
RELATIONSHIP BETWEEN ASTRONOMIC COORDINATES  , ,A A Hφ λ  
AND GEODETIC COORDINATES  , ,G G hφ λ  

 
 
In geodesy it is important to know the relationships between observed quantities such as horizontal 
directions (or azimuths) and zenith distances - both of which are related to the astronomic meridian 
and the vertical (the normal to the equipotential surface at the place of observation) - and the 
complementary values related to the geodetic meridian and the normal to the ellipsoid.  These 
relationships can be used to reduce observations made between points on the terrestrial surface to 
quasi-observations between corresponding points on the ellipsoid.  These relationships are often 
given in a form known as Laplace's equation1. 
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Figure 1  The celestial sphere for an observer at O on the Earth's surface 

                                                 
1Pierre Simon, Marquis de Laplace (1749-1827), distinguished French mathematician.  Best known for his equation  (where 
V is the gravitational potential) published in his great work Mécanique Céleste.  Other equations in geodesy also bear his name. 
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Figure 1 shows the celestial sphere for an observer on Earth at O.   and  are the projections of 
north and south poles of the Earth on the celestial sphere.  The polar axis (rotational axis of the 
Earth) is also the axis of the ellipsoid (an ellipse of revolution).  The plane tangential to the 
equipotential surface at O intersects the celestial sphere in a line known as the celestial horizon.   

NP SP

 
The tangent to the vertical at O is perpendicular to the horizon plane and intersects the celestial 
sphere at the astronomic zenith AZ  (subscript A referring to astronomic), and the astronomic 
meridian plane passing through AZ  intersects the horizon at  - the reference point for astronomic 
azimuth .  The normal to the ellipsoid which passes through the observer at O intersects the 
celestial sphere at 

AN

Aα

GZ  (subscript G referring to geodetic), and the geodetic meridian plane passing 
through GZ  intersects the horizon at  - the reference point for geodetic azimuth . GN Gα
 
In general, the vertical and the normal at O do not coincide but diverge by a small angle  known 
as the deflection of the vertical whose components are 

θ
ξ  (Xi) in the plane of the astronomic 

meridian, and η  (Eta) along a great circle perpendicular to the astronomic meridian and passing 
through GZ .  Expressions for ξ  and η  can be obtained from spherical trigonometry and Figure 2. 
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 Figure 2  The celestial sphere as viewed from above. 
 
In Figure 2 the astronomic and geodetic meridians are the great circles  and 

 respectively.  T is an elevated target whose astronomic azimuth  is the angle 
between the astronomic meridian plane and the great circle plane 

A N A AN P Z S

AαG N G GN P Z S

A AZ T T .  The geodetic azimuth 
 is the angle between the geodetic meridian plane and the great circle plane Gα G GZ T T .  The 

astronomic and geodetic zenith distances of T are  and  respectively. Az Gz
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Using Napier's Rules of Circular Parts in the right-angled spherical triangle  N GP F Z
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gives 

 ( )sin cos 90 cos Gη δλ φ= −  (i)  

and (sin cos cos 90G )Aφ η φ ξ= − +  (ii) 

Now, ( )cos 90 sinx x− = and sinη η≈  and sin  since Aδλ δλ λ λ≈ = − G η  and δλ  are small, hence 
equation (i) becomes 

 ( )
sin sin cos

cos
G

A G G

η δλ φ
η λ λ φ

=
≈ −   (1) 

and equation (ii) becomes 

 
( )

( )
sin cos sin

sin sin
G A

G A

φ η φ ξ
φ φ ξ

= −

≈ −
 

and taking the sine of both sides gives 

 A Gξ φ φ= −   (2) 

The difference in azimuth is 

   (3) Aδα α α= − G

2

and from Figure 2 

  ( )1 2A Gα δα δα α− + =

hence 

   (4) 1δα δα δα= +
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Now  can be calculated from the right-angled spherical triangle  and using Napier's 
Rules for Circular Parts 

1δα N A GP N N
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gives 

 ( )1sin tan tan 90Aφ δα δλ= −  

giving 

 1tan tan sin Aδα δλ φ=  

and since  and δα δλ  are small, then  and  1tanδα δα≈ 1

A

( )tan A Gδλ δλ λ λ≈ = −

 ( )1 sinA Gδα λ λ φ≈ −   (5) 

Re-arranging equation (1) and substituting into equation (5) we have 

 1 sin
cos A

G

ηδα φ
φ

=  

and since A Gξ φ φ= −  is a small quantity then cos cosG Aφ φ≈  and we may write 

 1 tan Aδα η φ≈   (6) 

 
 

LAPLACE.DOC  PAGE 4 



Now the figure  is similar to  N A G N GP N N P F Z− G A AT T T T G Z−
 
 
 
 
 
  and using similar reasoning to above we 

may write 
 

   (7) ( )2 tan 90 cotAzδα β β≈ − =
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and since ξ  and η  are very small, the figure below (extracted from Figure 2) can be considered 
plane 
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 cos sing gβ ξ η= +  

 sin cosA Aβ ξ α η α= −  (8) 

 sin cosg gε ξ η= − +  

 cos sinAε Aξ α η α= +  (9) 

 
Substituting equations (6) and (7) into equation (4) gives 

 1 2 tan cotA Azδα δα δα η φ β= + = +  

and substituting equation (8) gives 

  (10) (1 2 tan sin cos cotA A A zδα δα δα η φ ξ α η α= + = + − ) A
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Equation (10) is often expressed as  

  (11) (sin cot tan cos cotA A A Azδα ξ α η φ α= + + − )Az

 
Equations (10) and (11) give an expression for the difference between astronomic and geodetic 
azimuth 
 
Using similar reasoning and the diagram above we have  and hence an expression for 
the 

Az ε+ = Gz
difference between astronomic and geodetic zenith distance is given by 

 cos sinA G Az z zδ ε Aξ α η α= − = − = − −  (12) 

 
Now from Figure 2, when  is approximately 90°, as it often is in geodetic survey work, then 

 and the correction for the elevation of the target T can be ignored.  This is the second term 
in equation (10), and as a consequence, the correction in azimuth δα  is en ly due to the elevation 
of the pole NP .  Hence a common form of the azimuth correction is written as 

Az

2 0δα ≈
tire

A tanA Gδα α α η φ= − =  (13) 

Now from equation (1) ( ) cosA G Gη λ λ φ= −  which when substituted into equation (13) gives 

 ( ) sincos
cos

A
A G A G G

A

φδα α α λ λ φ
φ

= − = −  

and since ξ  is a small quantity then cos cosG Aφ φ≈  and we may write 

 ( ) sinA G A Gδα α α λ λ Aφ= − ≈ −  (14) 

Equation (14) is known as Laplace's equation for azimuths. 
 
 
CONNECTION BETWEEN ASTRONOMIC AND GEODETIC COORDINATES 
 
From equations (1) and (2) the following relationships between astronomic and geodetic latitude Aφ  
and Gφ  respectively and astronomic and geodetic longitude  and  respectively are Aλ Gλ

 G Aφ φ ξ= −  (15) 

 secG Aλ λ η Gφ= −  (16) 

 
 
CONNECTION BETWEEN ASTRONOMIC AND GEODETIC AZIMUTH 
 
From equation (13) the connection between geodetic azimuth  and astronomic azimuth  is 
given by 

Gα Aα

 tanG Aα α η Aφ= −  (17) 
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CONNECTION BETWEEN ELLIPSOIDAL AND ORTHOMETRIC HEIGHTS 
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Figure 3  A sectional view of the ellipsoid, geoid and the terrestrial surface. 
 
In Figure 3 the point P on the Earth's terrestrial surface is projected onto the ellipsoid at Q via the 
normal PQ and onto the geoid at  via the curved plumbline .   on the geoid is projected 
onto the ellipsoid at  via the normal .  It should be noted that the plumbline is a space curve, 
i.e., it has tortion and twist and in general  (and ) will not lie in the plane containing P and Q. 

0P 0PP 0P

0Q 0 0PQ

0P 0Q
 
The ellipsoidal height h is the distance PQ measured along the normal.  The orthometric height H is 
the distanced measured along the curved plumbline . 0PP
 
The geoid-ellipsoid separation N is the distance between the geoid and ellipsoid measured along the 
normal  but for all practical purposes the geoid and the ellipsoid can be considered as parallel 
surfaces in the vicinity of  and Q and the connection between ellipsoidal and orthometric heights 
is given by 

0 0PQ

0P

  (18) h H N= +

 
 
DEFLECTION COMPONENT  IN THE DIRECTION OF THE AZIMUTH  ε α
 
In Figure 3, the vertical at P is tangential to the plumbline at P and perpendicular to the 
equipotential surface through P.  The vertical pierces the celestial sphere at AZ , the astronomic 
zenith and the normal pierces the celestial sphere at GZ , the geodetic zenith.  The angle between the 
two zeniths is the deflection of the vertical  (see Figure 1) but Figure 3 is a section in a particular 
azimuth  and the component of the deflection, denoted by , is given by equation (9) as 

θ
α ε

 cos sinAε Aξ α η α= +  (19) 
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CORRECTIONS TO OBSERVED DIRECTIONS DUE TO ξ  AND η  
 
It should be noted that the correction for azimuth  is made up of two terms  and  (see 
equation 10)).  The first term, 

δα 1δα 2δα

1 tan Aδα η φ= , is the same for every target, independent of its 
azimuth and zenith distance and results from the astronomical azimuth  being reckoned from 
astronomical north  rather than geodetic north .  It thus represents a shift of the zero point or 
the Reference Object in a set of observed directions. 

Aα

AN GN

The second term  depends on the azimuth and zenith distance of 
the particular target and arises because the target T is projected from 

(2 sin cos cotA A zδα ξ α η α= − ) A

AZ  and GZ  onto different 
points  and T  of the horizon.  It thus represents a correction to an observed direction and is 
analogous to the correction for an inaccurately levelled theodolite.  The corrected direction is given 
by 

AT G

 sin coscorrected direction = observed direction
tan

A

Az
Aξ α η α⎧ ⎫− ++ ⎨ ⎬

⎩ ⎭
 (20) 

where the corrected direction relates to a theodolite whose rotational axis is coincident with the 
normal to the ellipsoid.  The observed direction relates to a theodolite whose rotational axis is 
coincident with the vertical. 
 
 
CORRECTIONS TO OBSERVED ZENITH DISTANCES DUE TO ξ  AND η  
 
The correction to an observed zenith distance  due to deflection components Az ξ  and η  is given b
equation (12) as 

y 

A cos sinA G Az z zδ ε ξ α η α= − = − = − −  
and the corrected zenith distance  is given by Gz

 (corrected zenith distance observed zenith distance cos sinA )Aξ α η α= + +  (21) 

where the corrected zenith distance relates to a theodolite whose rotational axis is coincident with 
the normal to the ellipsoid.  The observed zenith distance relates to a theodolite whose rotational 
axis is coincident with the vertical. 
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