RELATIONSHIP BETWEEN ASTRONOMIC COORDINATES ¢,, 4,, H
AND GEODETIC COORDINATES ¢, 4;, h

In geodesy it is important to know the relationships between observed quantities such as horizontal
directions (or azimuths) and zenith distances - both of which are related to the astronomic meridian
and the vertical (the normal to the equipotential surface at the place of observation) - and the
complementary values related to the geodetic meridian and the normal to the ellipsoid. These
relationships can be used to reduce observations made between points on the terrestrial surface to
guasi-observations between corresponding points on the elipsoid. These relationships are often
given in aform known as Laplace's equation?.

. VERTICAL

CELESTIAL

Sh=Aa-Ag

Figure 1 The celestial sphere for an observer at O on the Earth's surface

Ipierre Simon, Marquis de Laplace (1749-1827), distinguished French mathematician. Best known for his equation V2V =0 (where
V isthe gravitational potential) published in his great work Mécanique Céleste. Other equationsin geodesy also bear his name.
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Figure 1 shows the celestial sphere for an observer on Earth at O. B, and Py are the projections of

north and south poles of the Earth on the celestial sphere. The polar axis (rotational axis of the
Earth) is aso the axis of the ellipsoid (an ellipse of revolution). The plane tangential to the
equipotential surface at O intersects the celestial spherein aline known as the celestial horizon.

The tangent to the vertical at O is perpendicular to the horizon plane and intersects the celestia
sphere at the astronomic zenith Z, (subscript A referring to astronomic), and the astronomic

meridian plane passing through Z, intersectsthe horizon at N, - the reference point for astronomic
azimuth «,. The normal to the ellipsoid which passes through the observer at O intersects the
celestial sphere at Z_ (subscript ¢ referring to geodetic), and the geodetic meridian plane passing
through Z; intersects the horizon at N - the reference point for geodetic azimuth o .

In general, the vertical and the normal at O do not coincide but diverge by a small angle & known
as the deflection of the vertical whose components are £ (Xi) in the plane of the astronomic

meridian, and 7 (Eta) along a great circle perpendicular to the astronomic meridian and passing
through Z. . Expressionsfor & and 77 can be obtained from spherical trigonometry and Figure 2.

CELESTIAL HORIZON

n=24F
¢ =2Z,F
B =2,G
oA = A, — A

% S

Figure 2 The celestial sphere as viewed from above.

In Figure 2 the astronomic and geodetic meridians are the great circles N,R,Z,S, and
Ng Py Zs S respectively. T is an elevated target whose astronomic azimuth ¢, is the angle
between the astronomic meridian plane and the great circle plane Z, T T,. The geodetic azimuth
o, is the angle between the geodetic meridian plane and the great circle plane Z, T T,. The
astronomic and geodetic zenith distances of T are z, and z; respectively.
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Using Napier's Rules of Circular Partsin the right-angled spherical triangle B, F Z

90—, +&
90— (90-05)
gives
sinn = cos(90—54) cos ¢ 0
and sin ¢, = cos7 cos(90—g¢, +¢) (i)

Now, cos(90—x)=sinxand sinp =7 and sSindi=dAl=1,—A; since n and d4 are small, hence
eguation (i) becomes

snp
n

sin 04 cos ¢,

()“A - ﬂe ) cos ¢G (1)

0

and equation (ii) becomes
sin ¢ = cos7 sin(¢,—¢)
Sings =~ sin(¢,—¢)
and taking the sine of both sides gives
$ =0 2
The differencein azimuth is
oo = o, -0 (3)
and from Figure 2
o, — (0o +0ar,) = o
hence
oo = ooy +oa, (4)
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Now J¢, can be calculated from the right-angled spherical triangle B, N, N, and using Napier's
Rulesfor Circular Parts

/__J ' NG
" %
oA

gives
sin ¢, = tan de, tan(90—-A)
giving
tan oo, = tan o4 sin ¢,

and since oo and 64 are small, then tande;, = doy, and tandd = 04 = (A, — 4)

ooy = (Ay—As) Sin g, (5)
Re-arranging equation (1) and substituting into equation (5) we have
n .
oo, = sin
' cosgy, O

and since & = ¢, — ¢, isasmall quantity then cos ¢, = cos ¢, and we may write

50{1 = 11 tan ¢, (6)
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Now thefigure B, N, N, - B, FZ; issmilarto TT,T,-TGZ,

80L1

Moy N

may write

and using similar reasoning to above we

oo, = ftan(90-1z,)= fcotz, (7)

and since £ and 7 are very small, the figure below (extracted from Figure 2) can be considered

plane

g=a,—90°
sing = —cos o,
cosg = snea,
ZF =7
Z,F = $
Z,G = B
.G =¢

B =<&cosg+nsing
p=E&sna, —ncosa,
e=-¢{sng+ncosg

e=¢%coso, +nsSna,

Substituting equations (6) and (7) into equation (4) gives
oo = ooy + oo, =m tan ¢, + B cot z,
and substituting equation (8) gives

oo = oo, +oa, = ntan g, + (& sin e, — 1 cos ) cot z,
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Equation (10) is often expressed as

doa = + ¢ sina, cot z, + 17 (tan ¢, — cos o, cot z,) (12)

Equations (10) and (11) give an expression for the difference between astronomic and geodetic
azimuth

Using similar reasoning and the diagram above we have z, + £ = z, and hence an expression for
the difference between astronomic and geodetic zenith distance is given by

02=12,-2, =—-&=-¢(c0sa, —nsSna, (12)

Now from Figure 2, when z, is approximately 90°, as it often is in geodetic survey work, then
oo, = 0 and the correction for the elevation of the target T can beignored. Thisisthe second term

in equation (10), and as a consequence, the correction in azimuth o« is entirely due to the elevation
of the pole B, . Hence acommon form of the azimuth correction is written as

oo=o,—0y = ntang, (13)
Now from equation (1) 7 = (4, — 4;) cos ¢, which when substituted into equation (13) gives

sin
oo =0, —0g = (Ay — Ag) COS ¢ cosZi

and since & isasmall quantity then cos ¢, = cos ¢, and we may write
oo = ay -0 = (A4 — A5) Sin ¢, (14)

Equation (14) is known as Laplace's equation for azimuths.

CONNECTION BETWEEN ASTRONOMIC AND GEODETIC COORDINATES

From equations (1) and (2) the following relationships between astronomic and geodetic latitude ¢,
and ¢ respectively and astronomic and geodetic longitude 4, and A respectively are

P =0n— f (15)
As = A —1SECH; (16)

CONNECTION BETWEEN ASTRONOMIC AND GEODETIC AZIMUTH

From equation (13) the connection between geodetic azimuth ¢, and astronomic azimuth ¢, is
given by
O = 0, —Ttang, (17)
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CONNECTION BETWEEN ELLIPSOIDAL AND ORTHOMETRIC HEIGHTS

Figure 3 A sectional view of the ellipsoid, geoid and the terrestrial surface.

In Figure 3 the point P on the Earth's terrestrial surface is projected onto the ellipsoid at Q via the
normal PQ and onto the geoid at P, via the curved plumbline PR,. R, on the geoid is projected

onto the ellipsoid at Q, viathenorma RQ,. It should be noted that the plumbline is a space curve,
i.e., it has tortion and twist and in general B, (and Q,) will not lie in the plane containing P and Q.

The élipsoidal height h is the distance PQ measured along the normal. The orthometric height H is
the distanced measured along the curved plumbline PR, .

The geoid-éllipsoid separation N is the distance between the geoid and ellipsoid measured along the
normal P.Q, but for all practical purposes the geoid and the ellipsoid can be considered as parallel

surfaces in the vicinity of R, and Q and the connection between ellipsoidal and orthometric heights
isgiven by

h=H+N (18)

DEFLECTION COMPONENT ¢ INTHE DIRECTION OF THE AZIMUTH «

In Figure 3, the vertical at P is tangentia to the plumbline a¢ P and perpendicular to the
equipotential surface through P. The vertical pierces the celestial sphere at Z,, the astronomic

zenith and the normal piercesthe celestial sphereat Z; , the geodetic zenith. The angle between the

two zeniths is the deflection of the vertical @ (see Figure 1) but Figure 3 is a section in a particular
azimuth « and the component of the deflection, denoted by ¢, is given by equation (9) as

e=¢%cosa, +nsna, (19
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CORRECTIONSTO OBSERVED DIRECTIONSDUE TO £ AND 7

It should be noted that the correction for azimuth der is made up of two terms de;, and e, (see
equation 10)). The first term, do, =ntang,, is the same for every target, independent of its
azimuth and zenith distance and results from the astronomical azimuth ¢, being reckoned from
astronomical north N, rather than geodetic north N . It thus represents a shift of the zero point or
the Reference Object in a set of observed directions.

The second term dex, = (£ sin e, — 17 cos e, ) cot z, depends on the azimuth and zenith distance of
the particular target and arises because the target T is projected from Z, and Z, onto different
points T, and T, of the horizon. It thus represents a correction to an observed direction and is
analogous to the correction for an inaccurately levelled theodolite. The corrected direction is given
by

corrected direction = observed direction + {_f SINa, +17COSA, } (20)

tanz,

where the corrected direction relates to a theodolite whose rotational axis is coincident with the
normal to the ellipsoid. The observed direction relates to a theodolite whose rotational axis is
coincident with the vertical .

CORRECTIONSTO OBSERVED ZENITH DISTANCESDUE TO & AND 7

The correction to an observed zenith distance z, due to deflection components & and 77 is given by
equation (12) as
0z2=12,-2, =-¢=-(cosa, —nsina,

and the corrected zenith distance z; is given by
corrected zenith distance = observed zenith distance+ (& cos e, + 77 sin ) (21)

where the corrected zenith distance relates to a theodolite whose rotational axis is coincident with
the normal to the ellipsoid. The observed zenith distance relates to a theodolite whose rotational
axisis coincident with the vertical.
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