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The ellipsoidal transverse Mercator (TM) projection is a conformal mapping from the ellipsoid to the plane and
is widely used in the geospatial community. The TM projection is also known as the Gauss-Krueger projection
acknowledging C.F. Gauss's original development of the ellipsoidal form of the projection and the work of L.
Krueger (1912) who re-evaluated both Gauss' work and also the contributions by Oscar Schreiber who used a
simplified form of Gauss's projection for the Prussian Land Survey of 1876-1923. Krueger published two sets of
equations for the transformations between the ellipsoid and the TM projection; one set — also known as
Redfearn's or Thomas's equations, (Redfearn 1948, Thomas 1952) — only accurate within a narrow band of
longitude about a central meridian and another more versatile set that offer micrometre accuracy anywhere
within 30° of the central meridian. These latter equations, that are far more useful to the geospatial community,
have been re-evaluated and improved by Poder & Engsager (1998), Engsager & Poder (2007) and Karney (2011)
and are hereinafter described as the Karney-Krueger equations to avoid confusion with other sets of TM
projection equations.

Deakin et al. (2010) also provide a development of the Karney-Krueger equations and show how, in the forward
transformation ¢, 4 — E, N, they represent a triple projection in two parts: the first part is a conformal mapping
from the ellipsoid to a sphere (conformal sphere) followed by a conformal mapping from the sphere to the plane
using the spherical TM projection equations with spherical latitude ¢ replaced by conformal latitude ¢". This
two-step process is also known as the Gauss-Schreiber projection and the scale along the central meridian is not
constant. The second part is the conformal mapping from the Gauss-Schreiber plane to the TM plane where the
scale factor along the central meridian is made constant. This sequence of projections is shown schematically in
Figure 1.

(a) Ellipsoid

YA

(d) Transverse Mercator

(c) Gauss-Schreiber

Figure 1 Karney-Krueger equations: sequence of conformal mappings
Ellipsoid — conformal sphere — Gauss-Schreiber plane — transverse Mercator plane.



The following pages set out the terminology and equations necessary for the Forward and Inverse

transformations between geographic coordinates (¢, 1) and grid coordinates (E,N) of the transverse Mercator

projection of the ellipsoid. The Forward transformation (Geographic to Grid) converts latitude and longitude to
east and north given the defining parameters of the ellipsoid, the longitude of the central meridian, the scale
factor of the central meridian and the offsets of the false origin. The Inverse transformation (Grid to
Geographic) converts east and north to latitude and longitude. Grid convergence and Point Scale Factor are

computed in both transformations.

Nomenclature

a,, coefficients (Forward transformation)

B, coefficients (Inverse transformation)

£ eccentricity of ellipsoid
£ eccentricity of ellipsoid squared
n  transverse Mercator ratio 7= X/A
n'  Gauss-Schreiber ratio 77 =v/a
A longitude
A, longitude of central meridian
¢ transverse Mercator ratio £ =Y/A
&' Gauss-Schreiber ratio £ =u/a
o function of latitude
¢ latitude
¢ conformal latitude
@ longitude difference: w=4-4;
¢ complex variable: { =&+in
¢’ complex variable: " =& +in’
A rectifying radius
a  semi-major axis of ellipsoid
and radius of conformal sphere
dX,d," numeric variables in Clenshaw

summation
E  east grid coordinate

Ey false origin offset
[ flattening of ellipsoid

£%, f™ numeric constants in Clenshaw
summation

FR® F™ numeric constants in Clenshaw
summation

Im

2., g" numeric variables in Clenshaw
summation

m, central meridian scale factor

0

N north grid coordinate

No false origin offset

n  3rd flattening of ellipsoid

p, g numeric variables in scale and grid
convergence equations

t t=tan¢

Y t=tan¢g’

u  Gauss-Schreiber coordinate (north)

v Gauss-Schreiber coordinate (east)

w.e, w" numeric variables in Clenshaw

summation
X  transverse Mercator coordinate (east)
Y  transverse Mercator coordinate (north)

Forward transformation (Geographic to Grid): ¢,A — E,N given a, f,A,,m,,E,,N,

1.  Compute ellipsoid constants £ and n from
e=f(2-f)
2. Compute the rectifying radius A from

A=

1+n 4 64

a{ 1, 1 ,
I+—n"+—n +

n=% (M)

L
—n+
256

8.|....] 2
16384 " S

For efficient numerical evaluation the equation for the rectifying radius should be expressed in Horner form

A=—2—{n? (n* (n* (250" +64) +256) +4096) +16384)/16384

1+n
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3.

Compute the coefficients {e,,} for k =1,2,...,8 from

For efficient numerical evaluation the coefficients {a’2 k} for k=1,2,...,

form

1 2, 5 5, 4 4 127 5 7891 , 72161 o — 18975107 it
n+—n+—n ——n + n+
2 3 16 180 288 37800 387072 50803200
13, 3, 557 , 281 , 1983433 . 13769 , 148003883 ,
=—n -——n+——mn+—n — n + n + n
48 5 1440 630 1935360 28300 174182400
61 , 103 , 15061 ; 167603 , 67102379 , 79682431 |
o =—n ———n + n + n = n + n
240 140 26880 181440 29030400 79833600
49561 ot 179 5_‘_6601661 oy 97445 o 40176129013 o
-——n
161280 168 7257600 49896 7664025600
34729 o 3418889 6+14644087 7+2605413599 8
n n
" 80640 1995840 9123840 622702080
212378941 o — 30705481 7_‘_175214326799 8
n n

% = 519334400 10378368 58118860800
o 1522256789 ;16759934899
1383782400 3113510400
_ 1424729850961
0!1 S —

743921418240

a, = (n(n(n(n(n(n((37884525 —75900428n) n +42422016)

- 89611200) + 46287360) + 63504000) - 135475200) + 101606400))/203212800

a, = (nz (n(n(n(n(n(148003883n+83274912)—178508970)
+77690880) +67374720)—104509440)+47174400)) /174182400

a, = (n* (n(n(n(n(318729724n—738126169)+294981280)
+178924680) — 234938880) +81164160)) /319334400

a, = (n4 (n(n((14967552000— 401761290131 n + 6971354016)
—8165836800) +2355138720)) /7664025600

(1 (((10421654396n + 3997835751) ~ 4266773472) + 1072709352 ) /2490808320

]
Il

10

a, = (n (n(175214326799n -171950693600) + 38652967262) ) /58118860800

12

=(13700311101-67039739596n)n’ /1 2454041600

a, = 1424729850961n° /743921418240

Compute conformal latitude ¢* from

where

tan ¢’ = tan g1+ &> —0'\/1+tan2 )

o =sinh{ etanh™ Lﬂ(b
\J1+tan’ ¢

“

8 should be expressed in Horner

(&)

(6)

@)



10.

Compute longitude difference @ from

. . , U , v
Compute the Gauss-Schreiber ratios £’=— and 17°=— from
a a

§=tanl(an¢j n’ =sinh™ N 9)
cos @ Jtan® ¢+ cos’ @

. X Y g
Compute transverse Mercator (TM) ratios 77 = X and &= X (to order n° and N =8 ) from

N N
=1+ a, cos2k¢ sinh 2k’ &=+ a,, sin2k¢ cosh 2kn’ (10)

k=1 k=1

A very efficient computation of the TM ratios that avoids the need for multiple trigonometric evaluations
can be achieved by considering the following.

With the TM ratios 7= X/A, £ =Y/A and Gauss-Schreiber ratios £ =u/a, 7’ =v/a the complex
function representing the conformal transformation from the u,v Gauss-Schreiber plane to the X,Y TM plane

is E+in=¢"+in'+) @, sin2k (& +in’) (Deakin et al. 2012) And with complex variables { =& +in
k=1

and {"=¢&"+in the transformation can be expressed as (Karney 2011, Deakin & Hunter 2011)
{=0"+ a, sin2k(” (11)
k=1

The trigonometric series Zaz . sin2k¢” in (11) can be evaluated by Clenshaw summation (see Appendix)
k=1

which minimizes the number of evaluations of trigonometric and hyperbolic functions leading to

n=n"+g"sin2& cosh2n’+ g cos 2&”sinh 277

12)
&=+ g sin2¢& cosh 277" — g™ cos 2& sinh 277
glRe , gll"‘ are computed from the recurrence relations
e |9 fork >N and k <1
8 = 2( Reghe +f1mg;'f1)—gff2 +a,,, fork=N,N-1,...,3,2,1
(13)
m % for k > N and k <1
T - e ) - gl fork=N.N-L...3.21
where R =cos2& cosh 2n’ f™ =sin2&’sinh 277 (14)
Compute X, Y transverse Mercator (TM) coordinates
X = Ap Y= AE (15)
Compute E,N grid coordinates
E=mX +E, N=mY+N, (16)
Compute factors p and g (to order n* and N =8) from
N N
p =1+ 2kar, cos2k&’ cosh 2k’ q=-)_2kat,, sin2k& sinh 2k’ (17)

k=1 k=1



11.

12.

A very efficient computation of p and ¢ that avoids the need for multiple trigonometric evaluations can be

achieved by considering the following.

The conformal transformation from the Gauss-Schreiber plane to the TM plane can be represented by the

complex expression { =¢"+ ZCZZk sin2k{” (see (11) above). Differentiating this expression with respect

k=1

, . . . d . .
to ¢’ and then expressing this derivative as d—? = p+iq leads to the complex equation

p+ig=1+) 2ka, cos2k{’

k=1

The trigonometric series ZZka'Zk cos2k¢” in (18) can be evaluated by Clenshaw summation (see
k=1

Appendix) leading to
p :1+d1RefRe +dllmflm _dzRe
q — dllrnfRe _leefIm _d;m

df,d™,dy,d;" are computed from the recurrence relations

. 0, fork >N and k <1
d;” = Re jRe Im ;Im Re _

2(fRedf + ) —df, + 2kay,, fork=N,N-1,...,3,2,1
g 0, fork > N and k <1
Co2(stal - fay ) -arn, fork=N,N-1,...,3,2,1

Compute point scale factor m from

— (éjm{\/l+tanz¢\/l—ez sinzqﬁ}
a

\/tan2 ¢ +cos’ @

Compute grid convergence ¥ from

q

y=tan"' {
P

}+ - |tan ¢ tan @)
J1+tan® ¢’

(18)

19)

(20)

ey

(22)



Inverse transformation (Grid to Geographic): E,N — ¢,A given a, f,A,,m,,E,,N,

1. Compute ellipsoid constants & and n. See Forward Transformation, Section 1, equations (1)
2. Compute the rectifying radius A. See Forward Transformation, Section 2, equation (3)

3. Compute the coefficients {aZk} for k=1,2,...,8. See Forward Transformation, Section 3, equations (5)
4.  Compute the coefficients {f,,} for k=1,2,...,8 from

12, 37, 1 , 81 o 96199 . 5406467 o 7944359 .
+—n ——n +——n +——n n+
2 3 96 360 512 604800 38707200 67737600
1, 1 5 437 , 46 1118711 , 51841 o 24749483 r
B, =——n ——n+——n"——n + n’ -
48 15 1440 105 3870720 1209600 348364800
17 5 37 , 209 o 5569 e 9261899 o 6457463
—_ +_

B, == n n'+ + n
480 840 4480 90720 58060800 17740800
4397 . 11 o 830251 466511 , 324154477
=—— n'— n
' 161280 504 7257600 2494800 7664025600 (23)
; 4583, 108847 . 800S831 , 22804433 |
=- n n
" 161280 3991680 63866880 124540416
g o 20648693 16363163 2204645983 ,
“ 638668800 518918400 12915302400
219941297 , 497323811
B, =- n' + n
5535129600 12454041600
191773887257
Bo =o'

3719607091200

For efficient numerical evaluation the coefficients { ,BZk} for k=1,2,...,8 should be expressed in Horner

form
B, = ( (n(n(n (n(n ((37845269 —31777436n)n —43097152)

+ 42865200) + 752640) - 104428800) +1 80633600) - 135475200))/270950400

B, = (nz (n(n(n(n((—24749483n ~14930208) 1 +100683990)
~152616960) +105719040) ~23224320) - 7257600 | /348364800

B, = (n3 (n(n(n(n(232468668n—101880889) ~39205760)
+29795040) + 28131840) — 22619520)) /638668800

B = (n4 (n(n((-3241544770-1433121792) n + 876745056) (24)
+167270400) — 208945440)) / 7664025600

B, =n’ (n((312227400 - 457888660n) n + 67920528) ~ 70779852) /2490808320

B, =n° (n(19841813847n +3665348512) - 3758062126) /116237721600
B, =n" (19892952440 —1979471673) /49816166400

B = —191773887257n8/3719607091200



Compute the transverse Mercator X, Y coordinates from

E-E N-N,
X=—= Y = - (25)
m() m()
Compute the transverse Mercator (TM) ratios & and 77 from
Y X
- == 26
c= n=- (26)
Compute the Gauss-Schreiber ratios & = 2 and n = Y from
a a
N N
E'=E+) B, sin2kécosh2kn 7' =n+ ) B, cos2kEsinh 2kn 27
k=1 k=1

A very efficient computation of the Gauss-Schreiber ratios that avoids the need for multiple trigonometric
evaluations can be achieved by considering the following.

With the Gauss-Schreiber ratios £ =u/a, n”=v/a and TM ratios 7= X/A, £=Y/A the complex
function representing the conformal transformation from the X,Y TM plane to the u,v Gauss-Schreiber plane

is &+in’=E+in+Y B, sin2k (& +in) (Deakin et al. 2012) And with complex variables ¢ =& +in and
k=1

{’=& +in’ the transformation can be expressed as (Karney 2011, Deakin & Hunter 2011)

C=C+3 B sin2k¢ 28)
k=1

The trigonometric series z B, sin2k¢ in (28) can be evaluated by Clenshaw summation (see Appendix)
k=1

leading to
& =&+ w sin2& cosh 277 —w™ cos 2& sinh 277 29
7’ =n+w" sin 2& cosh 277 + wf® cos 2 sinh 277
wi,w™ are computed from the recurrence relations
Re 0, fork>N and k <1
W, =
C2(FRwE A F W ) - w, + By, fork=N,N-1,...,3,2,1
(30)
- 0, fork>N and k <1
w =
o 2(FRw = F ) - wi, fork=N,N-1,...,3,2,1
where F® =cos2& cosh2n F™ =sin2&sinh 2 31
Compute ¢ =tan¢” (where ¢ is conformal latitude) from
£ =tang =S¢ (32)
\/sinh2 N +cos* &

Solve for t =tan¢@ by Newton-Raphson iteration and then determine latitude ¢

The equations linking 7 =tan¢ and ¢ =tan ¢’ are (6) and (7) given here in modified form as

' =tN1+ 0> —ovl+12 (33)

where o =sinh {8 tanh™ (%)} (34)
1+1¢



10.

11.
12.
13.

t can be evaluated using the Newton-Raphson method for the real roots of the equation f(#)=0 given in

the form of an iterative equation

n+l n f,(tn)

where 7, denotes the nth iterate and f (¢) is given by

(35)

f(t)=tN1+0® —oV1+t* -1 (36)
and 1" =tan¢’ is a fixed value. The derivative f’(7)= di{f (1)} is given by
t

(1-&*)1+7

37
1+(1-¢%)7 Gn

(1) =(Wm—m)

An initial value for #, can be taken as 7, =¢"=tan¢" and the functions f(#,) and f’(z,) evaluated from
equations (34), (36) and (37). t, is now computed from equation (35) and this process repeated to obtain

t,,t,,.... This iterative process can be concluded when the difference between ¢ ., and ¢, reaches an
acceptably small value, and then the latitude is given by

p=tan”'t (38)
Compute longitude difference @ and longitude A4 from

_sinh7’

tan @
cos&

A=l to (39)

Compute factors p and g. See Forward Transformation, Section 10, equations (19) and (20).
Compute point scale factor m. See Forward Transformation, Section 11, equation (21).

Compute grid convergence ¥ . See Forward Transformation, Section 12, equation (22)



Appendix
Hyperbolic functions

The basic functions are the hyperbolic sine of x, denoted by sinh x, and the hyperbolic cosine of x denoted by
cosh x ; they are defined as

. X _ —X X + —X
sinh x =< and coshx=2 28 40)
Other hyperbolic functions are in terms of these
tanh x = sinh x , cothx = 1 , sechx= I , cosechx= 1 41)
cosh x tanh x cosh x sinh x

The inverse hyperbolic function of sinh x is sinh™ x and is defined by sinh™ (sinhx)=x. Similarly cosh™ x

and tanh™' x are defined by cosh™ (coshx)=x and tanh™ (tanh x) = x ; both requiring x>0 and as a

consequence of the definitions

sinh™ x=ln(x+\/x2 +1) —o0 < X < 00
cosh™ x=ln(x+\/x2 —1) x>1 42)

tanh™ x=%lnG+—x —l1<x<l1
—x

Recurrence Relations

A recurrence relation is an equation that recursively defines a sequence. Once one or more initial terms are
given each further term of the sequence is defined as a function of the preceding terms. As examples, consider
the trigonometric functions

sinkg =2cos¢sin(k—1)@—sin(k—2)¢ (43)
cosk¢ =2cosgcos(k—1)p—cos(k—2)¢ (44)

With initial values sin(0)=0, cos(0)=1 in (43) and (44) gives successively

sin2¢ = 2cos ¢sin @, cos2¢ =2cos’ ¢p—1

sin3¢ =2cos@sin2¢ —sin @, cos3¢ =2cos@cos2¢—cos ¢
sin 4¢ = 2cos ¢sin 3¢ —sin 29, cos4¢ =2cos@cos3P—cos2¢
sinS¢=--- cosSg=---

Recurrence relations for even multiples are obtained by replacing ¢ with 2¢ in (43) and (44) to give
sin 2k¢ = 2cos 2¢sin2(k—1)¢—sin2(k —2)¢ (45)
cos 2k¢ =2cos2¢cos2(k—1)p—cos2(k—2)¢ (46)
Clenshaw summation

Suppose that a (truncated) sum S is denoted by

S =u,Fy (x)+u,F, (x)+u,F, (x)+-+uyFy (x) = ﬁ:uka (x) (47)

k=0

u, are coefficients independent of x, and F (x) obey the recurrence relation

F (x)=aka (x)+bka—l(x) (48)

where the coefficients a,,b, may be functions of x as well as k. Note that in many applications a does not
depend on k, and b is a constant independent of x or k.



The sum S can be evaluated from
S =bF, (X)Y2+F1(x))’1+Fo(x)“0 (49)

where the quantities y, are obtained from the ‘reverse’ recurrence formula

0, fork >N
Ve = (50)

QY th Ve T, fork=N,N-1,N-2,...,3,2,1

Equation (50) is Clenshaw’s recurrence formula and (49) is the associated sum; equations (49) and (50)
combined are called Clenshaw’s summation (Clenshaw 1955, Deakin & Hunter 2011).

Clenshaw’s summation can be explained by writing out (47) as

S=u,F, (x)+uN71F

N-1

+u,F, (x)+ulF1 (x)+u0F0 (x) (G2))

(x)+uN72F

N-2 (x)"'”"""‘xe (x)+u7F7 (x)+”6F6 (x)—i—---
and re-arranging (50) as
U =V =G Vi — b Vs (52)
Then substituting (52) into (51) gives
S = [yzv Ay Yy _bN+1yN+2]FN (x) +[y1v—1 Ay YN _bNyN+1]FN—1 (x)

+[y1v72 —Aay_2Yn _bN—lyN]FN—Z (x)+"'

+[)’s —dg), _b9Y10]Fs (x)+[y7 —d; ) _b8y9]F7 (x)+[y6 — Ay, _b7y8]F6 (x)+-~

+[y2 —4)s —b3y4]F2 (x)+[y1 a4y, _bzys]E (x)+[”o +by, _blyz]Fo (x) (53)

Noting that in the last line b,y, has been added and subtracted. Examining the terms containing a factor of y,
in (53) involves

[Fy (x)=a, F (x) = b, Fy () ] 3y (54)

And as a consequence of the recurrence relation (48) the term in [ ] will equal zero and similarly for all other

¥, down through and including y,. The only surviving terms in (53) are u,
given by (49).

.-y, and by, ; and so the sum S is

N
Summation S =Y c,, sin2k¢
k=1
Consider the (truncated) trigonometric series

N
S =c,sin2¢+c,sind¢ +c,sinb@p+---+c,, sin2N¢ = ZCZk sin2k¢ (55)
k=1

The trigonometric functions sin2¢, sin4¢, ... obey the recurrence relation (45) so S can be evaluated using

Clenshaw summation. Write the recurrence relation (45) in another form replacing k with k +1 giving

sin2(k+1)¢ =2cos2¢sin2kg—sin2(k —1)¢ (56)

Equation (56) has the same form as (48) where F, (x)=sin2k¢, a, =2cos2¢ and b, =—1. Clenshaw’s

recurrence formula (50) becomes

0, fork > N
Ve = (57)
2¢0820 Y, — Yiua T Cy» fOork=N,N-1,N-2,..321
The associated sum (see equation (49) with F,(x)=sin(0)=0 and F,(x)=sin2¢) is
N
S=Yc, sin2k¢ =y, sin2¢ (58)

k=1
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N
Complex summation S =Y c, sin2k{
k=1

Consider the complex sum
N N
S=8%+iS"™ = ¢, sin2k{ =) (c,, +i0)sin 2k (& +in) (59)
k=1 k=1

where S, ¢,, and ¢ are complex numbers having real and imaginary parts. We define a reverse complex
recurrence as

0, fork >N
Y = (60)

2¢0828 (¥ )= Visa +€o» fork=N,N-1,N-2,...,3,2,1

Where y, = y° +iy," are complex numbers having real and imaginary parts and using (58) the complex sum
(59) is given as

N
S=8%+iS™ =>"c, sin2k{ =y, sin2{ (61)

k=1

Using the relationships sin(ix) =isinh x and cos(ix) =cosh x the trigonometric expansion of the complex

functions sin2¢ and cos2{ are

sin2{'=sin(2& +i27) cos2{ =cos(2&+i2n)
=sin2¢ cosi2n + cos 2¢& sini2n =cos2& cosi2n —sin 2& sini2n
=sin2¢ cosh 277 +i cos 2E sinh 277 = cos 2 cosh 21 —isin 2& sinh 277 (62)

Using (62) in (60) and expanding and equating real and imaginary parts gives two recurrence relations

. 0, fork >N
T (A By )=y Hey,  fork=N,N-LN=2,...,3,2,1

(63)
w0 fork >N
T2 (Aym - By )i, fork=N,N-1,N—2,...,3,2,1
where A =cos2&cosh?27 and B =sin2&sinh 27 and the complex sum (61) is given as
N
S=8%+4iS"™ =Y ¢, sin2k¢ =y sin2¢ =y +iy" ) (sin 2& cosh 277 +i cos 2& sinh 277)
k=1
Expanding and equating real and imaginary parts gives
S =y sin 2& cosh 277 — y,™ cos 2& sinh 277 4

S™ = y™ sin 2& cosh 277 + y{° cos 2& sinh 277

With suitable changes of variables in equations (63) and (64) the real and imaginary parts of the complex sum S
appear in equations (12) and (29) in the Forward and Inverse transformations.
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