HP 35s Surveying Programs

HP 35s
Scientific Calculator

FN=	ISG	RTN	$x ? y$		FLAGS
R/S	GTO	X $=0$	MODE	DISPLAY	
PRGM A	DSE B	LBL C	$x \geqslant 0$ D		
\boldsymbol{x} §	VIEW	INPUT	ARG	$<$	$>$
RCL	R!	$x<1+y$	i		
STO	R1 E	PSE F	θ G		\checkmark
HYP	π	INTG	$x \sqrt{y}$	IOG	10^{x}
SIN	COS	TAN	\sqrt{x}	y^{x}	1/x
ASIN H	ACOS 1	ATAN 1	$x^{2} \mathrm{~K}$	IN 1	$e^{x} \mathrm{M}$
SHOW		$=$	-ENG	G ENG \rightarrow	\rightarrow UNDO
ENTER		+/-	E	()	\leftarrow
LASTX		ABS N	RND 0	[1	P CIEAR
f	$\sim{ }^{\circ} \mathrm{F}$	HMS \rightarrow		\rightarrow RAD	\%CHG
$\begin{aligned} & \text { EQN } \\ & \text { SOIVE } 0 \end{aligned}$	7			9	\div
	$\rightarrow{ }^{\circ} \mathrm{C}$	$\rightarrow \mathrm{H}$	55	\rightarrow DEG I	\%
	$\rightarrow \mathrm{lb}$			\rightarrow in	nCr
\leftarrow	4			6	\times
	$\rightarrow \mathrm{kg}$ U	\rightarrow KN	v	$\rightarrow \mathrm{cm}$ W	nPr
	IOGIC			SEED	L.R
\rightarrow	1	2		3	-
	BASE X		Y	RAND z	SUMS
OFF	,	/c		$\Sigma-$	\bar{x}, \bar{y}
C	0			$\Sigma+$	+
ON	SPACE (1)	FDIS	(1)	$\underline{1}$	s, σ

CLOSURE with Accuracy, Area and double-missing distance
Coordinate RADIATIONS with rotation and scale Coordinate JOINS
Radiations from OFFSETS
RESECTION
ADJUSTMENT - Bowditch and Crandall

HP35s SURVEYING PROGRAMS

1. The following programs have been collated for the use of students in the Surveying and Geospatial Science programs in the School of Mathematical and Geospatial Sciences, RMIT University. As always, it is the user's responsibility to ensure that the programs are installed correctly and then checked. Also, do not alter programs unless you are aware of what LABELS are being used or whether GTO and BRANCHING label addresses will be affected; because by doing so you may dramatically affect the way they work and hence obtain incorrect answers.
2. The following two programs under LABEL Z are critical and must be kept in your HP35s at all times. Do not delete them!

- RECTANGULAR \rightarrow POLAR XEQ Z002
- POLAR \rightarrow RECTANGULAR XEQ Z015

These programs are software replacements for the Polar \leftrightarrows Rectangular conversion functions that were present on the HP33s and HP32s calculators and have not been implemented on the HP35s.
3. The following are a 'suite' of surveying computation programs that will be useful in the field and office. Some (Closure, Radiations, Joins, Offsets) have a heritage extending back to HP desktop-computer programs from the 1970's written by Bodo Taube of Francis O'Halloran, Surveyors. And Bodo Taube's programs were (and are) models of efficiency. Others are more recent.
Each program has a set of User Instructions, with examples and relevant formula and HP35s Program Sheets listing the program steps (that you may key into your calculator), storage registers used and program notes.

- CLOSURE XEQ C001
- RADIATIONS XEQR001
- JOINS XEQ J001
- OFFSETS XEQ 0001
- RESECTION XEQ S001
- ADJUSTMENT XEQ A001

Rod Deakin, 18-Jan-2012
Geospatial Science, RMIT University

HP35s POLAR $\leftrightarrows R E C T A N G U L A R ~ C O N V E R S I O N S ~$

The following programming code is a software replacement for the POLAR $\leftrightarrows R E C T A N G U L A R$ conversion functions that were present on the HP33s and HP32s calculators and have not been implemented on the HP35s.

This code was made available through The Museum of HP Calculators and appeared in HP Forum Archive 17 (22-Aug-2007)
http://www.hpmuseum.org/cgi-sys/cgiwrap/hpmuseum/archv017.cgi?read=122519

RECTANGULAR \rightarrow POLAR	XEQ Z002	XEQ	3	0	0	2
POLAR \rightarrow RECTANGULAR	XEQ Z015	XEQ	3	0	1	5

What do these pieces of code do?

RECTANGULAR \rightarrow POLAR

POLAR \rightarrow RECTANGULAR

The contents of registers Z and T remain unchanged for both conversions.

MISSING BEARING \& DISTANCE OR DOUBLE MISSING DISTANCE (BEARING INTERSECTION) WITH AREA

PRESS XEQ C001 TO RUN PROGRAM

Notes: 1. For missing bearing and distance, the missing line must be the last line in the closure.
2. For double missing distance, the missing distances must be on the last two lines of the closure.
3. Missing elements must be input as zero, i.e., if the bearing is unknown then enter 0 when requested and if the distance is unknown enter 0 when requested.
4. Bearings of lines that are $0^{\circ} 00^{\prime} 00^{\prime \prime}$ must be entered as $360^{\circ} 00^{\prime} 00^{\prime \prime}$

$B_{n}^{1}-B_{n-1}^{n}= \pm(180-\gamma)$
$B_{1}^{n-1}-B_{n}^{1}= \pm(180-\alpha)$
$\sin (180-\gamma)=\sin \gamma$
$\sin (180-\alpha)=\sin \alpha$
$\pm a=\frac{c \sin \alpha}{\sin \gamma}$

AREA ALGORITHM Δ Area $_{k}=-\frac{1}{2}\left\{\Delta N_{k} \sum_{i=1}^{k} \Delta E_{i}-\Delta E_{k} \sum_{i=1}^{k} \Delta N_{i}\right\}$

EXAMPLES

1. Closure with: (i) misclose bearing and distance;
(ii) misclose east and north;
(iii) misclose accuracy; and
(iv) area

Figure $A B C D E F$ is section of road 20 m wide that is being excised from an allotment of land.
Check that the dimensions are correct and determine the area.
Starting with the line $A B$ and going clockwise around the figure, enter the bearing and distance of each side, remembering that the bearing of the last side $F A$ should be entered as $360^{\circ} 00^{\prime}$.

Enter 0 for the last bearing and 0 for the last side (you don't have to key anything in; just press R / S at the prompts) since the last side (the misclose) is unknown.

The calculator will display: B = 136.0924 ($136^{\circ} 09^{\prime} 24$ ") (the misclose bearing);
Press R/S
The calculator will display: $\mathrm{D}=0.0021$ (the misclose distance);
Press R/S
The calculator will display: 0.0014 (east misclose) 001
-0.0015 (north misclose); often shown as 002

Press R/S

The calculator will display: $\quad \mathrm{R}=502,288.7039$ (this is the misclose accuracy ratio 1:502289)

Press R/S

The calculator will display: $A=-9,926.0706$ (this is the area $9926 \mathrm{~m}^{2}$)
(the negative sign is due to entering the figure clockwise)

Press R/S

The calculator will display: B?
0.0000

Ready for the next closure.

EXAMPLES

2. Closure with: (i) double missing and distance; and
(ii) area

Figure $A B C D E F$ is section of road 20 m wide that is being excised from an allotment of land.
Compute the missing distances $C D$ and $D E$, and the area.
Starting with the line EF and going clockwise around the figure, enter the bearing and distance of each 'known' side, remembering that the bearing of the side FA should be entered as $360^{\circ} 00^{\prime}$.

Enter the bearing of the side $C D$ and 0 for the distance (the 1st missing distance; you don't have to key anything in; just press R/S at the prompt).
Enter the bearing of the side $E D$. The calculator will now solve for the two missing distances $C D$ and $D E$.

The calculator will display: $\quad \mathrm{D}=20.0907$ (the 1st missing distance);
Press R/S
The calculator will display: $\quad \mathrm{D}=204.5581$ (the 2nd missing distance);
Press R/S
The calculator will display: $\quad A=-9,926.6036$ (this is the area $9926 \mathrm{~m}^{2}$)
(the negative sign is due to entering the figure clockwise)
Press R/S
The calculator will display: B ?
0.0000

Ready for the next closure.

NOTE: For double missing distance closures, the missing sides must be the last two sides. To achieve this, some figures may need re-casting. In such cases, the areas of re-cast figures may not be correct. See the following example

EXAMPLES

3. Closure with: (i) double missing and distance; and
(ii) area

Figure $A B C D E F$ is section of road 20 m wide that is being excised from an allotment of land.
Compute the missing distances $A B$ and $C D$, and the area.
Re-cast the figure so that the last two sides contain the missing distances

Starting with the line $D E$ and going clockwise around the re-cast figure, enter the bearing and distance of each 'known' side, remembering that the bearing of the side FA should be entered as $360^{\circ} 00^{\prime}$.

Enter the bearing of the side $B^{\prime} C$ and 0 for the distance (the 1st missing distance; you don't have to key anything in; just press R/S at the prompt).
Enter the bearing of the side $C D$. The calculator will now solve for the two missing distances $B^{\prime} C$ and $C D$.

The calculator will display: $\mathrm{D}=292.7520$ (the 1st missing distance);
Press R/S
The calculator will display: $\quad \mathrm{D}=20.0916$ (the 2nd missing distance);
Press R/S
The calculator will display: $\quad \mathrm{A}=18,126.6222$ (this is complete rubbish since the lines in the re-cast figure cross)

AREA ALGORITHM

The algorithm for computing the area of a polygon can be derived by considering Figure A1, where the area is the sum of the trapeziums $b B C c, c C D d$ and $d D E e$ less the triangles $b B A$ and $A E e$.

The area can be expressed as

$$
\begin{aligned}
2 A= & {\left[\left(x_{2}-x_{1}\right)+\left(x_{3}-x_{1}\right)\right]\left[\left(y_{2}-y_{3}\right)\right] } \\
& +\left[\left(x_{3}-x_{1}\right)+\left(x_{4}-x_{1}\right)\right]\left[\left(y_{3}-y_{4}\right)\right] \\
& +\left[\left(x_{4}-x_{1}\right)+\left(x_{5}-x_{1}\right)\right]\left[\left(y_{4}-y_{5}\right)\right] \\
& -\left(x_{2}-x_{1}\right)\left(y_{2}-y_{1}\right) \\
& -\left(x_{5}-x_{1}\right)\left(y_{1}-y_{5}\right)
\end{aligned}
$$

Expanding (A1) then cancelling and rearranging terms gives

$$
\begin{aligned}
2 A & =x_{1}\left(y_{5}-y_{2}\right) \\
& +x_{2}\left(y_{1}-y_{3}\right) \\
& +x_{3}\left(y_{2}-y_{4}\right) \\
& +x_{4}\left(y_{3}-y_{5}\right) \\
& +x_{5}\left(y_{4}-y_{1}\right)
\end{aligned}
$$

Figure A1
which can be expressed as $2 A=\sum_{k=1}^{n}\left\{x_{k}\left(y_{k-1}-y_{k+1}\right)\right\}$

In Figure A2, the coordinate origin is shifted to A where $x_{1}^{\prime}=y_{1}^{\prime}=0$ and the area, using (A2), is
$2 A=y_{2}^{\prime} x_{3}^{\prime}+y_{3}^{\prime} x_{4}^{\prime}-y_{3}^{\prime} x_{2}^{\prime}+y_{4}^{\prime} x_{5}^{\prime}-y_{4}^{\prime} x_{3}^{\prime}-y_{5}^{\prime} x_{4}^{\prime}$
Considering each side of the polygon to have components $\Delta x_{k}, \Delta y_{k}$ for $k=1$ to 5 , (A3) can be written as

$$
\begin{aligned}
2 A & =\Delta y_{1}\left(\Delta x_{1}+\Delta x_{2}\right) \\
& +\left(\Delta y_{1}+\Delta y_{2}\right)\left(\Delta x_{1}+\Delta x_{2}+\Delta x_{3}\right) \\
& -\left(\Delta y_{1}+\Delta y_{2}\right)\left(\Delta x_{1}\right) \\
& +\left(\Delta y_{1}+\Delta y_{2}+\Delta y_{3}\right)\left(\Delta x_{1}+\Delta x_{2}+\Delta x_{3}+\Delta x_{4}\right) \\
& -\left(\Delta y_{1}+\Delta y_{2}+\Delta y_{3}\right)\left(\Delta x_{1}+\Delta x_{2}\right) \\
& -\left(\Delta y_{1}+\Delta y_{2}+\Delta y_{3}+\Delta y_{4}\right)\left(\Delta x_{1}+\Delta x_{2}+\Delta x_{3}\right)
\end{aligned}
$$

Figure A2

Expanding and gathering terms gives

$$
\begin{array}{rll}
2 A= & \Delta y_{1}\left(3 \Delta x_{1}+3 \Delta x_{2}+2 \Delta x_{3}+\Delta x_{4}\right) & -\Delta y_{1}\left(3 \Delta x_{1}+2 \Delta x_{2}+\Delta x_{3}\right) \\
& +\Delta y_{2}\left(2 \Delta x_{1}+2 \Delta x_{2}+2 \Delta x_{3}+\Delta x_{4}\right) & -\Delta y_{2}\left(3 \Delta x_{1}+2 \Delta x_{2}+\Delta x_{3}\right) \\
& +\Delta y_{3}\left(\Delta x_{1}+\Delta x_{2}+\Delta x_{3}+\Delta x_{4}\right) & -\Delta y_{3}\left(2 \Delta x_{1}+2 \Delta x_{2}+\Delta x_{3}\right) \\
& -\Delta y_{4}\left(\Delta x_{1}+\Delta x_{2}+\Delta x_{3}\right)
\end{array}
$$

and cancelling terms and re-ordering gives

$$
\begin{align*}
2 A= & \Delta y_{1}\left(0+\Delta x_{2}+\Delta x_{3}+\Delta x_{4}\right) \\
& +\Delta y_{2}\left(-\Delta x_{1}+0+\Delta x_{3}+\Delta x_{4}\right) \\
& +\Delta y_{3}\left(-\Delta x_{1}-\Delta x_{2}+0+\Delta x_{4}\right) \tag{A4}\\
& +\Delta y_{4}\left(-\Delta x_{1}-\Delta x_{2}-\Delta x_{3}+0\right)
\end{align*}
$$

This equation for the area can also be expressed as a matrix equation

$$
2 A=\left[\begin{array}{llll}
\Delta y_{1} & \Delta y_{2} & \Delta y_{3} & \Delta y_{4}
\end{array}\right]\left[\begin{array}{cccc}
0 & 1 & 1 & 1 \tag{A5}\\
-1 & 0 & 1 & 1 \\
-1 & -1 & 0 & 1 \\
-1 & -1 & -1 & 0
\end{array}\right]\left[\begin{array}{l}
\Delta x_{1} \\
\Delta x_{2} \\
\Delta x_{3} \\
\Delta x_{4}
\end{array}\right]
$$

By studying the form of equations (A4) and (A5), the following algorithm for calculating the $k=n-1$ area components A_{k} for a polygon of n sides may be deduced as

$$
\begin{equation*}
A_{k}=\frac{1}{2}\left\{\Delta x_{k} \sum_{i=1}^{k} \Delta y_{i}-\Delta y_{k} \sum_{i=1}^{k} \Delta x_{i}\right\} \text { where } k=1,2,3, \ldots n-1 \tag{A6}
\end{equation*}
$$

Equation (A6) is an efficient way to accumulate the area of a polygon given the coordinate components of the sides. By studying the algorithm, it can be seen that $A_{1}=A_{n}=0$ and hence the area of a polygon is accumulated without having to deal with the last side. This makes it a very useful area algorithm for simple closure programs where the last side is often the missing side in the polygon. In addition, it can be seen that each area component A_{k} is a triangle with one vertex at the starting point and the line k, with components $\Delta x_{k}, \Delta y_{k}$, the opposite side.

Rearranging equation (A6) and expressing the components of lines as ΔE and ΔN where E and N are east and north respectively gives the area algorithm used in the HP35s Closure Program

$$
\begin{equation*}
A_{k}=-\frac{1}{2}\left\{\Delta N_{k} \sum_{i=1}^{k} \Delta E_{i}-\Delta E_{k} \sum_{i=1}^{k} \Delta N_{i}\right\} \text { where } k=1,2,3, \ldots n-1 \tag{A7}
\end{equation*}
$$

LINE	STEP	X	Y	Z	T
C001	LBL C				
C002	CLVARS		START NEW	CLOSURE	
C003	CLE				
C004	0		NEW LINE O	F CLOSURE	
C005	STO B				
C006	STO D				
C007	INPUT B	Enter Bea	ing		
C008	HMS \rightarrow				
C009	STO B				
C010	STO C				
C011	INPUT D	Enter Dis	ance		
C012	ST0+R	accumulat	distances		
C013	RCL B	Brg	Dist		
C014	+	Brg+Dist			
C015	$x=0$?	test to s	e if both	Brg \& Dist	zero
C016	GT0 C068	go for mi	sing beari	ng \& dista	
C017	RCL D				
C018	$x=0$?	test to s	e if Dist	is zero	
C019	GTO C042	go for do	ble missing	g distance	
C020	XEQ C022	compute a	ea contrib	ution for	
C021	GTO C004	go for ne	t line of	closure	
C022	RCL B	Brg	AREA SUBRO	UTINE	
C023	RCL D	Dist	Brg		
C024	XEQ Z015	$\Delta \mathrm{N}$	$\Delta \mathrm{E}$		
C025	$\Sigma+$	n	$\Delta \mathrm{E}$		
C026	R \downarrow	$\Delta \mathrm{E}$			
C027	LASTX	$\Delta \mathrm{N}$	$\Delta \mathrm{E}$		
C028	Σy	$\Sigma(\Delta \mathrm{E})$	ΔN	$\Delta \mathrm{E}$	
C029	\times	$\Delta N(\Sigma(\Delta E))$	$\Delta \mathrm{E}$		
C030	$x<>y$	$\Delta \mathrm{E}$	$\Delta N(\Sigma(\Delta E))$		
C031	Σx	$\Sigma(\Delta N)$	$\Delta \mathrm{E}$	$\Delta N(\Sigma(\Delta E))$	
C032	\times	$\Delta E(\Sigma(\Delta N))$	$\Delta N(\Sigma(\Delta E))$		
C033	-	$\Delta N(\Sigma(\Delta E))$	$\Delta E(\Sigma(\Delta N))$		
C034	2				
C035	\div	area comp	nent		
C036	ST0+A	accumulat	area		
C037	RTN				
C038	Σy	$\Sigma(\Delta \mathrm{E})$	BRG \& DIST	SUBROUTIN	
C039	Σx	$\Sigma(\Delta N)$	$\Sigma(\Delta \mathrm{E})$		
C040	XEQ Z002	Dist	Brg		
C041	RTN				

LINE	STEP	X	Y	Z	T
C042	0		DOUBLE MISSING DISTANCE		
C043	STO B				
C044	INPUT B	Enter 2nd Bearing B_{n}^{1}			
C045	HMS \rightarrow				
C046	STO B	B_{n}^{1}			
C047	RCL C	B_{n-1}^{n}	B_{n}^{1}		
C048	-	$\pm(180-\gamma)$			
C049	SIN	$\pm \sin \gamma$			
C050	XEQ C038	c	B_{1}^{n-1}	$\pm \sin \gamma$	
C051	$x<>y$	B_{1}^{n-1}	c	$\pm \sin \gamma$	
C052	RCL B	B_{n}^{1}	B_{1}^{n-1}	c	$\pm \sin \gamma$
C053	-	$\pm(180-\alpha)$	c	$\pm \sin \gamma$	
C054	SIN	$\pm \sin \alpha$	c	$\pm \sin \gamma$	
C055	\times	$\pm c \sin \alpha$	$\pm \sin \gamma$		
C056	$x<>y$	$\pm \sin \gamma$	$\pm c \sin \alpha$		
C057	\div	$\pm a$ (1st missing distance)			
C058	STO D	$\pm a$			
C059	RCL C	B_{n-1}^{n}	$\pm a$		
C060	STO B				
C061	XEQ C022	compute area contribution for line			
C062	VIEW D	1st Missing Distance			
C063	XEQ C038				
C064	STO D				
C065	VIEW D	2nd Missing Distance			
C066	VIEW A	Area			
C067	GT0 C002				
C068	XEQ C038	Dist	Brg	MISSING	G \& DIST
C069	STO D				
C070	ST0 \div R				
C071	$x<>y$				
C072	180				
C073	+				
C074	\rightarrow HMS	Brg			
C075	STO B				
C076	VIEW B	Missing Bearing			
C077	VIEW D	Missing Distance			
C078	Σy	$\Sigma(\Delta \mathrm{E})$			
C079	+/-	$-\Sigma(\Delta \mathrm{E})$			
C080	Σx	$\Sigma(\Delta N)$	$-\Sigma(\Delta \mathrm{E})$		
C081	+/-	$-\Sigma(\Delta N)$	$-\Sigma(\Delta \mathrm{E})$		
C082	STOP	N miscl.	E miscl.		

LINE	STEP	X	Y	Z	T
C083	VIEW R	Misclose Accuracy $1: x$			
C084	VIEW A	Area			
C085	GT0 C002				

STORAGE REGISTERS

\mathbf{A}	Area
\mathbf{B}	Bearing
\mathbf{C}	Bearing
\mathbf{D}	Distance
\mathbf{R}	Cumulative distance; closure accuracy

PROGRAM LENGTH AND CHECKSUM

LN = 261; CK = D83C

\star Length \& Checksum: $\square \square \square 2$; \square ENTER (Hold)

PROGRAM NOTES

Lines co22 to co37	is an area subroutine that also accumulates the east and north components of lines
Lines co38 to co41	
is a subroutine to calculate a bearing	
and distance from east and north	

The calculator must contain LBL Z which contains the Polar to Rectangular routines

USER INSTRUCTIONS COORDINATE RADIATIONS PROGRAM

1. To start program press XEQ R001

2.	Display	$\begin{aligned} & E ? \\ & 0.0000 \end{aligned}$	Enter:	East coordinate of traverse point; then press	R/S
3.	Display	$\begin{aligned} & \mathrm{N} \text { ? } \\ & 0.0000 \end{aligned}$	Enter:	North coordinate of traverse point; then press	R/S
4.	Display	$\begin{aligned} & \text { R? } \\ & 0.0000 \end{aligned}$	Enter: [If no r	Rotation (\pm D.MMSS); then press R/S tation to be applied, press R/S and rotation $=$	
5.	Display	$\begin{aligned} & \text { S? } \\ & 1.0000 \end{aligned}$	Enter: [If no s	Scale Factor; then press R/S ale factor to be applied, press R/S and scale	$\text { factor }=1 \text {] }$
6.	Display	$\begin{aligned} & \text { B? } \\ & 0.0000 \end{aligned}$	Enter:	Radiation Bearing (D.MMSS); then press	R/S
7.	Display	$\begin{aligned} & \mathrm{D} \text { ? } \\ & 0.0000 \end{aligned}$	Enter: [If next	Radiation Distance; then press R/S Instrument Point, enter distance with a negativ	ive sign.]

7A If Rotation and Scale not 0° and 1 ; new bearing and distance displayed at successive R/S
8. East and North coordinate displayed at successive R/S. GoTo step 6.

In the example traverse below, with rotation $=0^{\circ}$ and scale $=1$, start at A, compute the coordinates of $A 1$ and $A 2$; jump to B, compute coordinates of $B 1$ and $B 2$; then to C and the coordinates of $C 1$, $C 2$ and $C 3$. The values in parentheses are for rotation $=+2^{\circ} 18^{\prime} 35$ " and scale factor $=1.002515$. (Distances and coordinates are rounded to nearest mm .)

LINE	STEP	X	Y	Z	T
R044	VIEW B	Rotated Bearing (D.MMSS)			
R045	VIEW D	Scaled Distance			
R046	RCL B				
R047	HMS \rightarrow	Brg			
R048	RCL D	Dist	Brg		
R049	XEQ Z015	$\Delta \mathrm{N}$	$\Delta \mathrm{E}$		
R050	STO+N	$\Delta \mathrm{N}$	$\Delta \mathrm{E}$		
R051	FS? 1	Test for new Instrument Point			
R052	$\Sigma+$	n	$\Delta \mathrm{E}$	Yes! n	
R053	$x<>y$	$\Delta \mathrm{E}$	n		
R054	ST0+E				
R055	VIEW E	East			
R056	VIEW N	North			
R057	Σx	North coord of Instrument Point			
R058	STO N				
R059	Ey	East coord of Instrument Point			
R060	STO E				
R061	GT0 R024				

STORAGE REGISTERS

\mathbf{B}	Bearing(D.MMSS); Bearing(Degree); Rotated Brg
\mathbf{D}	Distance; Scaled Distance
\mathbf{E}	East coordinate
\mathbf{N}	North coordinate
\mathbf{R}	Rotation (D.MMSS); Rotation (Degrees)
\mathbf{S}	Scale factor
\mathbf{T}	T=999 if Rotation T $\neq 999$ if any other Rotation and Scale Factor
$\boldsymbol{\Sigma} \boldsymbol{x}$	North coordinate of Instrument Point
$\boldsymbol{\Sigma} \boldsymbol{y}$	East coordinate of Instrument Point

PROGRAM LENGTH AND CHECKSUM

$L N=191 ; C K=22 C 1$
\star Length \& Checksum: $\leftarrow \square \boxed{\square} ; \quad \leftarrow$ ENTER (Hold)

PROGRAM NOTES

The calculator must contain LBL Z which contains the Polar to Rectangular routines

XEQ Z015 on line R049 is the Polar \rightarrow Rectangular conversion

USER INSTRUCTIONS COORDINATE JOINS PROGRAM

1. To start program press XEQ J001
2. Display E? Enter: East coordinate of Instrument Point; then press R/S
3. Display N? Enter: North coordinate of Instrument Point; then press R/S
0.0000
4. Display E? Enter: East coordinate of next point; then press R/S
$\begin{array}{lll}\text { 5. Display } & \begin{array}{l}\text { N? } \\ \\ 0.0000\end{array} & \begin{array}{l}\text { Enter: North coordinate of next point; then press R/S } \\ \text { [If next Instrument Point, enter Northing with negative sign.] }\end{array}\end{array}$
5. Bearing (D.MMSS) and Distance displayed at successive R/S. GoTo step 4.

In the example traverse below, start at A, compute the radiations (bearings and distances) to $A 1$ and $A 2$; jump to B, compute radiations to $B 1$ and $B 2$; then to C and the radiations to $C 1, C 2$ and $C 3$. (The computed bearings and distances are rounded to the nearest 5 mm and 10 " respectively.)

LINE	STEP	X	Y	Z	T
J001	LBL J				
J002	CLVARS		START JOINS PROGRAM		
J003	INPUT E	Enter East coord of Instrument Point			
J004	INPUT N	Enter North coord of I.P.			
J005	RCL E	E_{i}	NEW INSTRUMENT POINT		
J006	STO Y				
J007	RCL N	N_{i}	E_{i}		
J008	STO X				
J009	CF 1		NEW POINT		
J010	0				
J011	STO E				
J012	STO N				
J013	INPUT E	Enter East coord of next point			
J014	INPUT N	Enter \pm North coord of next point			
J015	$x<0$?	$\pm \mathrm{N}_{\mathrm{k}}$	E_{k}		
J016	SF 1				
J017	ABS	$\mid N_{k}$ \|			
J018	STO N				
J019	RCL Y	E_{i}			
J020	RCL E	E_{k}	$\mathrm{E}_{\text {i }}$		
J021	-	$\mathrm{E}_{\mathrm{i}}-\mathrm{E}_{\mathrm{k}}$			
J022	RCL X	N_{i}	$\mathrm{E}_{\mathrm{i}}-\mathrm{E}_{\mathrm{k}}$		
J023	RCL N	N_{k}	N_{i}	$\mathrm{E}_{\mathrm{i}}-\mathrm{E}_{\mathrm{k}}$	
J024	XEQ Z002	$\mathrm{N}_{\mathrm{i}}-\mathrm{N}_{\mathrm{k}}$	$\mathrm{E}_{\mathrm{i}}-\mathrm{E}_{\mathrm{k}}$		
J025					
J026	STO D	Dist	Brg(k, i)		
J027	$x<>y$	Brg(k,i)			
J028	180				
J029	+	Brg(i,k)			
J030	\rightarrow HMS				
J031	STO B				
J032	VIEW B	Bearing			
J033	VIEW D	Distance			
J034	FS? 1				
J035	GT0 J005				
J036	GT0 J009				

STORAGE REGISTERS

\mathbf{B}	Bearing(D.MMSS)
\mathbf{D}	Distance
\mathbf{E}	E_{k} East coordinate
\mathbf{N}	N_{k} North coordinate
\mathbf{X}	N_{i} North coordinate of Instrument Point
\mathbf{Y}	E_{i} East coordinate of Instrument Point

PROGRAM LENGTH AND CHECKSUM

LN = 112; CK = A366

\star Length \& Checksum: $\rightarrow 2 \rightarrow 2$ ENTER (Hold)

PROGRAM NOTES

Flag 1 is used to test to see if new point is to be next Instrument Point.

The calculator must contain LBL Z which contains the Polar to Rectangular routines
XEQ Z002 on line $J 025$ is the Rectangular \rightarrow Polar conversion

USER INSTRUCTIONS
 OFFSETS PROGRAM

1. To start program press $\mathrm{XEQ} \mathbf{O 0 0 1}$
2. Display B? Enter: B_{1}, the bearing of traverse line 1; then press R/S
1.0000
$\begin{array}{llll}\text { 3. } & \text { Display } & \text { B? } \\ 2.0000\end{array} \quad$ Enter: $\quad B_{2}$, the bearing of traverse line 2 ; then press R / \mathbf{S}
3. Display D? Enter: $\pm d_{1}$, the offset from traverse line 1 ; then press R/S
4. Display $\begin{array}{ll}\text { D? } \\ 22.0000\end{array} \quad$ Enter: $\pm d_{2}$, the offset from traverse line 2; then press R/S
5. Radiation Bearing (D.MMSS) B_{3} and Distance d_{3} displayed at successive R/S. GoTo step 2 .

Rule: Offset distances are $\left\{\begin{array}{c}\text { positive } \\ \text { negative }\end{array}\right\}$ if point is to the $\left\{\begin{array}{c}\text { right } \\ \text { left }\end{array}\right\}$ of the traverse line looking in the direction of the bearing.

Derivation of formula: Radiation from offsets

$$
\begin{aligned}
d_{1} \tan (90-\theta)=\frac{d_{1}}{\tan \theta} & \begin{aligned}
\tan \alpha & =\frac{d_{1}}{\frac{d_{1}}{\tan \theta}+\frac{d_{2}}{\sin \theta}} \\
& =\frac{d_{1} \sin \theta}{d_{1} \cos \theta+d_{2}} \\
& =\frac{\sin \theta}{\cos \theta+\frac{d_{2}}{d_{1}}}
\end{aligned}
\end{aligned}
$$

Conventions: $\quad \theta=B_{2}-B_{1}$

$$
\begin{aligned}
& d \text { is }\left\{\begin{array}{l}
+ \text { tve } \\
-t^{\text {tve }}
\end{array}\right\} \text { if point is }\left\{\begin{array}{c}
\text { right } \\
\text { left }
\end{array}\right\} \text { of line } \\
& B_{3}=B_{1}+\alpha
\end{aligned}
$$

Formula: $\quad \tan \alpha=\frac{\sin \theta}{\cos \theta-\frac{d_{2}}{d_{1}}}$

LINE	STEP	X	Y	Z	T
0001	LBL 0				
0002	1				
0003	STO B	1			
0004	INPUT B	Enter Bearing of 1st line (B_{1})			
0005	HMS \rightarrow	B_{1}			
0006	STO A				
0007	2				
0008	STO B	2			
0009	INPUT B	Enter Bearing of 2nd line (B_{2})			
0010	HMS \rightarrow	B_{2}			
0011	RCL A	B_{1}	B_{2}		
0012	-	$\pm \theta=\mathrm{B}_{2}-\mathrm{B}_{1}$			
0013	360	360	$\pm \theta$		
0014	$x<>y$	$\pm \theta$	360		
0015	$x<0$?				
0016	+				
0017	ST0 T	θ			
0018	11				
0019	STO D	11			
0020	INPUT D	Enter Offset $\pm \mathrm{d}_{1}$ from 1st line			
0021	STO C	$\pm \mathrm{d}_{1}$			
0022	22				
0023	STO D	22			
0024	INPUT D	Enter Offset $\pm \mathrm{d}_{2}$ from 2nd line			
0025	RCL T	θ			
0026	SIN	$\sin (\theta)$	$\pm \mathrm{d}_{2}$		
0027	RCL T	θ	$\sin (\theta)$	$\pm \mathrm{d}_{2}$	
0028	COS	$\cos (\theta)$	$\sin (\theta)$	$\pm \mathrm{d}_{2}$	
0029	RCL D	$\pm \mathrm{d}_{2}$	$\cos (\theta)$	$\sin (\theta)$	$\pm \mathrm{d}_{2}$
0030	RCL C	$\pm \mathrm{d}_{1}$	$\pm \mathrm{d}_{2}$	$\cos (\theta)$	$\sin (\theta)$
0031	\div	$\pm \mathrm{d}_{2} / \mathrm{d}_{1}$	$\cos (\theta)$	$\sin (\theta)$	$\sin (\theta)$
0032	-	$\cos \theta-\left(\mathrm{d}_{2} / \mathrm{d}_{1}\right)$	$\sin (\theta)$	$\sin (\theta)$	$\sin (\theta)$
0033	\div	$\tan (\alpha)$			
0034	ATAN	$\pm \alpha$			
0035	STO+A	B_{3}			
0036	SIN	sin(α)			
0037	STO -C				
0038	RCL C	$\pm \mathrm{d}_{3}$			
0039	0	0	$\pm \mathrm{d}_{3}$		
0040	$x>y$?				
0041	180				
0042	STO+A				

LINE	STEP	X	Y	Z	T
0043	RCL A	B_{3}			
0044	360	360	B_{3}		
0045	$x<y$?				
0046	STO-A				
0047	RCL A	B_{3}			
0048	\rightarrow HMS				
0049	STO B				
0050	VIEW B	Radia	Bearing		
0051	RCL C	$\pm \mathrm{d}_{3}$			
0052	ABS				
0053	STO D				
0054	VIEW D	Radiation Distance d_{3}			
0055	GTO 0002				

STORAGE REGISTERS

\mathbf{A}	$\mathrm{B}_{1} ; \mathrm{B}_{3}$
\mathbf{B}	$\mathrm{~B}_{2}(\mathrm{D}$. MMSS $) ; \mathrm{B}_{3}(\mathrm{D}$. MMSS $)$
\mathbf{C}	$\pm \mathrm{d}_{1} ; \pm \mathrm{d}_{3}$
\mathbf{D}	$\pm \mathrm{d}_{2} ; \mathrm{d}_{3}$
\mathbf{T}	θ

PROGRAM LENGTH AND CHECKSUM

$L N=181 ; C K=A 802$

USER INSTRUCTIONS
 RESECTION PROGRAM
 (Auxiliary angles method)

1. To start program press XEQ S001
2. Display E? Enter: East coordinate of Point $1\left(P_{1}\right)$; then press R/S
1.0000
3. Display N ? Enter: North coordinate of P_{1}; then press R/S
4. Display E? Enter: East coordinate of P_{2}; then press R/S
5. 2.0000

Enter: North coordinate of P_{2}; then press R / S
2.0000
6. Display E? Enter: East coordinate of P_{3}; then press R/S 3.0000
7. Display N ? 3.0000
8. Display A? 0.0000
$\begin{array}{ll}\text { 9. } & \text { Display } \\ & B ? \\ & 0.0000\end{array}$
Enter: North coordinate of P_{3}; then press R / S
Enter: Angle α (D.MMSS) at Resection Point P; then press R/S
10. East and North coordinate of Resection Point displayed at successive R/S. GoTo step 2.

Notes: (1) Coordinates of points $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$ must be entered left to right (clockwise direction) as seen from the Resection Point P.
(2) Observed angles α and β are angles $\mathrm{P}_{1}-\mathrm{P}-\mathrm{P}_{2}$ and $\mathrm{P}_{2}-\mathrm{P}-\mathrm{P}_{3}$ respectively.

EXAMPLE

RESECTION - AUXILIARY ANGLES

CASE 1

CASE 2

GIVEN: $\quad 1\left(\mathrm{E}_{1}, \mathrm{~N}_{1}\right), 2\left(\mathrm{E}_{2}, \mathrm{~N}_{2}\right), 3\left(\mathrm{E}_{3}, \mathrm{~N}_{3}\right)$
OBSERVED: $\quad \alpha, \beta$
COMPUTE: $\quad \boldsymbol{P}\left(\mathrm{E}_{\mathrm{P}}, \mathrm{N}_{\mathrm{P}}\right)$

1. Compute bearings and distances of lines $2-1$ and $2-3$
2. Calculate angle γ as the difference between bearings B_{21} and B_{23}. [B_{KJ} means the bearing from K to J]
3.

$$
\begin{equation*}
\varphi+\psi=360^{\circ}-(\alpha+\beta+\gamma)=\theta \tag{1}
\end{equation*}
$$

4. From sine rule:

$$
\begin{array}{lll}
\frac{d_{2 p}}{\sin \varphi}=\frac{d_{21}}{\sin \alpha} & \text { or } & d_{2 P}=\frac{d_{21} \sin \varphi}{\sin \alpha} \\
\frac{d_{2 p}}{\sin \psi}=\frac{d_{23}}{\sin \beta} & \text { or } & d_{2 P}=\frac{d_{23} \sin \psi}{\sin \beta} \tag{3}
\end{array}
$$

Equating (2) and (3) gives

$$
\begin{equation*}
\frac{\sin \varphi}{\sin \psi}=\frac{d_{23} \sin \alpha}{d_{21} \sin \beta}=a \tag{4}
\end{equation*}
$$

5. From (4) $\sin \varphi=a \sin \psi$, but from (1) $\psi=\theta-\varphi$; hence $\sin \varphi=a \sin (\theta-\varphi)=a(\sin \theta \cos \varphi-\cos \theta \sin \varphi)$.

Dividing both sides by $\cos \varphi$ and re-arranging gives $\tan \varphi(1+a \cos \theta)=a \sin \theta$ and

$$
\begin{equation*}
\tan \varphi=\frac{a \sin \theta}{1+a \cos \theta} \tag{5}
\end{equation*}
$$

6. After computing θ [using (1)], a [using (4)] and φ [using (5)] then ψ can be calculated using (1).
7. The bearing $B_{1 \mathrm{P}}$ (bearing of the line $1-P$) is given by

$$
\begin{equation*}
B_{1 P}=B_{12}+\varphi \tag{6}
\end{equation*}
$$

The distance $d 1 \mathrm{P}$ (distance of line $1-P$) is obtained using the sine rule in triangle $12 P$ and

$$
\begin{equation*}
d_{1 P}=\frac{d_{12} \sin (\alpha+\varphi)}{\sin \alpha} \tag{7}
\end{equation*}
$$

8. E_{P} and N_{P} obtained from E_{1} and N_{1} and the bearing $B_{1 P}$ and distance $d_{1 P}$ of the line $1-P$.

EXAMPLE

LINE	STEP	X	Y	Z	T
S001	LBL S				
S002	CLVARS		START RESECTION PROGRAM		
S003	1				
S004	XEQ S093	Enter coordinates of Point 1			
S005	RCL E	E_{1}			
S006	STO R	E_{1}			
S007	RCL N	N_{1}			
S008	STO U	N_{1}	E_{1}		
S009	2				
S010	XEQ S093	Enter coordinates of Point 2			
S011	RCL E	E_{2}			
S012	STO S	E_{2}			
S013	RCL N	N_{2}			
S014	ST0 V	N_{2}	E_{2}		
S015	3				
S016	XEQ S093	Enter coordinates of Point 3			
S017	INPUT A	Enter angle a (D.MMSS)			
S018	HMS \rightarrow	α			
S019	STO A				
S020	INPUT B	Enter angle β (D.MMSS)			
S021	HMS \rightarrow				
S022	STO B	β			
S023	RCL S	E_{2}			
S024	RCL E	E_{3}	E_{2}		
S025	-	$\Delta \mathrm{E}_{32}=\mathrm{E}_{2}-\mathrm{E}_{3}$			
S026	RCL V	N_{2}	$\Delta \mathrm{E}_{32}$		
S027	RCL N	N_{3}	N_{2}	$\Delta \mathrm{E}_{32}$	
S028	-	$\Delta N_{32}=N_{2}-N_{3}$	$\Delta \mathrm{E}_{32}$		
S029	XEQ Z002	$\mathrm{d}_{32}=\mathrm{d}_{23}$	B_{32}		
S030	RCL A	α	d_{23}	B_{32}	
S031	SIN	$\sin (\alpha)$	d_{23}	B_{32}	
S032	\times	$\mathrm{d}_{23} \sin (\alpha)$	B_{32}		
S033	ST0 C				
S034	$x<>y$	B_{32}	$\mathrm{d}_{23} \sin (\alpha)$		
S035	180	180	B_{32}	$\mathrm{d}_{23} \sin (\alpha)$	
S036	+	B_{23}	$\mathrm{d}_{23} \sin (\alpha)$		
S037	RCL S	E_{2}	B_{32}	$\mathrm{d}_{23} \sin (\alpha)$	
S038	RCL R	E_{1}	E_{2}	B_{32}	$\mathrm{d}_{23} \sin (\alpha)$
S039	-	$\Delta \mathrm{E}_{12}=\mathrm{E}_{2}-\mathrm{E}_{1}$	B_{32}	$\mathrm{d}_{23} \sin (\alpha)$	$\mathrm{d}_{23} \sin (\alpha)$
S040	RCL V	N_{2}			
S041	RCL U	N_{1}	N_{2}	$\Delta \mathrm{E}_{12}$	B_{32}
S042	-	$\Delta N_{12}=N_{2}-\mathrm{N}_{1}$	$\Delta \mathrm{E}_{12}$	B_{32}	B_{32}

LINE	STEP	X	Y	Z	T
S043	XEQ Z002	d_{12}	B_{12}	B_{32}	B_{32}
S044	STO D				
S045	RCL B	β	d_{12}	B_{12}	B_{32}
S046	SIN	sin (β)	d_{12}	B_{12}	B_{32}
S047	\times	$\mathrm{d}_{12} \sin (\beta)$	B_{12}	B_{32}	B_{32}
S048	STO -C				
S049	R \downarrow	B_{12}	B_{32}	B_{32}	$\mathrm{d}_{12} \sin (\beta)$
S050	STO F				
S051	180	180	B_{12}	B_{32}	B_{32}
S052	+	B_{21}	B_{32}	B_{32}	B_{32}
S053	$x<>y$	B_{32}	B_{21}	B_{32}	B_{32}
S054	-	$\pm \gamma$	B_{32}	B_{32}	B_{32}
S055	360				
S056	$x<>y$	$\pm \gamma$	360	B_{32}	B_{32}
S057	$x<0$?				
S058	+	γ			
S059	RCL A	α	γ		
S060	RCL B	β	α	γ	
S061	+				
S062	+	$\alpha+\beta+\gamma$			
S063	360				
S064	$x<>y$				
S065	-	$\theta=360-(\alpha+\beta$	+ γ)		
S066	RCL C	a	θ		
S067	XEQ Z015	$a \times \cos (\theta)$	$\mathrm{a} \times \sin (\theta)$		
S068	1				
S069	+	$1+\operatorname{acos}(\theta)$	asin(θ)		
S070	XEQ Z002		φ		
S071	$x<>y$	φ			
S072	STO+F	φ			
S073	RCL A	α	φ		
S074	+	$\alpha+\varphi$			
S075	SIN	$\sin (\alpha+\varphi)$			
S076	STO \times D				
S077	RCL A	α			
S078	SIN	sin(α)			
S079	STO -D				
S080	RCL F	$\mathrm{B}_{1} \mathrm{P}$			
S081	RCL D	$\mathrm{d}_{1 \mathrm{p}}$	$\mathrm{B}_{1 \mathrm{p}}$		
S082	XEQ Z015	$\Delta \mathrm{N}_{1} \mathrm{P}$	$\Delta \mathrm{E}_{1 \mathrm{P}}$		

STORAGE REGISTERS

\mathbf{A}	α
\mathbf{B}	β
\mathbf{C}	$\mathrm{d}_{23} \sin (\alpha) ; \mathrm{a}=\mathrm{d}_{23} \sin (\alpha) / \mathrm{d}_{12} \sin (\beta)$
\mathbf{D}	$\mathrm{d}_{12} ; \mathrm{d}_{12} \sin (\alpha+\varphi) ; \mathrm{d}_{1 \mathrm{P}}=\left[\mathrm{d}_{12} \sin (\alpha+\varphi)\right] / \sin (\alpha)$
\mathbf{F}	$\mathrm{B}_{12} ; \mathrm{B}_{1 \mathrm{P}}=\left(\mathrm{B}_{12}+\varphi\right)$
\mathbf{E}	$\mathrm{E}_{\mathrm{k}} ; \mathrm{E}_{3} ; \mathrm{E}_{\mathrm{P}}$
\mathbf{N}	$\mathrm{N}_{\mathrm{k}} ; \mathrm{N}_{3} ; \mathrm{N}_{\mathrm{P}}$
\mathbf{R}	E_{1}
\mathbf{U}	$\mathrm{~N}_{1}$
\mathbf{S}	E_{2}
\mathbf{V}	$\mathrm{~N}_{2}$

PROGRAM LENGTH AND CHECKSUM

$L N=307 ; C K=A E 78$

PROGRAM NOTES

P_{1}, P_{2}, P_{3} means Points 1, 2 and 3.
$E_{1}, E_{2}, ~ e t c$. and N_{1}, N_{2}, etc. mean east and north coordinates of P_{1}, P_{2}, etc.
$\Delta E_{12}=E_{2}-E_{1}, \quad \Delta N_{12}=N_{2}-N_{1}, \quad$ etc.
B_{12} means bearing of the line from P_{1} to P_{2}
d_{12} means distance from P_{1} to P_{2}

	S001 to S016	Initialisation; storing coordinates P_{1}, P_{2}, P_{3}.
Lines	S017 to S022	Entering and storing observed angles α and β at the Resection Point P.
Lines	S023 to S029	Bearing and distance P_{3} to P_{2}.
Lines	S034 to S036	Note here that $\mathrm{B}_{23}=\mathrm{B}_{32}+180^{\circ}$
Lines	S037 to S043	Bearing and distance P_{1} to P_{2}.
Lines	S044 to S065	Calculation of angles γ at P_{2} and $\theta=360^{\circ}-(\alpha+\beta+\gamma)$; and the ratio $a=d_{23} \sin (\alpha) / d_{12} \sin (\beta)$
Lines	S066 to S079	Calculation of auxiliary angle φ and the bearing and distance P_{1} to the resection Point P : $B_{1 p}=\left(B_{12}+\varphi\right)$ and $d_{1 p}=\left[d_{12} \sin (\alpha+\varphi)\right] / \sin (\alpha)$.
Lines	S080 to S091	Calculation and display of coordinates of Resected Point P.
Lines	S093 to S097	Subroutine for entering coordinates of P_{1}, P_{2}, P_{3}.

The calculator must contain LBL Z which contains the Polar to Rectangular routines

XEQ Z002 on lines S067, S082 is the Rectangular \rightarrow Polar conversion
XEQ Z015 on lines S029, S043, S070 is the Polar \rightarrow Rectangular conversion

USER INSTRUCTIONS TRAVERSE ADJUSTMENT PROGRAM

This program can perform either a BOWDITCH ${ }^{1}$ or a CRANDALL ${ }^{2}$ adjustment on a closed traverse (or figure). The bearings and distances of each line of the closed traverse must be entered before selecting the method of adjustment ($1=$ Bowditch; $2=$ Crandall $)$.
After all lines have been entered and adjustment type selected the program will display the adjusted bearings and distances and then the area of the adjusted figure.
A closed traverse must start and end at known points (east and north coordinates known); but in the case of a loop traverse the start and end points will be the same. The program requires that $\mathrm{D}_{\mathrm{E}}=\mathrm{E}_{\mathrm{END}}-\mathrm{E}_{\mathrm{START}}$ and $\mathrm{D}_{\mathrm{N}}=\mathrm{N}_{\mathrm{END}}-\mathrm{N}_{\mathrm{START}}$ are known. If the traverse is a loop traverse $\mathrm{D}_{\mathrm{E}}=\mathrm{D}_{\mathrm{N}}=0$

1. To start program press XEQ A001
2. Display B? Enter: Bearing (D.MMSS); then press R/S
$\begin{array}{lll} & 0.0000 & \text { [Bearing of lines that are } 0^{\circ} 00^{\prime} 00^{\prime \prime} \text { must be entered as } 360^{\circ} 00^{\prime} 00^{\prime \prime} \text {] } \\ \text { 3. Display } & \text { D? } & \text { Enter: Distance; then press R/S } \\ 0.0000 & & \end{array}$
3. Repeat steps 2 and 3 until all known information is entered; then enter 0 at the Bearing prompt and 0 at the Distance prompt (just press R / S at the prompts)
$\begin{array}{lll}\text { 5. Display } & X \text { ? } & \text { Enter: } D_{E} \text {; then press } R / S \\ & 0.0000 & \text { [If loop traverse } D_{E}=0 \text {, just press R/S] }\end{array}$
$\begin{array}{lll}\text { 6. Display } & \text { Y? } & \text { Enter: } D_{N} \text {; then press R/S } \\ & 0.0000 & \text { [If loop traverse } D_{N}=0 \text {, just press R/S] }\end{array}$
4. Display F? Enter: $1=$ BOWDITCH or $2=$ CRANDALL; then press R/S
0.0000
5. Adjusted Bearings (D.MMSS) and adjusted Distances displayed at successive R/S.
[Note that Crandall's adjustment only adjusts distances]
6. Adjusted Area displayed at last prompt. Press R/S and go to step 2 for new adjustment.
[^0]
THEORY AND FORMULA

Theory, formula and examples of Bowditch's and Crandall's adjustments can be found in Notes on Least Squares, Geospatial Science, RMIT University, Chapter 6, pp.6-15-6-26. A summary of the formula and the sequence of computation is presented below.

BOWDITCH

A closed traverse of $k=1,2,3 \ldots, n$ lines, sides or legs having bearings ϕ_{k} and distances d_{k} (or a figure of n sides) that has a misclosure may be adjusted in the following manner.

1. Each traverse line (having bearing and distance) has east and north components $\Delta E_{k}=d_{k} \sin \phi_{k}, \Delta N_{k}=d_{k} \cos \phi_{k}$, and the sums of these components for the traverse are $S_{E}=\sum_{k=1}^{n} \Delta E_{k}$ and $S_{N}=\sum_{k=1}^{n} \Delta N_{k}$
2. A traverse has a total length $L=\sum_{k=1}^{n} d_{k}$
3. A closed traverse has a start point and an end point assumed to have known east and north coordinates; $E_{\text {START }}, N_{\text {START }}, E_{\text {END }}, N_{\text {END }}$ and differences; $D_{E}=E_{\text {END }}-E_{\text {START }}$ and $D_{N}=N_{\text {END }}-N_{\text {START }}$. If the traverse is a loop traverse (starting and ending at the same point), then $D_{E}=D_{N}=0$.
4. The east and north components of each traverse leg may be adjusted by adding corrections $d E_{k}=d_{k}\left(\frac{D_{E}-S_{E}}{L}\right)$ and $d N_{k}=d_{k}\left(\frac{D_{N}-S_{N}}{L}\right)$ so that $\left\{\begin{array}{l}\Delta E_{k} \\ \Delta N_{k}\end{array}\right\}_{\text {ADJUST }}=\left\{\begin{array}{l}\Delta E_{k} \\ \Delta N_{k}\end{array}\right\}_{O B S}+\left\{\begin{array}{l}d E_{k} \\ d N_{k}\end{array}\right\}$
5. Adjusted bearings and distances and area are then computed from the adjusted east and north components.

CRANDALL

A closed traverse of $k=1,2,3 \ldots, n$ lines, sides or legs having bearings ϕ_{k} and distances d_{k} (or a figure of n sides) that has a misclosure may be adjusted in the following manner.

1. First adjust the bearings of the traverse so that they close perfectly. This may be an arbitrary adjustment.
2. Each traverse line (having bearing and distance) has east and north components $\Delta E_{k}=d_{k} \sin \phi_{k}, \Delta N_{k}=d_{k} \cos \phi_{k}$, and the sums of these components for the traverse are $S_{E}=\sum_{k=1}^{n} \Delta E_{k}$ and $S_{N}=\sum_{k=1}^{n} \Delta N_{k}$

THEORY AND FORMULA continued

3. In addition, the traverse has the following summations: $a=\sum_{k=1}^{n} \frac{\left(\Delta E_{k}\right)^{2}}{d_{k}}, b=\sum_{k=1}^{n} \frac{\left(\Delta N_{k}\right)^{2}}{d_{k}}$, and $c=\sum_{k=1}^{n} \frac{\Delta E_{k} \Delta N_{k}}{d_{k}}$
4. A closed traverse has a start point and an end point assumed to have known east and north coordinates; $E_{\text {START }}, N_{\text {START }}, E_{\text {END }}, N_{\text {END }}$ and differences; $D_{E}=E_{\text {END }}-E_{\text {START }}$ and $D_{N}=N_{\text {END }}-N_{\text {START }}$. If the traverse is a loop traverse (starting and ending at the same point), then $D_{E}=D_{N}=0$.
5. Two 'multipliers' are computed: $\left\{\begin{array}{l}k_{1} \\ k_{2}\end{array}\right\}=\left\{\begin{array}{l}\frac{b\left(D_{E}-S_{E}\right)-c\left(D_{N}-S_{N}\right)}{a b-c^{2}} \\ \frac{a\left(D_{N}-S_{N}\right)-c\left(D_{E}-S_{E}\right)}{a b-c^{2}}\end{array}\right\}$
6. A residual v_{k} for each traverse line is computed from $v_{k}=k_{1} \Delta E_{k}+k_{2} \Delta N_{k}$ and added to the observed traverse distance to obtain the adjusted traverse distance: $d_{\text {ADJUST }}=d_{\text {OBS }}+v$

EXAMPLE 1

Figure 1. Fieldnotes of traverse
Figure 1 shows a traverse between points A, B, C and D. The bearing datum of the survey is the line $A B 285^{\circ} 00^{\prime} 00^{\prime \prime}$. The distances are horizontal distances. Observed face-left (FL) bearings are shown along the traverse line and the seconds part of the face-right (FR) bearing is shown above. The mean of the FL/FR seconds is shown to the right of the brace \}. The angular misclose in the traverse is 20 ", which is revealed in the forward and reverse bearings on the line $C D$.

1. BOWDITCH ADJUSTMENT OF EXAMPLE 1

For the purpose of the exercise we assume that the angular misclose of 20 " is acceptable and that this error is apportioned equally at the four corners giving the observed traverse to be adjusted as shown in the left-columns of the table below

Line	Bearing	Distance	components		corrections		adjusted components	
k	ϕ_{k}	d_{k}	ΔE_{k}	ΔN_{k}	$d E_{k}$	$d N_{k}$	ΔE_{k}	ΔN_{k}
$1: A B$	$285^{\circ} 00^{\prime} 00^{\prime \prime}$	268.786	-259.6273	69.5669	0.0068	-0.0139	-259.6205	69.5530
$2: B C$	$346^{\circ} 37^{\prime} 29^{\prime \prime}$	156.627	-36.2322	152.3786	0.0040	-0.0081	-36.2282	152.3705
$3: C D$	$93^{\circ} 42^{\prime} 25^{\prime \prime}$	148.650	148.3390	-9.6107	0.0038	-0.0077	148.3428	-9.6184
$4: D A$	$145^{\circ} 12^{\prime} 31^{\prime \prime}$	258.503	147.4993	-212.2917	0.0066	-0.0134	147.5059	-212.3051
	sums	832.5660	-0.0212	0.0431	0.0212	-0.0431	0.0000	0.0000

$$
L=\sum_{k=1}^{n} d_{k}=832.5660, S_{E}=\sum_{k=1}^{n} \Delta E_{k}=-0.0212 \text { and } S_{N}=\sum_{k=1}^{n} \Delta N_{k}=0.0431
$$

Since this is a loop traverse $D_{E}=D_{N}=0$ and $D_{E}-S_{E}=0.0212, D_{N}-S_{N}=-0.0431$
The corrections to the traverse components are: $\quad d E_{k}=d_{k}\left(\frac{D_{E}-S_{E}}{L}\right)=d_{k}\left(\frac{0.0212}{832.5660}\right)$

$$
d E_{k}=d_{k}\left(\frac{D_{N}-S_{N}}{L}\right)=d_{k}\left(\frac{-0.0431}{832.5660}\right)
$$

The adjusted traverse is

Line	Bearing	Distance
k	ϕ_{k}	d_{k}
$1: A B$	$284^{\circ} 59^{\prime} 51^{\prime \prime}$	268.7758
2: $B C$	$34^{\circ} 37^{\prime} 32^{\prime \prime}$	156.6182
$3: C D$	$93^{\circ} 42^{\prime} 35^{\prime \prime}$	148.6543
$4: D A$	$145^{\circ} 12^{\prime} 33^{\prime \prime}$	258.5178

Using the program: press XEQ A001 (or XEQ A ENTER)
Enter the bearings and distances of the sides at the prompts B? and D? pressing R/S after entry
When all sides have been keyed in, enter 0 at the prompt B ? and press R / S; and 0 at the prompt D ? and press R/S (or simply press R/S at both prompts).

At the prompt X ? enter 0 and press $\mathrm{R} / \mathrm{S}\left(\mathrm{D}_{E}=0\right)$ and at the prompt Y ? enter 0 and press R / S ($D_{N}=0$)

At the prompt F? enter 1 and press R/S.
The calculator will then display the adjusted bearing at $\mathrm{B}=$. Press R / S and the adjusted distance will be displayed at $\mathrm{D}=$. Repeat pressing of R / S will display adjusted bearings and distances.

After the last adjusted line, a final R/S will cause the calculator to display the adjusted area at $\mathrm{A}=$ (The area $=-33,556.9387 \mathrm{~m}^{2}$)

2. CRANDALL ADJUSTMENT OF EXAMPLE 1

For the purpose of the exercise we assume that the angular misclose of 20 " is acceptable and that this error is apportioned equally at the four corners giving the observed traverse to be adjusted as shown in the left-columns of the table below

Line	Bearing	Distance	components			$\left(\Delta E_{k}\right)^{2}$		$\left(\Delta N_{k}\right)^{2}$
d_{k}		$\Delta E_{k} \Delta N_{k}$	residual					
k	ϕ_{k}	d_{k}	ΔE_{k}	ΔN_{k}	$\frac{d_{k}}{}$	$\frac{d_{k}}{}$	v_{k}	
$1: A B$	$285^{\circ} 00^{\prime} 00^{\prime \prime}$	268.786	-259.6273	69.5669	250.7808	18.0052	-67.1965	-0.004
$2: B C$	$346^{\circ} 37^{\prime} 29^{\prime \prime}$	156.627	-36.2322	152.3786	8.3815	148.2455	-35.2495	-0.021
$3: C D$	$93^{\circ} 42^{\prime} 25^{\prime \prime}$	148.650	148.3390	-9.6107	148.0286	0.6214	-9.5906	-0.002
$4: D A$	$145^{\circ} 12^{\prime} 31^{\prime \prime}$	258.503	147.4993	-212.2917	84.1616	174.3414	-121.1316	0.027

$S_{E}=\sum_{k=1}^{n} \Delta E_{k}=-0.0212, S_{N}=\sum_{k=1}^{n} \Delta N_{k}=0.0431$
$a=\sum_{k=1}^{n} \frac{\left(\Delta E_{k}\right)^{2}}{d_{k}}=491.3526, b=\sum_{k=1}^{n} \frac{\left(\Delta N_{k}\right)^{2}}{d_{k}}=341.2134$ and $c=\sum_{k=1}^{n} \frac{\Delta E_{k} \Delta N_{k}}{d_{k}}=-233.1681$

Since this is a loop traverse $D_{E}=D_{N}=0$ and $D_{E}-S_{E}=0.0212, D_{N}-S_{N}=-0.0431$
The multipliers are: $\quad k_{1}=\frac{b\left(D_{E}-S_{E}\right)-c\left(D_{N}-S_{N}\right)}{a b-c^{2}}=-2.4593 e-05$

$$
k_{2}=\frac{a\left(D_{N}-S_{N}\right)-c\left(D_{E}-S_{E}\right)}{a b-c^{2}}=-1.4324 e-04
$$

The residuals are:

$$
v_{k}=k_{1} \Delta E_{k}+k_{2} \Delta N_{k}
$$

The adjusted traverse (nearest mm) is

Line	Bearing	Distance
k	ϕ_{k}	d_{k}
$1: A B$	$285^{\circ} 00^{\prime} 00^{\prime \prime}$	268.782
$2: B C$	$346^{\circ} 37^{\prime} 29^{\prime \prime}$	156.606
$3: C D$	$93^{\circ} 42^{\prime} 25^{\prime \prime}$	148.648
$4: D A$	$145^{\circ} 12^{\prime} 31^{\prime \prime}$	258.530

Using the program: press XEQ A001 (or XEQ A ENTER)
Enter the bearings and distances of the sides at the prompts B? and D? pressing R/S after entry
When all sides have been keyed in, enter 0 at the prompt B ? and press R / S; and 0 at the prompt D ? and press R/S (or simply press R/S at both prompts).

At the prompt X ? enter 0 and press $\mathrm{R} / \mathrm{S}\left(\mathrm{D}_{E}=0\right)$ and at the prompt Y ? enter 0 and press R / S ($D_{N}=0$)

At the prompt F? enter 2 and press R/S.
The calculator will then display the adjusted bearing at $\mathrm{B}=$. Press R / S and the adjusted distance will be displayed at $\mathrm{D}=$. Repeat pressing of R / S will display adjusted bearings and distances.

After the last adjusted line, a final R/S will cause the calculator to display the adjusted area at $\mathrm{A}=$ $\left(\right.$ The area $\left.=-33,555.9331 \mathrm{~m}^{2}\right)$

EXAMPLE 2

Figure 2 Traverse diagram showing field measurements, derived values and fixed values.
Figure 2 is a schematic diagram of a traverse run between two fixed stations A and B and oriented at both ends by angular observations to a third fixed station C.

The bearings of traverse lines shown on the diagram, unless otherwise indicated, are called "observed" bearings and have been derived from the measured angles (which have been derived from observed theodolite directions) and the fixed bearing $A C$. The difference between the observed and fixed bearings of the line $B C$ represents the angular misclose of $15^{\prime \prime}$. The coordinates of the traverse points D, E and F have been calculated using the observed bearings and distances and the fixed coordinates of A. The difference between the observed and fixed coordinates at B represents a traverse misclosure.

3. BOWDITCH ADJUSTMENT OF EXAMPLE 2

For the purpose of the exercise we assume that the angular misclose of $15^{\prime \prime}$ is acceptable and that this error is apportioned equally at the five traverse points giving the observed traverse to be adjusted as shown in the left-columns of the table below

Line	Bearing	Distance	components		corrections		adjusted components	
k	ϕ_{k}	d_{k}	ΔE_{k}	ΔN_{k}	$d E_{k}$	$d N_{k}$	ΔE_{k}	ΔN_{k}
$1: A D$	$110^{\circ} 15^{\prime} 17^{\prime \prime}$	2401.609	2253.1002	-831.4235	-0.0029	-0.0994	2253.0973	-831.5229
$2: D E$	$68^{\circ} 34^{\prime} 12^{\prime \prime}$	1032.340	960.9688	377.1801	-0.0012	-0.0427	960.9676	377.1374
$3: E F$	$163^{\circ} 03^{\prime} 23^{\prime \prime}$	559.022	162.9160	-534.7560	-0.0007	-0.0231	162.9153	-534.7791
$4: F B$	$113^{\circ} 49^{\prime} 38^{\prime \prime}$	1564.683	1431.3217	-632.1006	-0.0019	-0.0648	1431.3198	-632.1654
	sums	5557.6540	4808.3067	-1621.1000	-0.0067	-0.2300	0.0000	0.0000

$L=\sum_{k=1}^{n} d_{k}=5557.65400, S_{E}=\sum_{k=1}^{n} \Delta E_{k}=4808.3067$ and $S_{N}=\sum_{k=1}^{n} \Delta N_{k}=-1621.1000$
$D_{E}=E_{\text {END }}-E_{\text {START }}=6843.085-2034.785=4808.300$
$D_{N}=N_{\text {END }}-N_{\text {START }}=7154.700-8776.030=-1621.330$
$D_{E}-S_{E}=-0.0067, D_{N}-S_{N}=-0.2300$
The corrections to the traverse components are: $\quad d E_{k}=d_{k}\left(\frac{D_{E}-S_{E}}{L}\right)=d_{k}\left(\frac{-0.0067}{5557.6540}\right)$

$$
d E_{k}=d_{k}\left(\frac{D_{N}-S_{N}}{L}\right)=d_{k}\left(\frac{-0.2300}{5557.6540}\right)
$$

The adjusted traverse is

Line	Bearing	Distance
k	ϕ_{k}	d_{k}
$1: A D$	$110^{\circ} 15^{\prime} 25^{\prime \prime}$	2401.6407
2: $D E$	$68^{\circ} 34^{\prime} 20^{\prime \prime}$	1032.3232
3: $E F$	$163^{\circ} 03^{\prime} 26^{\prime \prime}$	559.0439
$4: F B$	$113^{\circ} 49^{\prime} 46^{\prime \prime}$	1564.7074

Using the program: press XEQ A001 (or XEQ \mathbf{A} ENTER)
Enter the bearings and distances of the sides at the prompts B? and D? pressing R/S after entry
When all sides have been keyed in, enter 0 at the prompt B ? and press R/S; and 0 at the prompt D ? and press R/S (or simply press R/S at both prompts).
At the prompt X ? enter 4808.300 and press $\mathrm{R} / \mathrm{S}\left(D_{E}=4808.300\right)$
At the prompt Y? enter -1621.330 and press R/S ($D_{N}=-1621.330$)
At the prompt F? enter 1 and press R/S.
The calculator will then display the adjusted bearing at $\mathrm{B}=$. Press R/S and the adjusted distance will be displayed at $\mathrm{D}=$. Repeat pressing of R / S will display adjusted bearings and distances.

After the last adjusted line, a final R/S will cause the calculator to display the adjusted area at $\mathrm{A}=$ (The area $=-357,496.7606 \mathrm{~m}^{2}$ but is meaningless since this is not a closed polygon)

4. CRANDALL ADJUSTMENT OF EXAMPLE 2

For the purpose of the exercise we assume that the angular misclose of $20^{\prime \prime}$ is acceptable and that this error is apportioned equally at the four corners giving the observed traverse to be adjusted as shown in the left-columns of the table below

Line	Bearing	Distance	components		$\frac{\left(\Delta E_{k}\right)^{2}}{d_{k}}$	$\frac{\left(\Delta N_{k}\right)^{2}}{d_{k}}$	$\frac{\Delta E_{k} \Delta N_{k}}{d_{k}}$	resid.
k	ϕ_{k}	d_{k}	ΔE_{k}	ΔN_{k}				v_{k}
1: $A D$	$110^{\circ} 15^{\prime} 17^{\prime \prime}$	2401.609	2253.1002	-831.4235	2113.7748	287.8342	-780.0106	0.057
2: $D E$	$68^{\circ} 34^{\prime} 12^{\prime \prime}$	1032.340	960.9688	377.1801	894.5319	137.8081	351.1036	-0.168
3: EF	$163^{\circ} 03^{\prime} 23^{\prime \prime}$	559.022	162.9160	-534.7560	47.4788	511.5433	-155.8442	0.129
4: FB	$113^{\circ} 49^{\prime} 38^{\prime \prime}$	1564.683	1431.3217	-632.1006	1309.3270	255.3560	-578.2253	0.064
	sums	5557.6540	4808.3067	-1621.1000	4365.1124	1192.5416	-1162.9764	

$S_{E}=\sum_{k=1}^{n} \Delta E_{k}=4808.3067, S_{N}=\sum_{k=1}^{n} \Delta N_{k}=-1621.1000$
$a=\sum_{k=1}^{n} \frac{\left(\Delta E_{k}\right)^{2}}{d_{k}}=4365.1124, b=\sum_{k=1}^{n} \frac{\left(\Delta N_{k}\right)^{2}}{d_{k}}=1192.5416$ and $c=\sum_{k=1}^{n} \frac{\Delta E_{k} \Delta N_{k}}{d_{k}}=-1162.9764$
$D_{E}=E_{\text {END }}-E_{\text {START }}=6843.085-2034.785=4808.300$
$D_{N}=N_{\text {END }}-N_{\text {START }}=7154.700-8776.030=-1621.330$
$D_{E}-S_{E}=-0.0067, D_{N}-S_{N}=-0.2300$

The multipliers are: $\quad k_{1}=\frac{b\left(D_{E}-S_{E}\right)-c\left(D_{N}-S_{N}\right)}{a b-c^{2}}=-7.1501 e-05$

$$
k_{2}=\frac{a\left(D_{N}-S_{N}\right)-c\left(D_{E}-S_{E}\right)}{a b-c^{2}}=-2.6259 e-04
$$

The residuals are: $\quad v_{k}=k_{1} \Delta E_{k}+k_{2} \Delta N_{k}$
The adjusted traverse (nearest mm) is

Line	Bearing	Distance
k	ϕ_{k}	d_{k}
$1: A B$	$110^{\circ} 15^{\prime} 17^{\prime \prime}$	2401.666
$2: B C$	$68^{\circ} 34^{\prime} 12^{\prime \prime}$	1032.172
$3: C D$	$163^{\circ} 03^{\prime} 23^{\prime \prime}$	559.151
$4: D A$	$113^{\circ} 49^{\prime} 38^{\prime \prime}$	1564.747

Using the program: press XEQ A001 (or XEQ \mathbf{A} ENTER)
Enter the bearings and distances of the sides at the prompts B? and D? pressing R/S after entry
When all sides have been keyed in, enter 0 at the prompt B ? and press R/S; and 0 at the prompt D ? and press R/S (or simply press R/S at both prompts).

At the prompt X? enter 4808.300 and press R/S ($D_{E}=4808.300$)
At the prompt Y? enter -1621.330 and press $\mathrm{R} / \mathrm{S}\left(D_{N}=-1621.330\right)$
At the prompt F? enter 2 and press R/S.
The calculator will then display the adjusted bearing at $\mathrm{B}=$. Press R / S and the adjusted distance will be displayed at $\mathrm{D}=$. Repeat pressing of R / S will display adjusted bearings and distances.
After the last adjusted line, a final R/S will cause the calculator to display the adjusted area at $\mathrm{A}=$ (The area $=-357,597.8300 \mathrm{~m}^{2}$ but is meaningless since this is not a closed polygon)

LINE	STEP	X	Y	Z	T
A001	LBL A				
A002	CLVARS		START NEW ADJUSTMENT	ADJUSTMENT	
A003	CLE				
A004	-1				
A005	STO I				
A006	2		START NEW LINE OF FIGURE		
A007	STO+I	Increment	indirect storage registers		
A008	STO+J				
A009	0				
A010	STO B				
A011	STO D				
A012	INPUT B	Enter Bearing (D.MMSS)			
A013	HMS \rightarrow				
A014	STO B				
A015	INPUT D	Enter Distance d_{k}			
A016	STO+L	Accumulate distances			
A017	RCL B	Brg	Dist		
A018	+	Brg+Dist			
A019	$x=0$?				
A020	GT0 A044	Yes! End of Data; GO TO adjustment			
A021	RCL B	Brg			
A022	RCL D	Dist	Brg		
A023	XEQ Z015	ΔN_{k}	$\Delta \mathrm{E}_{\mathrm{k}}$		
A024	$\Sigma+$	n	$\Delta \mathrm{E}_{\mathrm{k}}$		
A025	LASTX	ΔN_{k}	$\Delta \mathrm{E}_{\mathrm{k}}$		
A026	STO (J)				
A027	$x<>y$	$\Delta \mathrm{E}_{\mathrm{k}}$	$\Delta \mathrm{N}_{\mathrm{k}}$		
A028	STO (I)				
A029	\times	$\Delta \mathrm{E}_{\mathrm{k}} \Delta \mathrm{N}_{\mathrm{k}}$			
A030	RCL D	d_{k}	$\Delta \mathrm{E}_{\mathrm{k}} \Delta \mathrm{N}_{\mathrm{k}}$		
A031	\div	$\Delta \mathrm{E}_{\mathrm{k}} \Delta \mathrm{N}_{\mathrm{k}} / \mathrm{d}_{\mathrm{k}}$			
A032	ST0+S				
A033	RCL (I)	$\Delta \mathrm{E}_{\mathrm{k}}$			
A034	x^{2}	$\left(\Delta \mathrm{E}_{\mathrm{k}}\right)^{2}$			
A035	RCL D	d_{k}			
A036	\div	$\left(\Delta \mathrm{E}_{\mathrm{k}}\right)^{2} / \mathrm{d}_{\mathrm{k}}$			
A037	ST0+R				
A038	RCL (J)	ΔN_{k}			
A039	x^{2}	$\left(\Delta N_{\mathrm{k}}\right)^{2}$			
A040	RCL D	d_{k}			
A041	\div	$\left(\Delta N_{k}\right)^{2} / d_{k}$			

LINE	STEP	X	Y	Z	T
A042	STO+V				
A043	GT0 A006	GO FOR next line			
A044	INPUT X	Enter D_{E}			
A045	INPUT Y	Enter D_{N}			
A046	INPUT F	Enter Flag (Bowditch = 1; Crandall = 2)			
A047	RCL F	Flag			
A048	1	1	Flag		
A049	$x=y$?				
A050	GT0 A056	Yes! GO TO Bowditch adjustment			
A051	RCL F	Flag			
A052	2	1	Flag		
A053	$x=y$?				
A054	GT0 A079	Yes! GO TO Crandall adjustment			
A055	GT0 A046				
A056	XEQ A128	$\mathrm{D}_{\mathrm{N}}-\mathrm{S}_{\mathrm{N}}$	$\mathrm{D}_{\mathrm{E}}-\mathrm{S}_{\mathrm{E}}$	BOWDITCH ADJUSTMENT	
A057	RCL L	L	$\mathrm{D}_{\mathrm{N}}-\mathrm{S}_{\mathrm{N}}$	$\mathrm{D}_{\mathrm{E}}-\mathrm{S}_{\mathrm{E}}$	
A058	\div	$\left(D_{N}-S_{N}\right) / L$	$\mathrm{D}_{\mathrm{E}}-\mathrm{S}_{\mathrm{E}}$		
A059	STO Y				
A060	$x<>y$	$\mathrm{D}_{\mathrm{E}}-\mathrm{S}_{\mathrm{E}}$	$\left(D_{N}-S_{N}\right) / L$		
A061	RCL L	L	$\mathrm{D}_{\mathrm{E}}-\mathrm{S}_{\mathrm{E}}$	$\left(D_{N}-S_{N}\right) / L$	
A062	\div	$\left(D_{E}-S_{E}\right) / L$	$\left(D_{N}-S_{N}\right) / L$		
A063	ST0 X				
A064	XEQ A135	Set registers C,I, J, A			
A065	XEQ A144	Increment counters for next line of adjusted figure			
A066	XEQ A151	Get UNADJUSTED Bearing and Distance			
A067	RCL D	d_{k}			
A068	RCL X	$\left(\mathrm{D}_{\mathrm{E}}-\mathrm{S}_{\mathrm{E}}\right) / \mathrm{L}$	d_{k}		
A069	\times	$\mathrm{dE}_{\mathrm{k}}=\mathrm{d}_{\mathrm{k}}\left[\left(\mathrm{D}_{\mathrm{E}}-\mathrm{S}_{\mathrm{E}}\right) / \mathrm{L}\right]=$ correction to $\Delta \mathrm{E}_{\mathrm{k}}$			
A070	ST0+(I)				
A071	RCL D	d_{k}			
A072	RCL Y	$\left(\mathrm{D}_{\mathrm{N}}-\mathrm{S}_{\mathrm{N}}\right) / \mathrm{L}$	d_{k}		
A073	\times	$\mathrm{dN}_{\mathrm{k}}=\mathrm{d}_{\mathrm{k}}\left[\left(\mathrm{D}_{\mathrm{N}}-\mathrm{S}_{\mathrm{N}}\right) / \mathrm{L}\right]=$ correction to $\Delta \mathrm{N}_{\mathrm{k}}$			
A074	ST0+(J)				
A075	XEQ A162	Compute Area contribution of ADJ. line			
A076	XEQ A151	Get ADJUSTED Bearing and Distance			
A077	XEQ A177	View Adjusted Bearing and Distance			
A078	GT0 A065	GO FOR next line of figure			
A079	RCL R	$\mathrm{a}=\Sigma\left[\left(\Delta \mathrm{E}_{\mathrm{k}}\right)^{2} / \mathrm{d}_{\mathrm{k}}\right]$		CRANDALL ADJUSTMENT	
A080	RCL V	$\mathrm{b}=\Sigma\left[\left(\Delta \mathrm{N}_{\mathrm{k}}\right)^{2} / \mathrm{d}_{\mathrm{k}}\right]$		$\mathrm{a}=\Sigma\left[\left(\Delta \mathrm{E}_{\mathrm{k}}\right)^{2} / \mathrm{d}_{\mathrm{k}}\right]$	
A081	\times	ab			
A082	RCL S	$\left.\mathrm{c}=\Sigma\left[\Delta \mathrm{E}_{\mathrm{k}} \Delta \mathrm{N}_{\mathrm{k}}\right) / \mathrm{d}_{\mathrm{k}}\right]$		ab	
A083	STO U	C	ab		

LINE	STEP	X	Y	Z	T
A084	x^{2}	c^{2}	ab		
A085	-	$a b-c^{2}$			
A086	STO T				
A087	XEQ A128	$\mathrm{D}_{\mathrm{N}}-\mathrm{S}_{\mathrm{N}}$	$\mathrm{D}_{\mathrm{E}}-\mathrm{S}_{\mathrm{E}}$		
A088	STO \times S				
A089	STO \times R				
A090	$x<>y$	$\mathrm{D}_{\mathrm{E}}-\mathrm{S}_{\mathrm{E}}$	$\mathrm{D}_{\mathrm{N}}-\mathrm{S}_{\mathrm{N}}$		
A091	STO \times V				
A092	STO \times U				
A093	RCL R	$a\left(D_{N}-S_{N}\right)$			
A094	RCL U	$c\left(D_{E}-S_{E}\right)$	$\mathrm{a}\left(\mathrm{D}_{\mathrm{N}}-\mathrm{S}_{\mathrm{N}}\right)$		
A095	-	$\mathrm{a}\left(\mathrm{D}_{\mathrm{N}}-\mathrm{S}_{\mathrm{N}}\right)$	($\mathrm{D}_{\mathrm{E}}-\mathrm{S}_{\mathrm{E}}$)		
A096	RCL T	$a b-c^{2}$	$\mathrm{a}\left(\mathrm{D}_{\mathrm{N}}-\mathrm{S}_{\mathrm{N}}\right)$	$\mathrm{D}_{\mathrm{E}}-\mathrm{S}_{\mathrm{E}}$)	
A097	\div	$\mathrm{k}_{2}=\left[\mathrm{a}\left(\mathrm{D}_{\mathrm{N}}\right.\right.$) $-\mathrm{C}\left(\mathrm{D}_{\mathrm{E}}-S^{\text {c }}\right.$	$/\left(a b-c^{2}\right)$	
A098	STO W				
A099	RCL V	$\mathrm{b}\left(\mathrm{D}_{\mathrm{E}}-\mathrm{S}_{\mathrm{E}}\right)$			
A100	RCL S	$c\left(D_{N}-S_{N}\right)$	$\mathrm{b}\left(\mathrm{D}_{\mathrm{E}}-\mathrm{S}_{\mathrm{E}}\right)$		
A101	-	$\mathrm{b}\left(\mathrm{D}_{\mathrm{E}}-\mathrm{S}_{\mathrm{E}}\right)$	$\left(D_{N}-S_{N}\right)$		
A102	RCT T	$a b-c^{2}$	$b\left(D_{E}-S_{E}\right)$	$\mathrm{D}_{\mathrm{N}}-\mathrm{S}_{\mathrm{N}}$)	
A103	\div	$\mathrm{k}_{1}=\left[\mathrm{b}\left(\mathrm{D}_{\mathrm{E}}\right.\right.$) $-\mathrm{C}\left(\mathrm{D}_{\mathrm{N}}-\mathrm{S}\right.$	$/\left(a b-c^{2}\right)$	
A104	STO T				
A105	XEQ A135	Set regi	ers C, I,		
A106	XEQ A144	Incremen adjusted	counters igure	or next	
A107	XEQ A151	Get UNAD	STED Bea	gr and D	
A108	RCL (I)	$\Delta \mathrm{E}_{\mathrm{k}}$			
A109	RCL T	k_{1}	$\Delta \mathrm{E}_{\mathrm{k}}$		
A110	\times	$\mathrm{k}_{1} \Delta \mathrm{E}_{\mathrm{k}}$			
A111	RCL (J)	$\Delta \mathrm{N}_{\mathrm{k}}$	$\mathrm{k}_{1} \Delta \mathrm{E}_{\mathrm{k}}$		
A112	RCL W	k_{2}	$\Delta \mathrm{N}_{\mathrm{k}}$	$\mathrm{k}_{1} \Delta \mathrm{E}_{\mathrm{k}}$	
A113	\times	$\mathrm{k}_{2} \Delta \mathrm{~N}_{\mathrm{k}}$	$\mathrm{k}_{1} \Delta \mathrm{E}_{\mathrm{k}}$		
A114	+	$\mathrm{V}_{\mathrm{k}}=\mathrm{k}_{1} \Delta \mathrm{E}_{\mathrm{k}}+\mathrm{k}$	ΔN_{k}		
A115	STO+D				
A116	RCL B				
A117	HMS \rightarrow	Brg			
A118	RCL D	Dist	Brg		
A119	XEQ Z015	$\Delta \mathrm{N}_{\mathrm{k}}$	$\Delta \mathrm{E}_{\mathrm{k}}$		
A120	STO (J)				
A121	$x<>y$	$\Delta \mathrm{E}_{\mathrm{k}}$	ΔN_{k}		
A122	STO (I)				
A123	XEQ A162	Compute Area contribution of ADJ. line			
A124	XEQ A177	View Adjusted Bearing and Distance			
A125	GT0 A106	GO FOR next line of figure			
A126	VIEW A	Area			

LINE	STEP	X	Y	Z	T
A127	GT0 A002	GO FOR new	figure to	adjust	
A128	RCL X	D_{E}			
A129	Σy	$\mathrm{S}_{\mathrm{E}}=\Sigma \Delta \mathrm{E}_{\mathrm{k}}$	D_{E}		
A130	-	$\mathrm{D}_{\mathrm{E}}-\mathrm{S}_{\mathrm{E}}$			
A131	RCL Y	D_{N}	$\mathrm{D}_{\mathrm{E}}-\mathrm{S}_{\mathrm{E}}$		
A132	Σx	$\mathrm{S}_{\mathrm{N}}=\Sigma \Delta \mathrm{N}_{\mathrm{k}}$	D_{N}	$\mathrm{D}_{\mathrm{E}}-\mathrm{S}_{\mathrm{E}}$	
A133	-	$\mathrm{D}_{\mathrm{N}}-\mathrm{S}_{\mathrm{N}}$	$\mathrm{D}_{\mathrm{E}}-\mathrm{S}_{\mathrm{E}}$		
A134	RTN				
A135	n	n	SET REGISTERS C, I, J, A		
A136	STO C	count = n			
A137	CLE				
A138	-1	-1			
A139	STO I				
A140	0	0			
A141	STO J				
A142	STO A				
A143	RTN				
A144	2	2	INCREMENT REGISTERS I, J		
A145	STO+I	Increment indirect storage reg. for ΔE			
A146	ST0+J	Increment indirect storage reg. for ΔN	indirect storage reg. for ΔN		
A147	RCL C	count			
A148	$x=0$?				
A149	GT0 A126	Yes! GO FOR Area of adjusted figure			
A150	RTN				
A151	360	360	BEARING \&	DISTANCE S	UBROUTINE
A152	RCL (I)	$\Delta \mathrm{E}_{\mathrm{k}}$	360		
A153	RCL (J)	$\Delta \mathrm{N}_{\mathrm{k}}$	$\Delta \mathrm{E}_{\mathrm{k}}$	360	
A154	XEQ Z002	d_{k}	$\mathrm{Br} \mathrm{g}_{\mathrm{k}}$	360	
A155	STO D				
A156	$\mathrm{R} \downarrow$	Brgk	360		
A157	$x<0$?				
A158	+				
A159	\rightarrow HMS	Brg(D.MMSS)			
A160	STO B				
A161	RTN				
A162	RCL (I)	$\Delta \mathrm{E}_{\mathrm{k}}$	AREA SUBROUTINE		
A163	RCL (J)	$\Delta \mathrm{N}_{\mathrm{k}}$	$\Delta \mathrm{E}_{\mathrm{k}}$		
A164	$\Sigma+$	n	$\Delta \mathrm{E}_{\mathrm{k}}$		
A165	R \downarrow	$\Delta \mathrm{E}_{\mathrm{k}}$			
A166	LASTX	$\Delta \mathrm{N}_{\mathrm{k}}$	$\Delta \mathrm{E}_{\mathrm{k}}$		
A167	Σy	$\Sigma \Delta \mathrm{E}_{\mathrm{k}}$	$\Delta \mathrm{N}_{\mathrm{k}}$	$\Delta \mathrm{E}_{\mathrm{k}}$	
A168	\times	$\Delta \mathrm{N}_{\mathrm{k}} \Sigma \Delta \mathrm{E}_{\mathrm{k}}$	$\Delta \mathrm{E}_{\mathrm{k}}$		
A169	$x<>y$	$\Delta \mathrm{E}_{\mathrm{k}}$	$\Delta \mathrm{N}_{\mathrm{k}} \Sigma \Delta \mathrm{E}_{\mathrm{k}}$		
A170	Σx	$\Sigma \Delta N_{\mathrm{k}}$	$\Delta \mathrm{E}_{\mathrm{k}}$	$\Delta \mathrm{N}_{\mathrm{k}} \Sigma \Delta \mathrm{E}_{\mathrm{k}}$	

LINE	STEP	X	Y	Z	T
A171	\times	$\Delta \mathrm{E}_{\mathrm{k}} \Sigma \Delta \mathrm{N}_{\mathrm{k}}$	$\Delta \mathrm{N}_{\mathrm{k}} \Sigma \Delta \mathrm{E}_{\mathrm{k}}$		
A172	-	$\Delta \mathrm{N}_{\mathrm{k}} \Sigma \Delta \mathrm{E}_{\mathrm{k}}-\Delta \mathrm{E}_{\mathrm{k}} \Sigma \Delta \mathrm{N}_{\mathrm{k}}$			
A173	2				
A174	\div	Area component			
A175	STO+A	Accumulate area			
A176	RTN				
A177	VIEW B	(Adjusted) Bearing (D.MMSS)			
A178	VIEW D	Adjusted Distance			
A179	1	1			
A180	STO-C	Decreme	count		
A181	RTN				

STORAGE REGISTERS

A	Area	
B	Bearing	
C	count $=$ counter for lines of figure	$0 \leq$ count \leq
D	Distance d_{k}; $\mathrm{d}_{\mathrm{k}}+\mathrm{V}_{\mathrm{k}}$	
1	Indirect storage register for $\Delta \mathrm{E}$	
J	Indirect storage register for ΔN	
L	Cumulative distance $\mathrm{L}=\Sigma \mathrm{d}_{\mathrm{k}}$	
R	$\mathrm{a}=\Sigma\left[\left(\Delta \mathrm{E}_{\mathrm{k}}\right)^{2} / \mathrm{d}_{\mathrm{k}}\right]$; $\mathrm{a}\left(\mathrm{D}_{\mathrm{N}}-\mathrm{S}_{\mathrm{N}}\right)$	
S	$\left.\mathrm{c}=\Sigma\left[\Delta \mathrm{E}_{\mathrm{k}} \Delta \mathrm{N}_{\mathrm{k}}\right) / \mathrm{d}_{\mathrm{k}}\right]$; $\mathrm{c}\left(\mathrm{D}_{\mathrm{N}}-\mathrm{S}_{\mathrm{N}}\right)$	
T	$\mathrm{ab}-\mathrm{c}^{2} ; \mathrm{k}_{1}=\left[\mathrm{b}\left(\mathrm{D}_{\mathrm{E}}-\mathrm{S}_{\mathrm{E}}\right)-\mathrm{c}\left(\mathrm{D}_{\mathrm{N}}-\mathrm{S}_{N}\right)\right] /\left(\mathrm{ab}-\mathrm{c}^{2}\right)$	
U	c ; $\mathrm{c}\left(\mathrm{D}_{\mathrm{E}}-\mathrm{S}_{\mathrm{E}}\right)$	
V	$\mathrm{b}=\Sigma\left[\left(\Delta \mathrm{N}_{\mathrm{k}}\right)^{2} / \mathrm{d}_{\mathrm{k}}\right]$; $\mathrm{b}\left(\mathrm{D}_{\mathrm{E}}-\mathrm{S}_{\mathrm{E}}\right)$	
W	$\mathrm{k}_{2}=\left[\mathrm{a}\left(\mathrm{D}_{\mathrm{N}}-\mathrm{S}_{\mathrm{N}}\right)-\mathrm{c}\left(\mathrm{D}_{\mathrm{E}}-\mathrm{S}_{\mathrm{E}}\right)\right] /\left(\mathrm{ab}-\mathrm{c}^{2}\right)$	
X	$\mathrm{D}_{\mathrm{E}}=\mathrm{E}_{\text {END }}-\mathrm{E}_{\text {START }}$; $\left(\mathrm{D}_{\mathrm{E}}-\mathrm{S}_{\mathrm{E}}\right) / \mathrm{L}$	
Y	$\mathrm{D}_{\mathrm{N}}=\mathrm{N}_{\text {END }}-\mathrm{N}_{\text {START }} ; ~\left(\mathrm{D}_{\mathrm{N}}-\mathrm{S}_{\mathrm{N}}\right) / \mathrm{L}$	

PROGRAM LENGTH AND CHECKSUM

$L N=558 ; C K=68 A 4$

PROGRAM NOTES

The calculator must contain LBL Z which contains the Polar to Rectangular routines.

XEQ Z002 on line A154 is the Rectangular \rightarrow Polar conversion XEQ Z015 on lines A023,A119 is the Polar \rightarrow Rectangular conversion.

[^0]: ${ }^{1}$ A mathematical adjustment of chain and compass surveys developed by the American mathematician and astronomer Nathaniel Bowditch (1773-1838). This adjustment affects both bearings and distances.
 ${ }^{2}$ A mathematical 'least squares' adjustment of traverse distances only that assumes that observed bearings 'close' perfectly. Developed in 1906 by Charles L. Crandall, Professor of Railroad Engineering and Geodesy, Cornell University, New York.
 Theory and examples of Bowditch's and Crandall's adjustments can be found in Notes on Least Squares, Geospatial Science, RMIT University, Chapter 6, pp.6-15 - 6-26.

