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ABSTRACT 

These notes provide a detailed explanation of the geometry of the loxodrome on the 

ellipsoid.  Equations are derived for azimuth and distance of a loxodrome between two 

points on an ellipsoid and these equations enable the development of algorithms for the 

solution of the direct and inverse problems of the loxodrome.  A MATLAB function is 

provided that demonstrates an algorithm for the inverse problem. 

 

INTRODUCTION 

The loxodrome between  and  on the ellipsoid is a curved line such that every element 

of the curve ds intersects a meridian at a constant azimuth α .  Unless  or 

 the loxodrome will spiral around the ellipsoid and terminate at one of the poles.  In 

other cases the loxodrome will lie along a meridian of longitude (  or a parallel 

of latitude ( ). 
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Figure 1:  Loxodrome on the earth's surface 

 
Loxodrome on Ellipsoid.doc  1 



In marine and air navigation, aircraft and ships sailing or flying on fixed compass headings 

are moving along loxodromes, hence knowledge of loxodromes is important in navigation.  

Mercator's projection – a normal aspect cylindrical conformal projection – has the unique 

property that loxodromes on the earth's surface are projected as straight lines on the map.   

In geodesy the direct problem (computing position given azimuth and distance from a 

known location) and the inverse problem (computing azimuth and distance between known 

positions) are fundamental operations and can be likened to the equivalent operations of 

plane surveying; radiations (computing coordinates of points given bearings and distances 

radiating from a point of known coordinates) and joins; (computing bearings and distances 

between points having known coordinates).  The direct and inverse problems in geodesy 

are usually associated with the geodesic which is the unique curve defining the shortest 

path on the ellipsoid but they can also be associated with other curves.  So; 

The direct problem of the loxodrome on the ellipsoid is: given latitude and longitude 

of  and the azimuth  and distance s of a loxodrome between  and ; compute 

the latitude and longitude of . 
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The inverse problem of the loxodrome on the ellipsoid is: given the latitude and 

longitude of  and ; compute the azimuth α  and distance s of the loxodrome 

between  and . 
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The equations necessary for the solution of the direct and inverse problems are derived 

from the differential geometry of the ellipsoid and in particular, relationships that can be 

obtained from the differential rectangle on the ellipsoid.  Also, meridian distance (the 

distance along a meridian from the equator) is used in computing loxodrome distances.  

Discussions of differential geometry of the ellipsoid and meridian distance can be found in 

Deakin & Hunter (2008) or geodesy textbooks (e.g., Lauf 1983; Bomford 1980), and an 

excellent treatment of the loxodrome on the ellipsoid can be found in Bowring (1985). 

 

THE ELLIPSOID 

In geodesy, the ellipsoid is a surface of revolution created by rotating an ellipse about its 

minor axis.  The size and shape of an ellipsoid is defined by one of three pairs of 

parameters: (i)  where a and b are the ,a b semi-major and semi-minor axes lengths of an 

ellipsoid respectively (and a ), or (ii) a f  where f is the b> , flattening of an ellipsoid, or 

(iii)  where  is the square of the first 2,a e 2e eccentricity of an ellipsoid.   
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Figure 2:  The reference ellipsoid 

 

The ellipsoid parameters  are related by the following equations 2, , ,a b f e
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The second eccentricity e  of an ellipsoid is also of use and ′
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In Figure 2 the normal to the surface at P intersects the rotational axis of the ellipsoid 

(the z-axis) at H making an angle φ  with the equatorial plane of the ellipsoid – this is the 

latitude of P.  The longitude λ  is the angle between the Greenwich meridian plane (a 

reference plane) and the meridian plane (the z-w plane) containing the normal through P.  

 and  are φ λ curvilinear coordinates and meridians of longitude (curves of constant λ ) a

parallels of latitude (curves of constant φ ) are parametric curves on the ellipsoidal surfa

At P on th

nd 

ce. 

e surface of the ellipsoid, planes containing the normal to the ellipsoid intersect 

the surface creating elliptical sections known as normal sections.  Amongst the infinite 

number of possible normal sections at a P; each having a certain radius of curvature, two 

 
Loxodrome on Ellipsoid.doc  3 



are of interest: (i) the meridian section, containing the axis of revolution of the ellipsoid 

and having the least radius of curvature, denoted by ρ , and (ii) the prime vertical section, 

 

perpendicular to the meridian plane and having the greatest radius of curvature, denoted 

by ν . 

( )
( )
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1 1

1 sin
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− −
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or P, the centre of the radius of curvature of th

rmal 

between

ns for the radii of curvature  and  are given by 

 

2 21 sinW e φ= −

F e prime vertical section is at H and 

PHν = .  The centre of the radius of curvature of the meridian section lies on the no

 P and H. 

Alternative equatio ρ ν

2a c

( )
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2 32 21 cos Vb e

ρ
φ

= =
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nd c is the polar radius of curvature

2 21 cosV e φ′= +

a

 
Loxodrome on Ellipsoid.doc  4 

 of the ellip

 

soid. 

The latitude functions W and V are related as follows 

( )
1
2

2
2 V V

2 2
   and   

1 1

b
W W V

e ae
= = =

′+ ′+
 (14) 

Points on the ellipsoid surface have curvilinear coordinates  and Cartesian coordinates 

he 

 

,φ λ

x,y,z where the x-z plane is the Greenwich meridian plane, t x-y plane is the equatorial 

plane and the y-z plane is a meridian plane 90º east of the Greenwich meridian plane.  

Cartesian and curvilinear coordinates are related by 

cos cosx ν φ λ=

( )2

cos cos

1 sin

y

z e

ν φ λ

ν

=

= − φ

 (15) 
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)Note that  is the distance along the normal from a point on the surface to the 

point where the normal cuts the equatorial plane. 

( 21 eν −

 

DIFFERENTIAL RELATIONSHIPS FOR THE LOXODROME ON THE ELLIPSOID 

The derivation of equations relating to the loxodrome requires an understanding of the 

connection between differentially small quantities on the surface of the ellipsoid.   
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Figure 3:  The differential rectangle on an ellipsoid (a,b) 

 

These relationships can be derived from the differential rectangle, with diagonal PQ in 

Figure 3 which shows P and Q on an ellipsoid whose semi-axes are a and b ( .  P and 

Q are separated by differential changes in latitude d  and longitude d  and are connected 

by a loxodrome of length ds making an angle  (the azimuth) with the meridian through 

P.  The meridians λ  and , and the parallels φ  and  form a differential 

rectangle on the surface of the ellipsoid.  The differential distances dp  along the parallel φ  

and dm  along the meridian λ  are 

)

λ φ

φ

a b>

φ λ

α

dλ + dφ+

  (16) cosdp wd dλ ν φ λ= =

   (17) dm dρ φ=

where ρ  and ν   are radii of curvature in the meridian and prime vertical planes 

respectively and  is the perpendicular distance from the rotational axis NOS. cosw ν=



From Figure 3, the differential distance ds is given by 
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2
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cos
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ds dm dp

d d

d
d

dq d

ρ φ ν φ λ

ρ φ
ν φ λ

ν φ

ν φ λ

= +

= +

⎛ ⎞⎟⎜ ⎟⎜= +⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

= +  (18) 

q is known as the isometric latitude defined by the differential relationship 

 
cos

dq d
ρ

φ
ν φ

=  (19) 

( ,q λ)

λ

 is a curvilinear coordinate system on the ellipsoid with isometric parameters where 

isometric means of equal measure (iso = equal; metric = able to be measured).  We can 

see this from equation (18) where the differential distances along the parametric curves q 

and λ  are  and , i.e., the differential distances are equal for 

equal angular differentials dq and d . 

cosdm dqν φ= cosdp dν φ=

λ

Also from Figure 3 the azimuth α  of the loxodrome is obtained from 

 
cos

tan
d d

d d

ν φ λ λ
α

ρ φ
= =

q
 (20) 

and azimuth  and distance s are linked by the differential relationship α

 
1

cos cos

dm
ds dρ φ

α α
= =  (21) 

 

ISOMETRIC LATITUDE 

The isometric latitude is defined by the differential equation (19) from which we obtain 

 
1cos

q d
ρ

φ
ν φ

= ∫ C+  (22) 

where  is a constant of integration. 
1

C

Substituting into equation (22) expressions for ρ  and ν  given by equations (7) and (8), 

and simplifying gives 
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2

12 2
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1 sin cos

e
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e
φ

φ φ

−
=

−∫ d C+  (23) 
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The integrand of equation (23) can be separated into partial fractions 
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( ) ( )

2
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1

cos1 sin cos 1 sin
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e e φφ φ φ

−
= +

− −
 (24) 

Expanding and simplifying equation (24) gives 

  (25) 

( )
( )

( ) ( )

2 2 2

2 2
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1 cos 1 sin

cos 1 cos

1 cos

e A B e

A B Be

B e A Be

φ φ

φ φ

φ

− = + −

= + − −

= − + + cosφ

A and B are obtained by comparing the coefficients of  and  in equation 21 e− cosφ (25) 

giving 

  21; cosB A e φ= = −

Substituting these results into equation (24) gives the isometric latitude as 

 
2

12 2
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cos 1 sin

e
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e

φ
φ

φ φ
= −

−∫ ∫ Cφ +

u

 (26) 

Put  then  and sin sine uφ = cos cose d udφ φ =
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1
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u
q d e du

u
u
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u
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φ

φ
φ
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−
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∫ ∫

∫ ∫
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 (27) 

From standard integrals 
1

ln tan
cos 4 2

x
dx

x
π⎧ ⎫⎛ ⎞⎪ ⎪⎟⎪ ⎜ ⎟= +⎜⎨ ⎟⎜ ⎟⎪ ⎜⎝ ⎠⎪ ⎪⎩ ⎭

∫ ⎪⎬⎪
 and from half-angle trigonometric 

formula 
1 cos

tan
2 1 co
A A

A

⎛ ⎞ −⎟⎜ ⎟ = ±⎜ ⎟⎜ ⎟⎜ +⎝ ⎠ s
 giving 

( )
( )

1 cos 2 1 sin
tan

4 2 1 sin1 cos 2

xx x
xx

ππ

π

− +⎛ ⎞ +⎟⎜ ⎟+ = =⎜ ⎟⎜ ⎟⎜ −⎝ ⎠ + +
.  

Substituting these results into equation (27) gives the isometric latitude as 

 

1
2

2 3

1 sin
ln tan ln

4 2 1 sin
e

q C e
e

π φ φ
φ

⎛ ⎞ ⎛ ⎞+⎟ ⎟⎜ ⎜⎟ ⎟= + + − −⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜ −⎝ ⎠ ⎝ ⎠ 1
C C+  

where  are constants of integration.  Using the laws of logarithms: 

, 

1 2 3
,  and C C C

log
a a
MN M=log log N+

a
log log log

a a

M
M N

N
= −

a

1

 and lo , and 

defining a new constant of integration  gives 

g logp
a a
M p M=

2 3
C C C C= − +
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4 2 1 sin

e

e

e
q C

e

e
C

e

π φ φ
φ

π φ φ
φ

⎛ ⎞ ⎛ ⎞−⎟ ⎟⎜ ⎜⎟ ⎟= + +⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜ +⎝ ⎠ ⎝ ⎠
⎧ ⎫⎪ ⎪⎪ ⎪⎛ ⎞⎛ ⎞−⎪ ⎟ ⎟⎪ ⎜ ⎜⎟ ⎟= + +⎜ ⎜⎨ ⎟ ⎟⎜ ⎜⎟ ⎟⎪ ⎜ ⎜ ⎪+⎝ ⎠⎝ ⎠⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭

+
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The constant C in equation (28) equals zero since if  then  and the isometric 

latitude q is obtained from 

0φ = 0q =

 
21 sin

ln tan
4 2 1 sin

e

e
q

e
π φ φ

φ
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⎪⎟ ⎪⎟ ⎬⎟ ⎪

q

q

α

1

 (29) 

This derivation follows Lauf (1983) where an integral identical to equation (22) is 

evaluated as part of the derivation of the equations for the ellipsoidal Mercator projection 

– a conformal projection of the ellipsoid.  Thomas (1952) derives a similar equation in his 

development of conformal representation of the ellipsoid upon a plane. 

 

THE EQUATION OF THE LOXODROME 

By re-arranging equation (20) we have 

  tand dλ α=

and integrating both sides, noting that  is a constant, gives tanα

  

( )

2 2

1 1

2 1 2 1

tan

tan

q

q

d d

q q

λ

λ

λ α

λ λ α

=

− = −

∫ ∫

And the equation of the loxodrome between  and  on the ellipsoid is 
1

P
2

P

  (30) tanqλΔ = Δ

where  are differences in longitude and isometric latitude 

respectively and α  is the (constant) azimuth of the loxodrome. 
2 1 2

 and q q qλ λ λΔ = − Δ = −
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THE AZIMUTH OF A LOXODROME 

The azimuth α  of a loxodrome between  and  on an ellipsoid can be obtained from 

equation 
1

P
2

P

(30) as 

 2 1

2 1

arctan arctan
q q

λ λλ
α

⎛ ⎞⎛ ⎞ −Δ ⎟⎜⎟⎜ ⎟⎟ ⎜= =⎜ ⎟⎟ ⎜⎜ ⎟⎟⎜ ⎟⎜Δ −⎝ ⎠ ⎝ ⎠q

1

 (31) 

where  are isometric latitudes of  and  respectively and q is given by equation 
1 2
,q q

1 2
,λ λ

1
P

2
P

(29).   are the longitudes of  and . 
1

P
2

P

 

DISTANCE ALONG A LOXODROME 

Consider a loxodrome of constant azimuth α  that crosses the equator and passes through 

 and .  The distance s between  and  can be defined as  where  and 

 are distances from the equator to  and  respectively and from equations 
1

P

2
s

2
P

1
P

1
P

2

2

P

P
2

s s s= −
1

s

(21) and 

(7) we may write 

 
( )1 12

1
1 3

0 0

11 1
cos cos cos

a e m
s d d

W

φ φ

ρ φ φ
α α

−
= = =∫ ∫ α

 (32) 

and similarly 

 2
2 cos

m
s

α
=  (33) 

1
m  and  are meridian distances and meridian distance m is defined as the length of the 

arc of the meridian to a point in latitude φ .  m is obtained from the differential 

relationship given by equation 

2
m

(17) and  

 ( ) ( ) ( )
3

2 2 2 22
3

0 0 0

1
1 1 sin 1m d a e e d a e

W

φ φ φ

ρ φ φ φ φ
−

= = − − = −∫ ∫ ∫ d  (34) 

This is an elliptic integral of the second kind and cannot be evaluated directly; instead, the 

integrand ( )
3

2 2 2
3

1
1 sine

W
φ

−
= −  is expanded by using the binomial series and then 

evaluated by term-by-term integration.  Following Deakin & Hunter (2008) we obtain an 

expression for the meridian distance as 

 { }0 2 4 6 8 10sin 2 sin 4 sin 6 sin 8 sin10m a A A A A A Aφ φ φ φ φ φ= − + − + − +"  (35) 

where 
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1
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A e e e e e
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A e e e

A e e
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⎛ ⎞⎟⎜= + + + + ⎟⎜ ⎟⎝ ⎠
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= + +

"

"

"

"

"

( )10
10

693
131072

A e

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎝ ⎠

= +"

 (36) 

Combining equations (32) and (33) gives the length of the loxodrome between  and  

as 
1

P
2

P

 2

cos

m m
s

α
−

= 1

1

 (37) 

where α  is the (constant) azimuth and  and  are meridian distances for  and  

obtained from equation 
1

m
2

m
1

φ
2

φ

(35). 

 

THE DIRECT PROBLEM OF THE LOXODROME ON THE ELLIPSOID 

The direct problem is: Given latitude and longitude of , azimuth  of the loxodrome 

 and the arc length s along the loxodrome curve; compute the 

latitude and longitude of  and the reverse azimuth . 

1
P

12
α

1 2
PP

2
P

21
α

With the ellipsoid constants  and given  and s the problem may be 

solved by the following sequence. 

2, , and a f e
1 1 12
, ,φ λ α

 

1. Compute  the meridian distance of  using equation 
1

m
1

P (35). 

2. Compute meridian distance  from equation 
2

m (37) where 

  
2 12

cosm s mα= +

3. Use Newton-Raphson iteration to compute latitude  using equation 
2

φ (35) re-

arranged as 

  ( ) { }0 2 4 6 8 10
sin2 sin 4 sin6 sin 8 sin10 0f a A A A A A A mφ φ φ φ φ φ φ= − + − + − − =
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 and the iterative equation ( ) ( )
( )( )
( )( )1

n

n n

n

f

f

φ
φ φ

φ
+

= −
′

 where ( ) ( ){d
f f

d
φ φ

φ
′ = }

φ

) )

1

λ

1

 and 

  ( ) { }0 2 4 6 8 10
2 cos2 4 cos 4 6 cos6 8 cos 8 10 cos10f a A A A A A Aφ φ φ φ φ′ = − + − + −

 An initial value of  (  for ) can be taken as the latitude of  and the 

functions  and  evaluated using .   (  for ) can now be 

computed from the iterative equation and this process repeated to obtain values 

.  This iterative process can be concluded when the difference between 

 and  reaches an acceptably small value. 

( )1φ

f ′

φ

( )( 1
φ

1n =
1

P

( )( 1
f φ

( )n
φ

1
φ ( )2φ φ 2n =

( ) ( )3 4
, ,φ φ …

( )1n
φ

+

4. Compute isometric latitudes  and  using equation 
1

q

2 1
q−

2
q (29) and then the difference in 

isometric latitudes  q qΔ =

5. Compute the difference in longitude  from equation 
2

λ λ λΔ = − (30) 

6. Compute longitude  from  
2

λ
2 1

λ λ= +Δ

7. Compute reverse azimuth from  
21 12

180α α= ± D

 

THE INVERSE PROBLEM OF THE LOXODROME ON THE ELLIPSOID 

The inverse problem is: Given latitudes and longitudes of  and  on the ellipsoid, 

compute the azimuth  of the loxodrome , the arc length s 

along the loxodrome curve and the reverse azimuth . 

1
P

2
P

12
α

1 2
PP

21
α

With the ellipsoid constants  and given  and  the problem may be 

solved by the following sequence. 

2, , and a f e
1 1
,φ λ

2 2
,φ λ

1. Compute isometric latitudes  and  using equation 
1

q

2 1
q−

2
q (29) and then the difference in 

isometric latitudes  q qΔ =

2. Compute the longitude difference  and then the azimuth  using 

equation 
2

λ λ λΔ = −
12

α

(31). 

3. Compute meridian distances  and  using equation 
1

m
2

m (35). 

4. Compute the arc length s from equation (37). 

5. Compute reverse azimuth from  
21 12

180α α= ± D
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MATLAB FUNCTIONS 

A MATLAB function loxodrome_inverse.m is shown below.  This function computes the 

inverse problem of the loxodrome on the ellipsoid. 

Output from the function is shown below for points on a great elliptic arc between the 

terminal points of the straight-line section of the Victorian–New South Wales border.  This 

straight-line section of the border, between Murray Spring and Wauka 1978, is known as 

the Black-Allan Line in honour of the surveyors Black and Allan who set out the border 

line in 1870-71.  Wauka 1978 (Gabo PM 4) is a geodetic concrete border pillar on the coast 

at Cape Howe and Murray Spring (Enamo PM 15) is a steel pipe driven into a spring of 

the Murray River that is closest to Cape Howe.  The straight line is a normal section curve 

on the reference ellipsoid of the Geocentric Datum of Australia (GDA94) that contains the 

normal to the ellipsoid at Murray Spring.  The GDA94 coordinates of Murray Spring and 

Wauka 1978 are: 
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′′

′′
  

Murray Spring: 37 47 49.2232 148 11 48.3333

Wauka 1978: 37 30 18.0674 149 58 32.9932

φ λ

φ λ

′ ′′ ′−
′ ′′ ′−

D D

D D

The normal section azimuth and distance are: 

  116 58 14.173757 176495.243760 m′ ′′D

The geodesic azimuth and distance are: 

  116 58 14.219146 176495.243758 m′ ′′D

The loxodrome azimuth and distance are: 

  116 26 08.400701 176497.829952 m′ ′′D

Figure 4 shows a schematic view of the Black-Allan line (normal section) and the great 

elliptic arc.  The relationships between the great elliptic arc and the normal section have 

been computed at seven locations along the line (A, B, C, etc.) where meridians of 

longitude at 0 1  intervals cut the line.  These relationships are shown in Table 1. 5′D
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BLACK-ALLAN LINE:  VICTORIA/NSW BORDER

The Black-Allan Line is a normal section curve
on the reference ellipsoid between P1 (Murray 
Spring) and P2 (Wauka 1978).  This curve is the 
intersection of the normal section plane and the 
ellipsoid, and the normal section contains P1,
the normal to the ellipsoid at P1, and P2.

The GDA94 coordinates of Murray Spring and 
Wauka 1978 are:
Murray Spring:  -37°47’49.2232”   148°11’48.3333”
Wauka 1978

φ λ
:     -37°30’18.0674”   149°58’32.9932”

The normal section azimuth and distance are: 
116°58’14.173757” 176495.243760 m.

The geodesic azimuth and distance are: 
116°58’14.219146” 176495.243758 m.

The loxodrome azimuth and distance are: 
116°26’08.400701” 176497.829952 m.

φ λ

149°45’

149°30’

149°15’

149°00’

148°45’

148°30’

148°15’ Loxodrome

Normal Section

The loxodrome is shown plotted at an exaggerated scale with respect to the 
Border Line (normal section).
At longitude 149°00’E. the loxodrome is 457.918 m north of the Border Line.  
At longitude 149°30’E. the loxodrome is 361.250 m north of the Border Line.  

Figure 4 

 

 

BLACK-ALLAN LINE:  VICTORIA/NSW BORDER 
 

GDA94 Ellipsoid values NAME 
LATITUDE LONGITUDE dφ ρ dm = ρ×dφ 

Murray 
Spring -36°47΄49.223200˝ 148°11΄48.333300˝    

A -36°49΄07.598047˝ N 
-36°49΄05.849245˝ Lox 

148°15΄00.000000˝  
+00΄01.748802˝ 

6358356.102  
+53.9089 

B -36°55΄13.876510˝ N 
-36°55΄05.371035˝ Lox 148°30΄00.000000˝  

+00΄08.505475˝ 6358465.209  
+262.1958 

C -37°01΄17.289080˝ N 
-37°01΄04.418599˝ Lox 148°45΄00.000000˝  

+00΄12.870481˝ 6358573.577  
+396.7613 

D -37°07΄17.845554˝ N 
-37°07΄02.991484˝ Lox 149°00΄00.000000˝  

+00΄14.854070˝ 6358681.204  
+457.9177 

E -37°13΄15.555723˝ N 
-37°13΄01.089240˝ Lox 149°15΄00.000000˝  

+00΄14.466483˝ 6358788.089  
+459.9767 

F -37°19΄10.429372˝ N 
-37°18΄58.711427˝ Lox 149°30΄00.000000˝  

+00΄11.717945˝ 6358894.232  
+361.2501 

G -37°25΄02.476276˝ N 
-37°24΄55.857608˝ Lox 149°45΄00.000000˝  

+00΄06.618668˝ 6358999.632  
+204.0489 

Wauka 
1978 -37°30΄18.067400˝ 149°58΄32.993200˝    

 
TABLE 1: Points where the Great Elliptic Arc cuts meridians of A, B, C, etc at 0°15΄ intervals of 
longitude along Border Line.  N = Normal Section, Lox = Loxodrome 
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>> help loxodrome_inverse 
  
  loxodrome_inverse:  This function computes the inverse case for a  
    loxodrome on the reference ellipsoid.  That is, given the latitudes and  
    longitudes of two points on the ellipsoid, compute the azimuth and the  
    arc length of the loxodrome on the surface. 
 
>> loxodrome_inverse 
 
======================= 
Loxodrome: Inverse Case 
======================= 
Ellipsoid parameters 
a  = 6378137.0000 
f  = 1/298.257222101 
 
Terminal points of curve 
Latitude  P1 =  -36 47 49.223200 (D M S) 
Longitude P1 =  148 11 48.333300 (D M S) 
 
Latitude  P2 =  -37 30 18.067400 (D M S) 
Longitude P2 =  149 58 32.993200 (D M S) 
 
isometric lat  P1 =  -39 23 36.268670 (D M S) 
isometric lat  P2 =  -40 16 40.540366 (D M S) 
 
diff isometric lat  P2-P1 =   -0 53  4.271697 (D M S) 
diff in longitude P2-P1   =    1 46 44.659900 (D M S) 
 
meridian distance P1 =  -4073983.614420 
meridian distance P2 =  -4152559.155874 
 
diff in mdist P2-P1  =    -78575.541454 
 
Azimuth of loxodrome P1-P2 
Az12  = 116 26  8.400701  (D M S) 
 
loxodrome distance P1-P2 
s =    176497.829952 
 
>> 
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MATLAB function loxodrome_inverse.m 

 
function loxodrome_inverse 
% 
% loxodrome_inverse:  This function computes the inverse case for a  
%   loxodrome on the reference ellipsoid.  That is, given the latitudes and  
%   longitudes of two points on the ellipsoid, compute the azimuth and the  
%   arc length of the loxodrome on the surface. 
  
%-------------------------------------------------------------------------- 
% Function:  loxodrome_inverse() 
% 
% Usage:     loxodrome_inverse 
% 
% Author:    R.E.Deakin,  
%            School of Mathematical & Geospatial Sciences, RMIT University 
%            GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA. 
%            email: rod.deakin@rmit.edu.au 
%            Version  1.0  5 October 2009 
%            Version  1.1 11 January 2010 
% 
% Purpose:   This function computes the inverse case for a loxodrome on the  
%   reference ellipsoid.  That is, given the latitudes and longitudes of  
%   two points on the ellipsoid, compute the azimuth and the arc length of  
%   the loxodrome on the surface. 
% 
% Functions required:   
%  [D,M,S] = DMS(DecDeg) 
%   isolat = isometric(flat,lat) 
%    mdist = meridian_dist(a,flat,lat) 
%         
% Variables:  
%  Az12     - azimuth of loxodrome P1-P2 (radians) 
%  a        - semi-major axis of spheroid 
%  d2r      - degree to radian conversion factor 57.29577951... 
%  disolat  - difference in isometric latitudes (isolat2-isolat1) 
%  dlon     - difference in longitudes (radian) 
%  dm       - difference in meridian distances (dm = m2-m1) 
%  e        - eccentricity of ellipsoid 
%  e2       - eccentricity of ellipsoid squared 
%  f        - f = 1/flat is the flattening of ellipsoid 
%  flat     - denominator of flattening of ellipsoid 
%  isolat1  - isometric latitude of P1 (radians) 
%  isolat2  - isometric latitude of P2 (radians) 
%  lat1     - latitude of P1 (radians) 
%  lat2     - latitude of P2 (radians) 
%  lon1     - longitude of P1 (radians) 
%  lon2     - longitude of P2 (radians) 
%  lox_s    - distance along loxodrome 
%  m1,m2    - meridian distances of P1 and P2 (metres) 
%  pion2    - pi/2 
% 
% Remarks: 
% 
% References: 
%  [1] Deakin, R.E., 2010, 'The Loxodrome on an Ellipsoid', Lecture Notes,  
%         School of Mathematical and Geospatial Sciences, RMIT University,  
%         January 2010 
%  [2] Bowring, B.R., 1985, 'The geometry of the loxodrome on the 
%         ellipsoid', The Canadian Surveyor, Vol. 39, No. 3, Autumn 1985, 
%         pp.223-230. 
%  [3] Snyder, J.P., 1987, Map Projections-A Working Manual.  U.S. 
%         Geological Survey Professional Paper 1395.  Washington, DC: U.S. 
%         Government Printing Office, pp.15-16 and pp. 44-45. 
%  [4] Thomas, P.D., 1952, Conformal Projections in Geodesy and 
%         Cartography, Special Publication No. 251, Coast and Geodetic 
%         Survey, U.S. Department of Commerce, Washington, DC: U.S. 
%         Government Printing Office, p. 66. 
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% 
%-------------------------------------------------------------------------- 
  
% Degree to radian conversion factor 
d2r   = 180/pi; 
  
% Set ellipsoid parameters 
a    = 6378137;    % GRS80 
flat = 298.257222101; 
 
% Set lat and long of P1 and P2 on ellipsoid 
lat1 = -(36  + 47/60 + 49.2232/3600)/d2r;   % Spring 
lon1 =  (148 + 11/60 + 48.3333/3600)/d2r; 
lat2 = -(37  + 30/60 + 18.0674/3600)/d2r;    % Wauka 1978 
lon2 =  (149 + 58/60 + 32.9932/3600)/d2r; 
 
% Compute isometric latitude of P1 and P2 
isolat1 = isometric(flat,lat1); 
isolat2 = isometric(flat,lat2); 
  
% Compute changes in isometric latitude and longitude between P1 and P2 
disolat = isolat2-isolat1; 
dlon = lon2-lon1; 
  
% Compute azimuth 
Az12 = atan2(dlon,disolat); 
  
% Compute distance along loxodromic curve 
m1 = meridian_dist(a,flat,lat1); 
m2 = meridian_dist(a,flat,lat2); 
dm = m2-m1; 
lox_s  = dm/cos(Az12); 
  
%----------------------- 
% Print result to screen 
%----------------------- 
fprintf('\n======================='); 
fprintf('\nLoxodrome: Inverse Case'); 
fprintf('\n======================='); 
fprintf('\nEllipsoid parameters'); 
fprintf('\na  = %12.4f',a); 
fprintf('\nf  = 1/%13.9f',flat); 
  
fprintf('\n\nTerminal points of curve'); 
% Print lat and lon of Point 1 
[D,M,S] = DMS(lat1*d2r); 
if D == 0 && lat1 < 0 
    fprintf('\nLatitude  P1 =   -0 %2d %9.6f (D M S)',M,S); 
else     
    fprintf('\nLatitude  P1 = %4d %2d %9.6f (D M S)',D,M,S); 
end     
[D,M,S] = DMS(lon1*d2r); 
if D == 0 && lon1 < 0 
    fprintf('\nLongitude P1 =   -0 %2d %9.6f (D M S)',M,S); 
else     
    fprintf('\nLongitude P1 = %4d %2d %9.6f (D M S)',D,M,S); 
end 
  
% Print lat and lon of point 2 
[D,M,S] = DMS(lat2*d2r); 
if D == 0 && lat1 < 0 
    fprintf('\n\nLatitude  P2 =   -0 %2d %9.6f (D M S)',M,S); 
else     
    fprintf('\n\nLatitude  P2 = %4d %2d %9.6f (D M S)',D,M,S); 
end     
[D,M,S] = DMS(lon2*d2r); 
if D == 0 && lon2 < 0 
    fprintf('\nLongitude P2 =   -0 %2d %9.6f (D M S)',M,S); 
else     
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    fprintf('\nLongitude P2 = %4d %2d %9.6f (D M S)',D,M,S); 
end 
  
% Print isometric latitudes of P1 and P2 
[D,M,S] = DMS(isolat1*d2r); 
if D == 0 && isolat1 < 0 
    fprintf('\n\nisometric lat  P1 =   -0 %2d %9.6f (D M S)',M,S); 
else     
    fprintf('\n\nisometric lat  P1 = %4d %2d %9.6f (D M S)',D,M,S); 
end     
[D,M,S] = DMS(isolat2*d2r); 
if D == 0 && isolat2 < 0 
    fprintf('\nisometric lat  P2 =   -0 %2d %9.6f (D M S)',M,S); 
else     
    fprintf('\nisometric lat  P2 = %4d %2d %9.6f (D M S)',D,M,S); 
end     
  
% Print differences in isometric latitudes and longitudes 
[D,M,S] = DMS(disolat*d2r); 
if D == 0 && disolat < 0 
    fprintf('\n\ndiff isometric lat  P2-P1 =   -0 %2d %9.6f (D M S)',M,S); 
else     
    fprintf('\ndiff isometric lat  P2-P1 = %4d %2d %9.6f (D M S)',D,M,S); 
end     
[D,M,S] = DMS(dlon*d2r); 
if D == 0 && dlon < 0 
    fprintf('\ndiff in longitude P2-P1   =   -0 %2d %9.6f (D M S)',M,S); 
else     
    fprintf('\ndiff in longitude P2-P1   = %4d %2d %9.6f (D M S)',D,M,S); 
end     
  
% Print meridian distances of P1 and P2 
fprintf('\n\nmeridian distance P1 =  %15.6f',m1); 
fprintf('\nmeridian distance P2 =  %15.6f',m2); 
fprintf('\n\ndiff in mdist P2-P1  =  %15.6f',dm); 
  
% Print azimuth of loxodrome 
fprintf('\n\nAzimuth of loxodrome P1-P2'); 
[D,M,S] = DMS(Az12*d2r); 
fprintf('\nAz12  = %3d %2d %9.6f  (D M S)',D,M,S); 
  
% Print loxodrome distance P1-P2 
fprintf('\n\nloxodrome distance P1-P2'); 
fprintf('\ns =  %15.6f',lox_s); 
  
fprintf('\n\n'); 
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MATLAB function isometric.m 

 
function isolat = isometric(flat,lat) 
% 
% isolat=isometric(flat,lat)  Function computes the isometric latitude 
%   (isolat) of a point whose latitude (lat) is given on an ellipsoid whose  
%   denominator of flattening is flat. 
%   Latitude (lat) must be in radians and the returned value of isometric 
%   latitude (isolat) will also be in radians. 
%   Example: isolat = isometric(298.257222101,-0.659895044028705); 
%            should return isolat = -0.709660227088983 radians, 
%            equal to -40 39 37.9292417795658 (DMS) for latitude equal to 
%            -0.659895044028705 radians (-37 48 33.1234 (DMS)) on the GRS80 
%            ellipsoid. 
  
%-------------------------------------------------------------------------- 
% Function:  isometric(flat,lat) 
% 
% Syntax:    isolat = isometric(flat,lat); 
% 
% Author:    R.E.Deakin,  
%            School of Mathematical & Geospatial Sciences, RMIT University 
%            GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA. 
%            email: rod.deakin@rmit.edu.au 
%            Version  1.0  5 October 2009 
% 
% Purpose:   Function computes the isometric latitude of a point whose  
%  latitude is given on an ellipsoid defined by semi-major axis (a) and  
%  denominator of flattening (flat). 
% 
% Return value: Function isometric() returns isolat (isometric latitude in 
%  radians) 
% 
% Variables:  
%  e      - eccentricity of ellipsoid 
%  e2     - eccentricity-squared 
%  f      - flattening of ellipsoid 
%  flat   - denominator of flattening 
% 
% Remarks:    
%  Isometric latitude is an auxiliary latitude proportional to the spacing 
%  of parallels of latitude on an ellipsoidal Mercator projection. 
%   
% References: 
%  [1] Snyder, J.P., 1987, Map Projections-A Working Manual.  U.S. 
%         Geological SurveyProfessional Paper 1395.  Washington, DC: U.S. 
%         Government Printing Office, pp.15-16. 
% 
% 
%-------------------------------------------------------------------------- 
  
% compute flattening f eccentricity squared e2 
f   = 1/flat; 
e2 = f*(2-f); 
e  = sqrt(e2); 
  
x = e*sin(lat); 
y = (1-x)/(1+x); 
z = pi/4 + lat/2; 
  
% calculate the isometric latitude 
isolat = log(tan(z)*(y^(e/2))); 
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MATLAB function meridian_dist.m 

 
function mdist = meridian_dist(a,flat,lat) 
% 
% mdist = meridian_dist(a,flat,lat) Function computes the meridian distance 
%   on an ellipsoid defined by semi-major axis (a) and denominator of  
%   flattening (flat) from the equator to a point having latitude (lat) in  
%   radians. 
%   e.g. mdist = (6378137, 298.257222101, -0.659895044028705) will compute  
%   the meridian distance for a point having latitude -37 deg 48 min 
%   33.1234 sec on the GRS80 ellipsoid (a = 6378137, f = 1/298.257222101). 
  
%-------------------------------------------------------------------------- 
% Function:  meridian_dist() 
% 
% Usage:     mdist = meridian_dist(a,flat,lat) 
% 
% Author:    R.E.Deakin,  
%            School of Mathematical & Geospatial Sciences, RMIT University 
%            GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA. 
%            email: rod.deakin@rmit.edu.au 
%            Version  1.0  5 October 2009 
% 
% Purpose:   Function computes the meridian distance 
%   on an ellipsoid defined by semi-major axis (a) and denominator of  
%   flattening (flat) from the equator to a point having latitude (lat) in  
%   radians. 
% 
% Functions required:   
%         
% Variables: a         - semi-major axis of spheroid 
%            A,B,C...  - coefficients 
%            e2        - eccentricity squared 
%            e4,e6,... - powers of e2 
%            f         - f = 1/flat is the flattening of ellipsoid 
%            flat      - denominator of flattening of ellipsoid 
%            mdist     - meridian distance 
% 
% Remarks:   The formulae used are given in Baeschlin, C.F., 1948, 
%            "Lehrbuch Der Geodasie", Orell Fussli Verlag, Zurich, pp.47-50. 
%            See also Deakin, R. E. and Hunter M. N., 2008, "Geometric 
%            Geodesy - Part A", Lecture Notes, School of Mathematical and 
%            geospatial Sciences, RMIT University, March 2008, pp. 60-65. 
%   
%-------------------------------------------------------------------------- 
  
% compute eccentricity squared 
f  = 1/flat; 
e2 = f*(2-f); 
  
% powers of eccentricity 
e4  = e2*e2; 
e6  = e4*e2; 
e8  = e6*e2; 
e10 = e8*e2; 
  
% coefficients of series expansion for meridian distance 
A = 1+(3/4)*e2+(45/64)*e4+(175/256)*e6+(11025/16384)*e8+(43659/65536)*e10; 
B = (3/4)*e2+(15/16)*e4+(525/512)*e6+(2205/2048)*e8+(72765/65536)*e10; 
C = (15/64)*e4+(105/256)*e6+(2205/4096)*e8+(10395/16384)*e10; 
D = (35/512)*e6+(315/2048)*e8+(31185/131072)*e10; 
E = (315/16384)*e8+(3465/65536)*e10; 
F = (693/131072)*e10; 
  
term1 = A*lat; 
term2 = (B/2)*sin(2*lat); 
term3 = (C/4)*sin(4*lat); 
term4 = (D/6)*sin(6*lat); 
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term5 = (E/8)*sin(8*lat); 
term6 = (F/10)*sin(10*lat); 
  
mdist = a*(1-e2)*(term1-term2+term3-term4+term5-term6); 
 
 
 

MATLAB function DMS.m 

 
function [D,M,S] = DMS(DecDeg) 
% [D,M,S] = DMS(DecDeg)  This function takes an angle in decimal degrees and returns 
%   Degrees, Minutes and Seconds 
  
val = abs(DecDeg); 
D = fix(val); 
M = fix((val-D)*60); 
S = (val-D-M/60)*3600; 
if(DecDeg<0) 
  D = -D; 
end 
return 
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