellipsoid at P1, and P2.

The GDA94 coordinates of Murray Spring and
Wauka 1978 are:

Murray Spring: ¢ -37°47749.22327 X 148°11’48.3333”
Wauka 1978: ® -37°30718.0674” A 149°58732.9932”

The normal section azimuth and distance are:
116°58714.173757” 176495.243760 m.

Wauka 1978

VICTORIA/NSW BORDER

NAME GDA94 Ellipsoid wvalues
LATITUDE LONGITUDE de o dm = pxdg

Murray | _35047-49.223200" 148°11°48.333300"

Spring
~36°49°07.598047 " N .o, B

A -36°49°07.590584" GEA 148715700.0000007 |\ -0 007463~ | 03°8356-102 | 4 5309
236°55°13.876510° N o .

B -36°55°13.840305" GEa | t98 30700.0000007 | .0 36005~ | ©398465.209 1 4 4 4
~37°01 17.289080" N o e ”

¢ -37°01°17.234433” GEA 148745700.0000007 |\ 15 00 054647~ | 0398373377 | 1 4g46
~37°07 17.845554° N . .

b -37°07°17.782643" GEA 149700700.0000007 |\ - gepg11~ | 03°8681-204 | 14 4394
Z37°13°15.555723" N .. .

£ 37°13°15.494607° GEa | +49 19700.0000007 1 0.0 gg1116- | ©398788.089 1 4 gg4
—37°19°10.429372" N ., .

E -37°19°10.379991" GEA 149730700.0000007 |\ 1440 ga93g1~ | ©3°8894-232 | 4 5,504
237°25°02.476276 ° N .. .

G -37°25°02.448453" GEa | +29 45700.0000007 | 0.0 57503~ | 6398999.632 1 5594

Wauka -37°30°18.067400" 149°58°32.993200"

1978

TABLE 1: Points where the Great Elliptic Arc cuts meridians of A, B, C, etc at 0°15° intervals of

longitude along Border Line.

Great Elliptic Arc.doc

N

= Normal Section,

GEA

= Great Elliptic Arc



>> great elliptic arc lat

Great Elliptic Arc

Ellipsoid parameters
a = 6378137.0000
f 1/298.257222101

Terminal points of curve

Latitude Pl = -36 47 49.223200 (D M S)
Longitude P1 = 148 11 48.333300 (D M S)
Latitude P2 = -37 30 18.067400 (D M S)
Longitude P2 = 149 58 32.993200 (D M 9)

Cartesian coordinates

X Y Z
Pl -4345789.609716 2694844.030716 -3799378.032024
P2 -4386272.668061 2534883.268540 -3862005.992252

Given longitude of P3
Longitude P3 = 149 30 0.000000 (D M S)

Latitude of P3 computed from trigonometric equation
Latitude P3 = -37 19 10.379991 (D M S)

>>

>> great elliptic arc lon

Great Elliptic Arc

Ellipsoid parameters
a = 6378137.0000
f = 1/298.257222101

Terminal points of curve

Latitude Pl = -36 47 49.223200 (D M S)
Longitude P1 = 148 11 48.333300 (D M S)
Latitude P2 = -37 30 18.067400 (D M S)

Longitude P2

149 58 32.993200 (D M 8)

Cartesian coordinates

X Y Z
Pl -4345789.609716 2694844.030716 -3799378.032024
P2 -4386272.668061 2534883.268540 -3862005.992252

Given latitude of P3
Latitude P3 = =37 19 10.379991 (D M S)

Longitude of P3 computed from Newton-Raphson iteration
Longitude P3 = 149 30 0.000001 (D M S)

iterations = 5

Longitude of P3 computed from trigonometric equation

Longitude P3 = 149 30 0.000001 (D M S)
theta P3 = 8 39 58.683516 (D M S)
>>
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MATLAB function great_elliptic _arc_ lat.m

function great elliptic arc lat
% great elliptic arc lat: Given the terminal points Pl and P2 of a great

% elliptic arc on an ellipsoid, and the longitude of a point P3 on the
% curve, this function computes the latitude of P3.

% Function: great elliptic arc lat

% Usage: great elliptic arc lat

% Author: R.E.Deakin,

% School of Mathematical & Geospatial Sciences, RMIT University
% GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA.

% email: rod.deakin@rmit.edu.au

% Version 1.0 3 October 2009

% Version 1.1 5 January 2010

% Purpose: Given the terminal points Pl and P2 of a great elliptic arc on

% an ellipsoid, and the longitude of a point P3 on the curve, this
% function computes the latitude of P3.

% Functions required:

% [D,M,S] = DMS (DecDeq)
% [X,Y,Z2] = Geo2Cart(a,flat,lat,lon,h)
% [rm, rp] = radii(a,flat,lat);

% Variables:

% A,B,C - constants of great elliptic arc

% a - semi-major axis of ellipsoid

s b - semi-minor axis of ellipsoid

s d2r - degree to radian conversion factor 57.29577951...
s ez - eccentricity of ellipsoid squared

s £ - f = 1/flat is the flattening of ellipsoid

s flat - denominator of flattening of ellipsoid

% hl,h2 - ellipsoid heights of P1 and P2

% latl,lat2,lat3 - latitude of P1l, P1l, P3 (radians)
% lonl,lon2,lon3 - longitude of P1l, P2, P3 (radians)

% nu - radius of curvature in prime vertical plane
% rho - radius of curvature in meridain plane

$ X1,Y1,71 - Cartesian coordinates of P1

S X2,Y¥2,72 - Cartesian coordinates of P2

% Remarks:

% References:

% [1] Deakin, R.E., 2010, 'The Great Elliptic Arc on an Ellipsoid',

% Lecture Notes, School of Mathematical and Geospatial Sciences,
% RMIT University, January 2010

% Degree to radian conversion factor

d2r = 180/pi;

% Set ellipsoid parameters
a = 6378137; % GRS80
flat = 298.257222101;

% a = 6378160; % ANS

o°

flat = 298.25;

a = 20926062; % CLARKE 1866
b 20855121;

£ 1-(b/a);

flat = 1/f;

o° o° o°
Il

o

o

Compute ellipsoid constants
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f = 1/flat;

e2 = f*(2-f);

% Set lat, lon and height of Pl and P2 on ellipsoid

latl = -(36 + 47/60 + 49.2232/3600) /d2r; % Spring
lonl = (148 + 11/60 + 48.3333/3600)/d2r;

lat2 = -(37 + 30/60 + 18.0674/3600)/d2r; % Wauka 1978
lon2 = (149 + 58/60 + 32.9932/3600)/d2r;

hl = 0;

h2 = 0;

Compute Cartesian coords of Pl and P2

[X1,Y1,Z21] = Geo2Cart(a,flat,latl,lonl,hl);
[X2,Y2,722] = Geo2Cart(a,flat,lat2,lon2,h?2);
% Compute constants of Curve of Alignment
A = Y1*722-Y2*71;

B = X1*Z2-X2*71;

C = X1*Y2-X2*Y1;

% Set longitude of P3
lon3 = (149 + 30/60)/d2r;

% Compute latitude of P3
lat3 = atan((B*sin(lon3)-A*cos (lon3))/(C*(1-e2)));

fprintf ('\n ')
fprintf ('\nGreat Elliptic Arc');
fprintf ('\n ')
fprintf ('"\nEllipsoid parameters');
fprintf ('\na = %12.4f',a);
fprintf ('‘\nf = 1/%13.9f',flat);

fprintf ('\n\nTerminal points of curve');

% Print lat and lon of Pl

[D,M,S] = DMS (latl*d2r);
if D == 0 && latl < 0

fprintf ('\nLatitude P1 = -0 %2d %9.6f (DM S)',M,S);
else

fprintf ('\nLatitude Pl = %4d %2d %9.6f (DM S)',D,M,S);
end
[D,M,S] = DMS (lonl*d2r);
if D == 0 && lonl < O

fprintf ('\nLongitude P1 = -0 %2d %9.6f (DM S)',M,S);
else

fprintf ('\nLongitude P1 = %4d %2d %9.6f (DM S)',D,M,S);
end
% Print lat and lon of P2
[D,M,S] = DMS (lat2*d2r);
if D == 0 && lat2 < 0

fprintf ('\n\nLatitude P2 = -0 %2d %9.06f (D M S)',M,S);
else

fprintf ('\n\nLatitude P2 = %4d %2d %9.6f (D M S)',D,M,S);
end
[D,M,S] = DMS (lon2*d2r);
if D == 0 && lon2 < O

fprintf ('\nLongitude P2 = -0 %2d %9.0f (DM S)',M,S);
else

fprintf ('\nLongitude P2 = %4d %2d %9.6f (DM S)',D,M,S);

end

)

% Print Coordinate table

fprintf ('\n\nCartesian coordinates"');

fprintf ('\n X Y VAR
fprintf ("\nP1 %$15.6f %$15.6f %$15.6f',X1,Y1,21);

fprintf ('\nP2 $15.6f %$15.6f %$15.6f',X2,Y2,722);
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% Print lat and lon of P3
fprintf ('\n\nGiven longitude of P3');

[D,M,S] = DMS (lon3*d2r);
if D == 0 && 1lon3 < 0

fprintf ('\nLongitude P3 = -0 %2d %9.6f (DM S)',M,S);
else

fprintf ('\nLongitude P3 = %4d %2d %9.6f (D M S)',D,M,S);
end
fprintf ('\n\nLatitude of P3 computed from trigonometric equation');
[D,M,S] = DMS (lat3*d2r);
if D == 0 && lat3 < 0

fprintf ('\nLatitude P3 = -0 %2d %9.06f (DM S)',M,S);
else

fprintf ('\nLatitude P3 = %4d %2d %9.6f (DM S)',D,M,S);
end

fprintf ("\n\n");

MATLAB function great elliptic _arc_ lon.m

function great elliptic arc lon

% great elliptic arc lon: Given the terminal points Pl and P2 of a great
% elliptic arc on an ellipsoid, and the latitude of a point P3 on the
% curve, this function computes the longitude of P3.

% Function: great elliptic arc_ lon

% Usage: great elliptic arc lon

% Author: R.E.Deakin,

% School of Mathematical & Geospatial Sciences, RMIT University
% GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA.

% email: rod.deakin@rmit.edu.au

% Version 1.0 3 October 2009

% Version 1.1 5 January 2010

% Purpose: Given the terminal points Pl and P2 of a great elliptic arc on

% an ellipsoid, and the latitude of a point P3 on the curve, this
% function computes the longitude of P3.

% Functions required:

s [D,M,S] = DMS (DecDegq)
% [X,Y,2] = Geo2Cart(a,flat,lat,lon,h)
% [rm, rp] = radii(a,flat,lat);

% Variables:

% A,B,C - constants of great elliptic arc

$ a - semi-major axis of ellipsoid

$ b - semi-minor axis of ellipsoid

% d2r - degree to radian conversion factor 57.29577951...
% e2 - eccentricity of ellipsoid squared

s f - f = 1/flat is the flattening of ellipsoid

% flat - denominator of flattening of ellipsoid

s £ lat3 - function of latitude of P3

% fdash lat3 - derivative of function of latitude of Pp3

% hl,h2 - ellipsoid heights of Pl and P2

% iter - number of iterations

% lambda - longitude of P3 computed from trigonometric equation

$ latl,lat2,lat3 - latitude of P1l, P1l, P3 (radians)
% lonl,lon2,lon3 - longitude of P1l, P2, P3 (radians)

% new lat3 - next latiude in Newton-Raphson iteration
% nu - radius of curvature in prime vertical plane
% rho - radius of curvature in meridain plane
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% theta - auxiliary angle in the computation of lambda
$ X1,Y1,7z1 - Cartesian coordinates of P1
S X2,Y2,722 - Cartesian coordinates of P2

% Remarks:

% References:
% [1] Deakin, R.E., 2010, 'The Great Elliptic Arc on an Ellipsoid',

% Lecture Notes, School of Mathematical and Geospatial Sciences,

% RMIT University, January 2010

% Degree to radian conversion factor
d2r = 180/pi;

% Set ellipsoid parameters

a = 6378137; % GRS80
flat = 298.257222101;
% a = 6378160; % ANS

oe

flat = 298.25;

a = 20926062; % CLARKE 1866
= 20855121;

= 1-(b/a);

flat = 1/£;

o° o° o
Hh O

oe

oe

Compute ellipsoid constants
= 1/flat;
e2 = f*(2-f);

Hh

% Set lat, lon and height of Pl and P2 on ellipsoid

latl = -(36 + 47/60 + 49.2232/3600) /d2r; % Spring
lonl = (148 + 11/60 + 48.3333/3600)/d2r;

lat2 = -(37 + 30/60 + 18.0674/3600) /d2r; % Wauka 1978
lon2 = (149 + 58/60 + 32.9932/3600)/d2r;

hl = 0;

h2 = 0;

% Compute Cartesian coords of Pl and P2

[X1,Y1,21] = Geo2Cart(a,flat,latl,lonl,hl);
[X2,Y2,22] = Geo2Cart(a,flat,lat2,lon2,h2);

Compute constants of Curve of Alignment
= Y1*722-Y2*Z1;
= X1*Z2-X2*Z1;
X1*Y2-X2*Y1;

Q W P e
|

% Set latitude of P3
lat3 = -(37 + 19/60 + 10.379991/3600) /d2r;

% Set starting value of lon3 = longitude of P1
lon3 = lonl;

iter = 1;
while 1
% Compute radii of curvature
f lon3 = A*cos (lon3)-B*sin(lon3)+C* (1-e2) *tan (lat3);
fdash lon3 = -A*sin(lon3)-B*cos (lon3);
new_lon3 = lon3-(f lon3/fdash lon3);
if abs(new lon3 - lon3) < le-15
break;
end
lon3 = new lon3;

if iter > 100
fprintf ('Iteration for longitude failed to converge after 100
break;

end

iter = iter + 1;
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theta = atan2(B,-3A);
lambda = acos (C* (1-e2)*tan(lat3)/sqrt (A"2+B"2))+theta;

fprintf ('\n ')
fprintf ('\nGreat Elliptic Arc');
fprintf ('\n ')
fprintf ('\nEllipsoid parameters');
fprintf ('\na = %12.4f',a);
fprintf ('\nf = 1/%13.9f',flat);

fprintf ('\n\nTerminal points of curve');
% Print lat and lon of Pl

°

[D,M,S] = DMS (latl*d2r);
if D == 0 && latl < O

fprintf ('\nLatitude P1 = -0 %2d %9.6f (DM S)',M,S);
else

fprintf ('\nLatitude Pl = %4d %2d %9.6f (DM S)',D,M,S);
end

[D,M,S] = DMS (lonl*d2r);
if D == 0 && lonl < O

fprintf ('\nLongitude P1 = -0 %2d %9.6f (DM S)',M,S);
else

fprintf ('\nLongitude P1 = %4d %2d %9.6f (DM S)',D,M,S);
end
% Print lat and lon of P2

°

[D,M,S] = DMS (lat2*d2r);
if D == 0 && lat2 < 0

fprintf ('"\n\nLatitude P2 = -0 %2d %9.0f (DM S)',M,S);
else

fprintf ('\n\nLatitude P2 = %4d %2d %9.6f (DM S)',D,M,S);
end
[D,M,S] = DMS (lon2*d2r);
if D == 0 && lon2 < O

fprintf ('\nLongitude P2 = -0 %2d %9.6f (DM S)',M,S);
else

fprintf ('\nLongitude P2 = %4d %2d %9.6f (DM S)',D,M,S);
end

)

% Print Coordinate table

fprintf ('\n\nCartesian coordinates"');

fprintf ('\n X Y VAR
fprintf ('\nP1 %$15.6f %$15.6f %$15.6f',X1,Y1,21);

fprintf ('\nP2 $15.6f %$15.6f %$15.6f',X2,Y2,72);

% Print lat and lon of P3
fprintf ('"\n\nGiven latitude of P3');

[D,M,S] = DMS (lat3*d2r);
if D == 0 && lat3 < O

fprintf ('\nLatitude P3 = -0 %2d %9.06f (DM S)',M,S);
else

fprintf ('\nLatitude P3 = %4d %2d %9.6f (DM S)',D,M,S);
end

fprintf ('\n\nLongitude of P3 computed from Newton-Raphson iteration');

[D,M,S] = DMS (lon3*d2r);
if D == 0 && lon3 < O

fprintf ('\nLongitude P3 = -0 %2d %9.6f (DM S)',M,S);
else

fprintf ('\nLongitude P3 = %4d %2d %9.6f (DM S)',D,M,S);
end
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fpri
fpri
[D,M
if D
else
end

[D,M
if D
else

end

fpri

ntf ('\niterations = %4d',iter);

ntf ('\n\nLongitude of P3 computed from trigonometric equation');
,S] = DMS (lambda*d2r) ;

== 0 && lambda < 0

fprintf ('\nLongitude P3 = -0 %2d %9.6f (DM S)',M,S);
fprintf ('\nLongitude P3 = %4d %2d %9.6f (D M S)',D,M,S);
,S] = DMS (theta*d2r);

== 0 && theta < O

fprintf ('\ntheta P3

-0 %$2d $9.6f (DM S)',M,S);

fprintf ('\ntheta P3

%4d %2d $9.6f (DM S)',D,M,S);

ntf("\n\n");

MATLAB function Geo2Cart.m

func

5 [X

% Fu

% Us

% Au

% Fu

% Pu

% Va

% Re
$ (1

tion [X,Y,Z] = Geo2Cart(a,flat,lat,lon,h)

,Y,Z2] = Geo2Cart(a,flat,lat,lon,h)

Function computes the Cartesian coordinates X,Y,Z of a point
related to an ellipsoid defined by semi-major axis (a) and the
denominator of the flattening (flat) given geographical
coordinates latitude (lat), longitude (lon) and ellipsoidal

height (h). Latitude and longitude are assumed to be in radians.
nction: Geo2Cart()
age: [X,Y,Z2] = Geoz2Cart(a,flat,lat,lon,h);
thor: R.E.Deakin,
School of Mathematical & Geospatial Sciences, RMIT University
GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA.
email: rod.deakin@rmit.edu.au
Version 1.0 6 April 2006
Version 1.0 20 August 2007
nctions required:
radii ()
rpose:
Function Geo2Cart () will compute Cartesian coordinates X,Y,Z
given geographical coordinates latitude, longitude (both in
radians) and height of a point related to an ellipsoid
defined by semi-major axis (a) and denominator of flattening
(flat) .
riables:
a - semi-major axis of ellipsoid
e2 - 1lst eccentricity squared
£ - flattening of ellipsoid
flat - denominator of flattening f = 1/flat
h - height above ellipsoid
lat - latitude (radians)
lon - longitude (radians)
P - perpendicular distance from minor axis of ellipsoid
rm - radius of curvature of meridian section of ellipsoid
rp - radius of curvature of prime vertical section of ellipsoid
ferences:
] Gerdan, G.P. & Deakin, R.E., 1999, 'Transforming Cartesian
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% coordinates X,Y,Z to geogrpahical coordinates phi,lambda,h', The
% Australian Surveyor, Vol. 44, No. 1, pp. 55-63, June 1999.

o

calculate flattening f and ellipsoid constant e2
= 1/flat;
£*(2-1);

H

2

0]

compute radii of curvature for the latitude
rm, rp] = radii(a,flat,lat);

— o°

oe

compute Cartesian coordinates X,Y,Z
= (rpth) *cos (lat);

= p*cos(lon);

= p*sin(lon);

= (rp*(1-e2)+h)*sin(lat);

N K X 'O
|

MATLAB function radii.m

function [rm,rp] = radii(a,flat,lat)

% [rm,rpl=radii(a, flat,lat) Function computes radii of curvature in

% the meridian and prime vertical planes (rm and rp respectively) at a
% point whose latitude (lat) is known on an ellipsoid defined by

% semi-major axis (a) and denominator of flattening (flat).

% Latitude must be in radians.

% Example: [rm,rp] = radii(6378137,298.257222101,-0.659895044) ;

% should return rm = 6359422.96233327 metres and

% rp = 6386175.28947842 metres

% at latitude -37 48 33.1234 (DMS) on the GRS80 ellipsoid

% Function: radii (a, flat, lat)

% Syntax: [rm, rp] = radii(a,flat,lat);

% Author: R.E.Deakin,

% School of Mathematical & Geospatial Sciences, RMIT University
% GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA.

% email: rod.deakin@rmit.edu.au

% Version 1.0 1 August 2003

% Version 2.0 6 April 2006

% Version 3.0 9 February 2008

% Purpose: Function radii() will compute the radii of curvature in

% the meridian and prime vertical planes, rm and rp respectively
% for the point whose latitude (lat) is given for an ellipsoid
% defined by its semi-major axis (a) and denominator of

% flattening (flat).

% Return value: Function radii() returns rm and rp

% Variables:

% a - semi-major axis of spheroid

% cC - polar radius of curvature

% c2 - cosine of latitude squared

%  ep2 - 2nd-eccentricity squared

s £ - flattening of ellipsoid

$ lat - latitude of point (radians)

% rm - radius of curvature in the meridian plane

S rp - radius of curvature in the prime vertical plane

s Vv - latitude function defined by V-squared = sgrt(l + ep2*c2)
$ V2,V3 - powers of V

% Remarks:
% Formulae are given in [1] (section 1.3.9, page 85) and in
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% [2] (Chapter 2, p. 2-10) in a slightly different form.

% References:
% [1] Deakin, R.E. and Hunter, M.N., 2008, GEOMETRIC GEODESY, School of

% Mathematical and Geospatial Sciences, RMIT University, Melbourne,
% AUSTRALIA, March 2008.

% [2] THE GEOCENTRIC DATUM OF AUSTRALIA TECHNICAL MANUAL, Version 2.2,

% Intergovernmental Committee on Surveying and Mapping (ICSM),

% February 2002 (www.anzlic.org.au/icsm/gdatum)

% compute flattening f eccentricity squared e2
£ = 1/flat;

c a/(1-£f);

ep2 = £*(2-£)/((1-£)"2);

% calculate the square of the sine of the latitude
c2 = cos(lat)"2;

% compute latitude function V
V2 = l+ep2*c2;

V = sqrt(V2);

V3 = V2*V;

% compute radii of curvature
rm = c/V3;

rp = c/V;

MATLAB function DMS.m

function [D,M,S] = DMS (DecDeg)
% [D,M,S] = DMS (DecDeg) This function takes an angle in decimal degrees and returns
Degrees, Minutes and Seconds

o

val = abs (DecDeq) ;

D = fix(val);

M = fix ((val-D)*60);

S (val-D-M/60) *3600;
DecDeg<0)

= -D;
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