
RMIT University Geospatial Science 
 

MAP PROJECTION THEORY 
 

1. INTRODUCTION 

A map projection is the mathematical transformation of coordinates on a datum surface to 
coordinates on a projection surface.  In all the map projections we will be dealing with, the 
datum surface is a 3-Dimensional surface, either a sphere or ellipsoid, representing the Earth 
and on this surface, there are imaginary sets of reference curves, or parametric curves, that we 
use to coordinate points.  We know these parametric curves as parallels of latitude φ  and 
meridians of longitude λ  and along these curves one of the parameters, φ  or λ  is constant.  
Points on the datum surface having particular values of φ  and λ  are said to have curvilinear 
coordinates.  These curvilinear coordinates are more commonly called geographical or 
geodetic coordinates.  Points on the datum surface can also have x,y,z Cartesian coordinates 
and there are mathematical connections between the curvilinear and Cartesian that we call 
functional relationships and write as 
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Figure 1.1(a) below shows a spherical datum surface representing the Earth with meridians 
and parallels (the ,φ λ  parametric curves) and the continental outlines.  The x,y,z Cartesian 
axes are shown with the z-axis passing through the North pole.  The x-y plane is the Earth's 
equatorial plane and the x-z plane is the Greenwich meridian plane.  The x-axis passes through 
the intersection of the Greenwich meridian and the equator and the y-axis is advanced 90º 
eastwards along the equator.  The longitude of P is the angular measure between the 
Greenwich meridian plane and the meridian plane passing through P and the latitude is the 
angular measure between the equatorial plane and the normal to the datum surface passing 
through P.  Longitude is measured 0º to 180º positive east and negative west of the 
Greenwich meridian and latitude is measured 0º to 90º positive north, and negative south of 
the equator. 
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The functional relationships between the x,y,z Cartesian coordinates and the ,φ λ  curvilinear 
coordinates written in the general form above can be expressed in the more familiar form 
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where R is the radius of the spherical Earth. 
 
Figure 1.1(b) shows the projection surface, which we commonly refer to as the map 
projection.  In this case, as in all cases we will deal with in this study, the projection surface is 
a plane.  In general, the projection surface may be another curved 3D surface and we use this 
general concept in the theoretical development that follows.  On the projection surface, there 
are sets of parametric curves, say U,V curves and points on the projection surface have U,V 
curvilinear coordinates.  These coordinates are related to another 3D Cartesian coordinate 
system X,Y,Z and the two systems are related by another set of functional relationships 
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In the case of a plane projection surface 0Z = , and what we would like to establish are the 
connections between the curvilinear coordinates ,φ λ  on the datum surface and X,Y Cartesian 
coordinates of the projection plane, i.e., we wish to find the functional relationships 
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In Figure 1.1(b) the map projection is a modified Sinusoidal projection and the projection 
equations (the functional relationships) are 
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R is the radius of the spherical Earth, 0λ  is the longitude of the central meridian (the Y-axis) 
and α  is a function of the latitude.  M, m and n are constants related to the axes ratio (the 
ratio between the lengths of the X and Y axes) and the pole-equator ratio (the ratio between 
the lengths of the pole line and the equator). 
 
Inspection of the map projection reveals distortions that we see as misshapen continental 
outlines (Antarctica), points projected as lines (the north and south poles) and straight lines 
projected as curves (the meridians).  Every map projection has distortions of one sort or 
another and we would like to quantify these distortions.  It turns out, as we shall see later, that 
distortions can be related to scale factors where scale is the ratio of elemental distances on the 
datum surface and the projection surface, and a knowledge of scale factors allow us to 
"uncover" the projection equations by enforcing scale conditions and particular geometric 
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constraints.  The following theoretical development gives us the tools to understand the 
limitations and properties of several projections that are used in practice. 
 

2. SURFACES AND PROJECTION FORMULAE 

Consider the diagrams shown in Figures 2(a) and 2(b) below.  Both diagrams show surfaces; 
one is the datum surface and the other is the projection surface.  Both of these surfaces are 
connected to Cartesian coordinate axes, x,y,z for the datum surface and X,Y,Z for the 
projection surface.  We shall use lower case letters for the datum surface and capital letters for 
the projection surface. 
 
 
On the datum surface, there are a system of 
reference curves or parametric curves of 
constant u and v.  The reference curves are 
used to coordinate points on the datum 
surface, i.e., a point P on the datum surface 
has u,v curvilinear coordinates and x,y,z 
Cartesian coordinates and both systems are 
connected by the functional relationships 
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 Figure 2.1(a) Datum Surface 
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On the projection surface there is also a 
system of reference curves or 
parametric curves U,V that are related 
to the X,Y,Z coordinates by the 
functional relationships 
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 (2.2) 

 
 
 

 
Figure 2.1(b) Projection Surface 
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The parametric curves on the datum surface and the parametric curves on the projection 
surface are related by two sets of functions 

 
( )
( )

1

2

,

,

U g u v

V g u v

=

=
 (2.3) 

and 

 
( )
( )

1

2

,

,

u G U V

v G U V

=

=
 (2.4) 

These functions satisfy the basic requirements of any map projection or transformation, which 
are: 
 
 (i) the transformation must be unique (i.e., a 1 to 1 relationship) and 
 (ii) the transformation must be reversible 
 
These basic requirements mean that a point on the datum surface should correspond to one, 
and only one point on the projection – and that the reverse holds true.  These requirements are 
satisfied by equations (2.3) and (2.4) which mean that u and v are solvable as explicit 
functions of U and V. 
 
Substituting (2.3) into (2.2) gives the general transformation or projection equations 
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 (2.5) 

 

3. THE GAUSSIAN FUNDAMENTAL QUANTITIES ON THE DATUM SURFACE 
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From differential geometry, the square 
of the length of a differentially small 
part of a curve on the datum surface is 

2 2 2ds dx dy dz= + + 2  (3.1) 

 
 
 

 
 
 Figure 3.1  The elemental distance ds 
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From the functional relationships of (2.1) and (2.5) the total differentials are 
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Substituting the total differentials into (3.1) gives 
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Gathering terms gives 
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The coefficients of ,  and  are called the 2du du dv 2dv Gaussian Fundamental Quantities.  
They are invariably indicated in the map projection literature by E, F and G or e, f and g. 
 
The equation for the elemental distance ds is usually written with the Gaussian Fundamental 
Quantities e, f and g as 

  (3.5) 2 2 2ds edu f du dv g dv= + + 2

where 
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3.1. Elemental distance on the surface of the spherical Earth 

For a sphere of radius R representing the Earth the u and v curves are the latitude curves φ  
and longitude curves λ  respectively and the functional relationships connecting x,y,z 
Cartesian coordinates and ,φ λ  curvilinear coordinates are 
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The Gaussian Fundamental Quantities e, f and g are 
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Differentiating equations (3.7) gives 
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Substituting these derivatives into (3.8) gives 
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The elemental distance on the surface of a sphere of radius R with parametric curves φ  
(latitude) and λ  (longitude) is 

 2 2 2ds ed f d d g d 2φ φ λ λ= + +  (3.12) 

and the Gaussian Fundamental Quantities for this surface are 
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Example 
 
Consider two points P and Q on the spherical Earth of radius 6371 km.  P has latitude 
37º 48' 00" South and Q is 0º 00' 01" North and 0º 00' 01" East of P.  What is the distance on 
the surface of the sphere between P and Q? 
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giving  
 39.366 mds =  

 

4. THE ELEMENTAL PARALLELOGRAM ON THE DATUM SURFACE 

The elemental distance ds on the datum surface may be shown as the diagonal of a 
differentially small parallelogram 
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Figure 4.1  The elemental parallelogram 
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Figure 4.1 shows two differentially close points P and Q on the datum surface.  The 
parametric curves u and v pass through P and the curves u du+  and v dv+  pass through Q.  
The distance between P and Q is the elemental distance ds.  The differential parallelogram 
formed by the curves may be regarded as a plane figure, whose opposite sides are parallel 
straight lines enclosing a differentially small area da.   The angle between the parametric 
curves u and v is equal to ω  and 1 2ω θ θ= +  
 

4.1. Elemental distance along parametric curves on the datum surface 

The elemental distances along the u and v curves forming the sides of the parallelogram can 
be obtained from (3.5) considering the fact that along the u-curve, u is a constant value, hence 

 and along the v-curve, v is a constant value, hence 0du = 0dv = . 
 
Elemental distance along the v-curve: 
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Elemental distance along the u-curve: 
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The quantities e  and g  are units of measure along the u and v curves on the datum 

surface. 
 

4.2. The angle between parametric curves on the datum surface 

The elemental parallelogram can be regarded as a plane parallelogram within its infinitely 
small area, hence from the cosine rule for plane trigonometry and bearing in mind that 

( )cos 180 cosx x− = −  
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Equating (3.5) and (4.3) gives 
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 cos f
eg

ω =  (4.4) 

Thus, we may say:  If the parametric curves on the datum surface intersect at right angles (i.e., 
an orthogonal system) then 90ω =  and cos 0ω = .  This implies that 0f =  
 

Also 
2 2

2sin 1 cos 1 f eg f
eg eg

ω ω −
= − = − =  and we may define a useful quantity j as 

 2 2j eg f= −  (4.5) 

Hence sin j
eg

ω =  (4.6) 

 

4.3. The elemental area on the datum surface 

Referring again to Figure 4.1 and treating the elemental parallelogram as a plane 
parallelogram, the elemental area da is 
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Using (4.6) gives an expression for the elemental area 

 da j du dv=  (4.7) 

 

5. ELEMENTAL QUANTITIES ON THE PROJECTION SURFACE 

Referring to Figure 2.1(b) which shows the projection surface with parametric curves U and V 
on the surface and the X,Y,Z Cartesian coordinate system connected to the U,V curvilinear 
coordinates by the functional relationships (2.2).  Using similar developments as we used for 
the datum surface, the following relationships for the projection surface may be derived. 
 

5.1. Elemental distance on the projection surface 

The elemental distance dS on the projection surface is 

  (5.1) 2 2 2dS dX dY dZ= + + 2

 

© 2003 R.E. Deakin Map Projection Theory (2003) 9 



RMIT University Geospatial Science 
 

5.2. Gaussian Fundamental Quantities for the projection surface 

Using equations (2.2), the Gaussian Fundamental Quantities ,  and E F G  can be derived in a 
similar manner as those for the datum surface. 

 2 2 2dS E dU F dU dV G dV= + + 2  (5.2) 

where 
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 (5.3) 

5.3. The angle between parametric curves on the projection surface 

 cos F
EG

Ω =  (5.4) 

5.4. The elemental area on the projection surface 

 dA J dU dV=  (5.5) 

where 2J EG F 2= −  (5.6) 

 
 

6. THE FUNDAMENTAL TRANSFORMATION MATRIX 

Referring again to the general transformation or projection equations given by (2.5) and re-
stated again 
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We may write another equation for the elemental distance on the projection plane and a third 
set of Gaussian Fundamental Quantities E, F and G as 

  (6.2) 2 2 2dS E du F du dv G dv= + + 2

where 
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 (6.3) 

The angle  between parametric curves on the projection surface is given by Ω cos F
EG

Ω =  

and the elemental area on the projection surface given by dA J du dv=  where . 2 2J EG F= −
 
Note that these relationships link the u,v curvilinear coordinates of the datum surface with the 
X,Y,Z Cartesian coordinates of the projection surface.  What we would like to find is a 
connection between ,  and E F G  and E, F and G.  We can derive this connection using 
calculus and algebra and present the connection as The Fundamental Transformation Matrix. 
 
Differentiating equations (6.1) gives 
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Substituting these differential equations into (6.3) gives 
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2 2 2

2 2 2

2 2 2

2

2

2

2

2

2

X U X U X V X VG
U v U v V v V v

Y U Y U Y V Y V
U v U v V v V v

Z U Z U Z V Z V
U v U v V v V v

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

Using the relationships in (5.3) we may write 

 
2 2

2U U V VE E F
u u u u

∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
G  (6.4) 

 U U U V U V V VF E F
u v v u u v u v

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛= + + +⎜ ⎟ ⎜ ⎟ ⎜∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝
G⎞

⎟
⎠

 (6.5) 

 
2 2

2U U V VG E F
v v v v

∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
G  (6.6) 

Equations (6.4), (6.5) and (6.6) may be conveniently expressed as a matrix equation 

 

2 2

2 2

2

2

U U V V
u u u uE E

U U U V U V V VF
u v v u u v u v

G G
U U V V
v v v v

⎡ ⎤∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥

F
⎡ ⎤⎡ ⎤

⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ⎢ ⎥⎢ ⎥ = +⎢ ⎥ ⎢ ⎥⎢ ⎥ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 (6.7) 

This is The Transformation Matrix, the coefficient matrix of (6.7), and is fundamental in the 
design of computer programs for map projections.  Using this transformation matrix, we may 
deduce the basic relationships between the curvilinear coordinates on the datum surface and 
the Cartesian coordinates on the projection. 
 
The term  can be derived by combining equations 2J EG F= − 2 (6.4), (6.5) and (6.6) to give 

 ( )
2

2 2 2 U V U VJ EG F EG F
u v v u

∂ ∂ ∂ ∂⎛= − = − −⎜ ∂ ∂ ∂ ∂⎝ ⎠
⎞
⎟  (6.8) 

or as the product of two determinants 

 

2

2 2

U U
E F u vJ EG F

V VF G
v u

∂ ∂
∂ ∂= − =
∂ ∂
∂ ∂

 (6.9) 
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The determinant 

U U
u v
V V
v u

∂ ∂
∂ ∂
∂ ∂
∂ ∂

 is the Jacobian determinant ( ),U V  with respect to  ( ),u v

Note: (i) The Gaussian Fundamental Quantities pertaining to the datum surface (x,y,z as 
functions of u and v) are denoted by e, f and g. 

 
 (ii) The Gaussian Fundamental Quantities pertaining to the projection surface 

(X,Y,Z as functions of U and V) are denoted by ,  and E F G . 
 
 (iii) The Gaussian Fundamental Quantities pertaining to the projection surface 

(X,Y,Z as functions of u and v) are denoted by E, F and G. 
 
 

7. SCALE FACTOR 

Knowledge of scale factors is fundamental in understanding map projections.  Using certain 
scale factors, or scale relationships, we may create map projections with certain useful 
properties.  For example, map projections that preserve angles at a point (i.e., an angle 
between two lines on the datum surface is transformed into the same angle between the 
complimentary lines on the projection) are known as conformal and conformal projections 
have the unique property that scale factor is the same in every direction at a point on the 
projection.  Therefore, we may develop the equations for a conformal map projection by 
enforcing a particular scale relationship. 
 

7.1. General equation for scale factor 

A general equation for scale factor m can be developed in the following manner. 
 
The scale factor m is defined as the ratio elemental distances dS on the projection surface and 
ds on the datum surface 

 elemental distance on PROJECTION SURFACEscale factor
elemental distance on DATUM SURFACE

=  

or 
2

2
2

dSm
ds

=  (7.1) 

Using the relationships (5.2) and (3.5) the scale factor is given by 

 
2 2

2
2 2

2
2

dS E dU F dU dV G dVm
ds edu f du dv g dv

+ +
= =

+ +

2

2  

Alternatively, we may use the relationships (6.2) and (3.5) 
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2 2

2
2 2

2
2

dS E du F du dv G dvm
ds edu f du dv g dv

+ +
= =

+ +

2

2  (7.2) 

Dividing numerator and denominator of (7.2) by  gives 2dv

 

2

2
2

2

2

du duE F
dv dvm
du due f
dv dv

⎛ ⎞ G

g

+ +⎜ ⎟
⎝ ⎠=
⎛ ⎞ + +⎜ ⎟
⎝ ⎠

 (7.3) 

Inspection of equation (7.3) shows that in general the scale factor at a point depends directly 
on the term du dv  since for the datum and projection surfaces e, f, g and e, F, G are constant 
for a particular point.  du dv  is the ratio between elemental changes du and dv and for any 
curve on the datum surface this ratio will vary according to the direction of the curve.  From 
Figure 4.1 we may express the direction of a curve on the surface as 

 tan g dv
e du

α =  

where α  is a positive clockwise angle from the v-curve.  This equation may be re-arranged to 
give expressions for the ratio du dv  

 
2

2,    and   
tantan

gdu du g
dv dv ee αα

⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

Substituting these expressions into (7.3) gives 

 
2

2

2

2
tan tan

2
tan tan

ggE F
e e

m
gge f

e e

α α

α α

⎛ ⎞⎛ ⎞ G

g

+ +⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠=

⎛ ⎞⎛ ⎞ + +⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

Noting that 2 2
2

11 tan sec
cos

α α
α

+ = =  and sintan
cos

αα
α

= , the denominator of this equation 

can be simplified giving 

 
2

2

2

2
tan tan

21 sin cos
sin

ggE F
e e

m
g f

eg

α α

α α
α

⎛ ⎞⎛ ⎞ G+ +⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠=

⎛ ⎞
+⎜ ⎟

⎝ ⎠

 

Multiplying the numerator and denominator by 
2sin

g
α  and simplifying the trigonometric 

expressions gives the general equation for scale factor m 
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2 2

2

cos 2sin cos sin

1 2sin cos

E F f G
e f gegm f

eg

α α α α

α α

⎛ ⎞ ⎛ ⎞⎛ ⎞ + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠=
+

 (7.4) 

 

7.2. Important results from the general equation for scale factor 

Several important results can be deduced from the general equation for scale factor (7.4). 
 
1. In general, scale factor varies everywhere on the map projection. 
 
 This fact can be deduced from the general equation when it is realised that the Gaussian 

Fundamental Quantities are functions of the curvilinear coordinates u,v of the datum 
surface; see equations (3.6) and (6.3).  Therefore, as points vary across the datum 
surface their complimentary points on the projection will have varying scale factor. 

 

2. When E F G
e f g

= =  the scale factor is independent of direction, i.e., m is the same value 

in every direction about a point on the projection.  Such projections are known as 
CONFORMAL. 

 

 We can see this by substituting a constant E F GK
e f g

= = =  into (7.4) 

 

2 2

2

2 2

cos 2sin cos sin

1 2sin cos

cos sin 2sin cos

1 2sin cos

1 2sin cos

1 2sin cos

fK K K
egm f
eg

fK
eg

f
eg

fK
eg

f
eg

K

α α α α

α α

α α α α

α α

α α

α α

+ +
=

+

⎛ ⎞
+ +⎜ ⎟

⎝ ⎠=
+

⎛ ⎞
+⎜ ⎟

⎝ ⎠=
+

=

 

 Conformal projections, where the scale factor is the same in every direction around a 
point have the property that shape is preserved.  By this, we mean that an object on the 
datum surface, say a square, is transformed into a square on the projection surface 
although it may be enlarged or reduced by a constant amount.  Preservation of shape 
also means that angles at a point are preserved.  By this, we mean that an angle between 
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two lines radiating from a point on the datum surface will be identical to the angle 
between the two projected lines on the projection surface.  There is one minor 
drawback:  these properties only hold true for differentially small areas since the 
relationships have been established from the differential ratio 2 2 2S ds=m d .  
Nevertheless, these properties make conformal projections the most appropriate map 
projections for topographic mapping; since measurements in the field, corrected to the 
appropriate datum surface, need little or no further correction and can be added directly 
to a conformal map.  This fact becomes more obvious when we consider the size of the 
Earth (the datum surface) and any practicable mapping area we might be working on.  
Consider a 1:100,000 Topographic map sheet used in Australia.  This map series is 
based on a conformal projection (Universal Transverse Mercator) of latitudes and 
longitudes of points related to the ellipsoid and cover 0º 30' of latitude and longitude.  
This equates roughly to 2,461,581,000 m2 of the Earth's surface.  The surface area of 
the Australian National Spheroid, a reasonable approximation to the Earth, is 

, which means the map sheet is 0.000483% of the Earth's surface.  
Thus, the entire map sheet can be regarded as an extremely small portion of the Earth's 
surface. 

14 25.1006927 10  m×

 
3. In practical applications of map projection, the u,v curvilinear coordinates of the datum 

surface relate to a set of parametric u and v curves that intersect everywhere at right 
angles.  Such networks of lines are known as orthogonal coordinate systems; and on the 
surface of the Earth (sphere or ellipsoid) we have such a system: parallels of latitude (φ  
curves) and meridians of longitude ( λ  curves).  Therefore, in any of the general 
relationships we have developed we may replace u with φ  and v with λ .  Furthermore, 
since meridians and parallels intersect everywhere at right angles ( )90=ω  implies 
that the Gaussian Fundamental Quantity 0f = ; see equation (4.4).  This fact was 
verified in Section 3.1 where the Gaussian Fundamental Quantities were computed for 
a spherical Earth as the datum surface, giving 2 ,e R g 2 sR 2, 0f co φ= = = .  Using this 
fact, the general equation for scale, where the datum surface is a sphere or ellipsoid 
with meridian and parallels as the parametric curves is 

 

 2 2cos 2sin cos sinE F Gm
e geg

2α α α ⎛ ⎞⎛ ⎞= + +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
α  (7.5) 

 
4. Consider the case where the datum surface is a sphere or ellipsoid with meridian and 

parallels as the parametric curves and two points P and Q an elemental distance ds 
apart.  When Q is on the meridian passing through P then α , the azimuth of the line 
PQ on the datum surface, is 0  and  or 180 cos 1 and 0sinα α= = .  We can see from 
(7.5) that when  the second and third terms vanish and we have 0  or 180α =

 The meridian scale factor h Eh
e

=  (7.6) 

 Similarly, when Q is on the parallel passing through P then and 90  or 270α =
cos 0 and sin 1α α= = .  We can see from (7.5) that the first and second terms vanish 
and we have 
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 The parallel scale factor k Gk
g

=  (7.7) 

 
5. In many map projections, the parametric curves U,V on the projection surface form an 

orthogonal network of lines (or curves); this implies that the Gaussian Fundamental 
Quantity 0F =  and as we shall see in following sections if these lines or curves 
coincide with the projection surface coordinate system (X,Y for Cartesian coordinates or 

,r θ  for polar coordinates) then 0F = .  In such cases, where the datum surface is a 
sphere or ellipsoid with meridian and parallels as the parametric curves the general 
equation for scale becomes 

 2 2cos sinE Gm
e g

2α α⎛ ⎞⎛ ⎞= +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 (7.8) 

 In these cases, if E G
e g

=  then the scale factor is a constant value and is independent of 

direction, i.e., the projection is conformal.  We can see this by substituting E GK
e g

= =  

into (7.8) giving 

 ( )
2 2

2 2

cos sin

cos sin

m K K

K

K

2α α

α α

= +

= +

=

 

 This leads us to another definition of conformal projections: 
 

If  f = F = 0 and h = k then the projection is conformal 
 

7.3. Tissot's Indicatrix Ellipse 

By making the substitutions , ,E E e F F eg G G g′ ′ ′= = =  equation (7.5) can be written 
as 

 2 2cos 2 sin cos sinm E F G 2α α α′ ′ ′= + + α  (7.9) 

Equation (7.9) defines the pedal curve of Tissot's Indicatrix Ellipse 
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Figure 7.1.  Tissot's Indicatrix Ellipse and pedal curve 
 
In Figure 7.1, A is a point on an ellipse.  The tangent to the ellipse at A intersects a normal to 
the tangent passing through P at B.  As A moves around the ellipse, the locus of all points B is 
the pedal curve of the ellipse.  The distance  for the angle 2PB m= β .  The maximum and 
minimum values of  define the directions and lengths of the axes of Tissot's Indicatrix 
Ellipse.  It can be shown that  has a maximum value when 

2m
2m

 2tan 2 F
E G

θ
′

=
′ ′−

 (7.10) 

The semi-axes lengths of the ellipse are 

 
( )

( )

2 1
max 2

2 1
min 2

a m E G W

b m E G W

′ ′= = + +

′ ′= = + −
 (7.11) 

where ( ) ( )2 4W E G F′ ′ ′= − + 2 .  Tissot's Indicatrix Ellipse provides a visual display of the 
scale distortions on a map projection and the parameters a and b (the semi-axes lengths) can 
be used to give 

Maximum angular distortion  Ω 1sin a b
a b

Ω − −⎛= ⎜
⎞
⎟+⎝ ⎠

 (7.12) 

Area scale factor JJ
j

′ =  J a b′ =  (7.13) 

 

7.4. Area scale factor 

The area scale factor is defined as the ratio of elemental areas on the datum surface and the 
projection surface 
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 elemental area on PROJECTION SURFACEarea scale factor
elemental area on DATUM SURFACE

dA
da

= =  

Using equations (5.5) and (4.7) 

 area scale factor dA J dU dV
da j du dv

= =  (7.14) 

But, from (6.8) ( )
2

2 2 2 U V U VJ EG F EG F
u v v u

∂ ∂ ∂ ∂⎛ ⎞= − = − −⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
 and since 2 2J EG F= −  we 

may write 

 JJ U V U V
u v v u

=
∂ ∂ ∂ ∂

−
∂ ∂ ∂ ∂

 

Substituting this expression for J  into (7.14) gives 
 

 1area scale factor J dU dV
U V U V j du dv
u v v u

⎧ ⎫
= ⎨ ⎬∂ ∂ ∂ ∂⎛ ⎞ ⎩ ⎭−⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 (7.15) 

Equation (7.15) is given in terms of differentials and partial derivatives of the parametric 
curves on the datum surface and the projection surface. 
 
A more useful expression for area scale factor can be written in terms of differentials of the 
parametric curves on the datum surface only.  Referring to Section 6, equation (6.2) where we 
expressed elemental distance on the projection surface in terms of elemental changes in the 
parametric curves on the datum surface, i.e.,  where E, F and 
G are given by 

2 2 2dS E du F du dv G dv= + + 2

(6.3) we also have elemental area 

 dA J du dv=  (7.16) 

where .  Hence, area scale factor can be expressed as 2J EG F− 2

 area scale factor dA J du dv J
da j du dv j

= = =  (7.17) 
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8. GAUSSIAN FUNDAMENTAL QUANTITIES FOR THE SPHERE 

For most of our study of map projections, the datum surface is a sphere of radius R 
representing the Earth, with parallels of latitude (φ  curves) and meridians of longitude ( λ  
curves) as the parametric curves on the surface.  The functional relationships connecting x,y,z 
Cartesian coordinates and ,φ λ  curvilinear coordinates are 

 
( )
( )
( )

1

2

3

, cos co

, cos sin

, sin

x f R

y f R

z f R

sφ λ φ λ

φ λ φ

φ λ φ

= =

= =

= =

λ  (8.1) 

The Gaussian Fundamental Quantities e, f and g are given in the general formula (3.6) and we 
may replace u with φ  and v with λ  and write them as 

 

2 2

2 2

2

2

x y ze

x x y y zf z

x y zg

φ φ φ

φ λ φ λ φ λ

λ λ λ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂
= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∂ ∂ ∂ ∂ ∂ ∂
= + +

∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (8.2) 

Differentiating equations (8.1) gives 

 

sin cos cos sin

sin sin cos cos

cos 0

x xR R

y xR R

x xR

φ λ φ
φ λ

λ

φ λ φ
φ λ

φ
φ λ

λ

∂ ∂
= − = −

∂ ∂
∂ ∂

= − =
∂ ∂
∂ ∂

= =
∂ ∂

 

Substituting these derivatives into (8.2) gives 

 

( ) ( ) (
( )

( )(
( )

2 2

2 2 2 2 2 2

2 2 2 2 2

2 2 2

2

sin cos sin sin cos

sin cos sin sin cos

sin cos sin cos

sin cos

e R R R

R

R

R

R

)

)

2φ λ φ λ

φ λ φ λ φ

φ λ λ φ

φ φ

= − + − +

= + +

= + +

= +

=

φ

 (8.3) 

 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )2 2

sin cos cos sin sin sin cos cos cos 0

sin cos cos sin sin sin cos cos 0

0

f R R R R R

R R

φ λ φ λ φ λ φ λ φ

φ λ φ λ φ λ φ λ

= − − + − +

= − +

=

 (8.4) 
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( ) ( ) ( )
( )

( )( )

2 2

2 2 2 2 2

2 2 2 2

2 2

cos sin cos cos 0

cos sin cos cos

cos cos sin

cos

g R R

R

R

R

φ λ φ λ

φ λ φ λ

φ λ λ

φ

= − + +

= +

= +

=

2

 (8.5) 

The elemental distance on the sphere of radius R with parametric curves φ  (latitude) and λ  
(longitude) is 

 2 2 2ds ed f d d g d 2φ φ λ λ= + +  (8.6) 

and the Gaussian Fundamental Quantities for the sphere are 

 

2

2 2

0
cos

e R
f
g R φ

=
=

=

 (8.7) 

 

9. CYLINDRICAL PROJECTIONS 

In elementary texts on map projections, the projection surfaces are often described as 
developable surfaces, such as the cylinder (cylindrical projections) and the cone (conical 
projections), or a plane (azimuthal projections).  These surfaces are imagined as enveloping or 
touching the datum surface and by some means, usually geometric, the meridians, parallels 
and features are projected onto these surfaces.  In the case of the cylinder, it is cut and laid flat 
(developed).  If the axis of the cylinder coincides with the axis of the Earth, the projection is 
said to be normal aspect, if the axis lies in the plane of the equator the projection is known as 
transverse and in any other orientation it is known as oblique.  [It is usual that the descriptor 
"normal" is implied in the name of a projection, but for different orientations, the words 
"transverse" or "oblique" are added to the name.]  This simplified approach is not adequate for 
developing a general theory of projections (which as we can see is quite mathematical) but is 
useful for describing characteristics of certain projections.  In the case of cylindrical 
projections, some characteristics are a common feature: 
 

(i) Meridians of longitude and parallels of latitude form an orthogonal network of 
straight parallel lines. 

(ii) Meridians are equally spaced straight parallel lines intersecting parallels at right 
angles. 

(iii) Parallels, in general, are unequally spaced straight parallel lines but are symmetric 
about the equator. 
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Figure 9.1 Cylindrical projection.  u,v curves on the datum surface projected 
as U,V curves on the projection surface 

 
Figure 9.1 shows a schematic diagram of a cylindrical projection demonstrating the basic 
characteristics common to all cylindrical projections (normal aspect).  Cylindrical projections 
often have a square or rectangular shape.  In the case of projections showing the whole of the 
earth (or nearly so), the X-axis coincides with the equator and the Y-axis coincides with the 
central meridian.  As can be seen, the U-curves (parallels of latitude) are parallel to the X-axis 
and the V-curves (meridians of longitude) are parallel to the Y-axis. 
 
 

9.1. The Gaussian Fundamental Quantities of Cylindrical projections 

For cylindrical projections, the projection surface is a plane and the U,V curvilinear 
coordinate system is an orthogonal system of U and V-curves that are straight lines parallel 
with the X and Y-axes respectively.  The functional relationships connecting the U,V 
coordinate system with the X,Y,Z Cartesian coordinate system were given previously by 
equations (2.2) and are restated here in more explicit form that recognises the fact that X is a 
function of V only, Y is a function of U only and Z = 0 

 
( )
( )
( )

1

2

3

,

,

, 0

X F U V V

Y F U V U

Z F U V

= =

= =

= =

 (9.1) 

The Gaussian Fundamental Quantities of the projection surface are 

 

2 2

2 2

1

0

1

X YE
U U

X X Y YF
U V U V
X YG
V V

∂ ∂⎛ ⎞ ⎛ ⎞= + =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
∂ ∂ ∂ ∂

= +
∂ ∂ ∂ ∂

∂ ∂⎛ ⎞ ⎛ ⎞

=

= + =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

 (9.2) 
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Now, considering the datum surface to be a sphere of radius R and the u,v curves as parallels 
and meridians ,φ λ , the Gaussian Fundamental Quantities E,F,G relating to the functional 
relationships 

 
( )
( )

1

2

,

,

X f

Y f

φ λ

φ λ

=

=
 (9.3) 

are 

 

2 2

2 2

X YE

X X Y YF

X YG

φ φ

φ λ φ λ

λ λ

⎛ ⎞ ⎛ ⎞∂ ∂
= +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂

∂ ∂⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

 (9.4) 

Equations (9.4) can be obtained from the Transformation Matrix (6.7) in the following way 

 

2 2

2 2

2

2

Y Y X X

E E
Y Y Y X Y X X XF

G G
Y Y X X

φ φ φ φ

φ λ λ φ φ λ φ λ

λ λ λ λ

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥

F
⎡ ⎤⎡ ⎤ ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ⎢ ⎥⎢ ⎥ = +⎢ ⎥ ⎢ ⎥⎢ ⎥ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

 (9.5) 

where X has replaced V and Y has replaced U, since they are parallel to the X and Y axes and 
where 1, 0, 1E F G= = = . 
 
Now in Cylindrical projections, Y is a function of φ  only and X is a function of λ  only, since 
our U-curves are parallels of latitude and V-curves are meridians of longitude.  Hence, 
equations (2.3) can be written as 

 
( )
( )

1

2

X g

Y g

λ

φ

=

=
 (9.6) 

noting that X has replaced V, Y has replaced U, φ  has replaced u and λ  has replaced v.  From 
equations (9.6) we can see that 

 0   and   0X Y
φ λ

∂ ∂
= =

∂ ∂
 

Substituting these derivatives into (9.4) gives the Gaussian Fundamental Quantities E,F,G for 
normal aspect Cylindrical projections 

 
2 2

, 0,YE F G X
φ λ

⎛ ⎞∂ ⎛ ⎞= = = ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠

∂  (9.7) 
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Using these differential relationships and particular geometric and scale conditions we can 
derive CONFORMAL, EQUAL AREA and EQUIDISTANT Cylindrical projections. 
 
The scale conditions are: 
 

For CONFORMAL Cylindrical projections: 2E G m
e g

= =  

 EQUAL AREA Cylindrical projections: 1J
j

=  

 EQUIDISTANT Cylindrical projections: 1E
e

=  

In addition, since the datum surface is a sphere of radius R, the Gaussian Fundamental 
Quantities of the datum surface are 

 

2

2 2

0
cos

e R
f
g R φ

=
=

=

 (9.8) 

9.2. Conformal Cylindrical Projection (Mercator's projection) 

For a Conformal Cylindrical projection the scale condition to be enforced is 

 2E G m
e g

= =  (9.9) 

Alternatively, using the notation for meridian and parallel scale factors we may write the 
scale condition as 

  (9.10) h k=

where E dYh
R de φ

= =  (9.11) 

and 
cos

G dXk
R dg φ λ

= =  (9.12) 

Using (9.10), (9.11) and (9.12) gives this scale condition as 

 1
cos

dY dX
d dφ φ λ

=  (9.13) 

To simplify this equation, we can enforce a particular scale condition: that the scale factor 
along the equator be unity.  Using (9.12), this condition can be written as 
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 0
0

1
cos

dXk
R dφ λ

= =  (9.14) 

Now since  this particular scale condition gives the differential equation 0 0  and cos 1φ = 0φ =

 dX R dλ=  (9.15) 

Integrating (9.15) gives 

 1X R d R Cλ λ= = +∫  

1C  is a constant of integration that can be evaluated by considering that when 00,X λ λ= =  
and 1C R 0λ= −  giving 

 ( )0X R λ λ= −  (9.16) 

Substituting (9.15) into (9.13) gives the differential equation 

 
cos
R ddY φ

φ
=  (9.17) 

Integration gives 

 

2

1
cos

ln tan
4 2

Y R d

R C

φ
φ

π φ

=

⎧ ⎫⎛ ⎞= +⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

∫

+
 

2C

Y

 is a constant of integration that can be evaluated by considering that when 

0, 0 ,φ= = ( )0tan tan 1 and ln 1 0
4 2 4
π π⎛ ⎞+ = = =⎜ ⎟

⎝ ⎠
.  Hence 2 0C =  giving 

 ln tan
4 2

Y R π φ⎧ ⎫⎛= ⎞+⎨ ⎬⎜
⎝ ⎠⎩ ⎭

⎟  (9.18) 

Equations (9.16) and (9.18) are the projection equations for a Conformal Cylindrical 
projection, known commonly as Mercator's projection. 
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Y

X

λ0  
 

Figure 9.2  Mercator's projection (Cylindrical Conformal). 
Scale 1:270 million, graticule interval 30º, central meridian  0 135λ =

 
Alternative expressions for Y may be obtained by the following: 
 
(i) From the half-angle trigonometric identities 

 1 costan
2 1 cos
A A

A
−

=
+

 

 and 
1 cos

2tan
4 2 1 cos

2

A
A

A

π
π

π

⎛ ⎞− +⎜ ⎟⎛ ⎞ ⎝ ⎠+ =⎜ ⎟ ⎛ ⎞⎝ ⎠ + +⎜ ⎟
⎝ ⎠

 

 and since 1 sincos sin   then   tan
2 4 2

A AA A
A

π π +⎛ ⎞ ⎛ ⎞+ = − + =⎜ ⎟ ⎜ ⎟ −⎝ ⎠ ⎝ ⎠ 1 sin
 

 Substituting into (9.18) gives 

1
21 sinln

1 sin
Y R φ

φ
⎛ +

= ⎜ −⎝ ⎠

⎞
⎟  (9.19) 

(ii) Using the law of logarithms  

 log logp
a aM p M=  
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 equation (9.19) becomes 1 sinln
2 1 sin
RY φ

φ
⎛ +

= ⎜ −⎝ ⎠

⎞
⎟  (9.20) 

(iii) If colatitudes χ  (chi) are used then 90χ φ= −  or 90φ χ= − .  Therefore 

 1
4 2 4 2 2 4 4 2 2 2
π φ π π π π χ π χχ⎛ ⎞+ = + − = + − = −⎜ ⎟

⎝ ⎠
 

 and 
ln tan ln tan

4 2 2 2

ln cot
2

Y R R

R

π φ π

χ

⎧ ⎫ ⎧⎛ ⎞ ⎛= + = −⎨ ⎬ ⎨⎜ ⎟ ⎜
⎝ ⎠ ⎝⎩ ⎭ ⎩

⎧ ⎫⎛ ⎞= ⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

χ ⎫⎞
⎬⎟

⎠⎭  

 and ln tan
2

Y R χ⎧ ⎫⎛ ⎞= − ⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

 (9.21) 

 

9.2.1. Properties of Mercator's Projection 

 
(i) Projection is Conformal 
 
(ii) Gaussian Fundamental Quantities E,F,G 
 

 The projection equations are: ( )0

ln tan
4 2

X R

Y R

λ λ

π φ

= −

⎧ ⎫⎛ ⎞= +⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

 (9.22) 

 Using these equations, we may determine expressions for the derivatives 

, , ,X X Y Y
φ λ φ λ

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

 

 0   and   X X R
φ λ

∂ ∂
=

∂ ∂
=   (9.23) 

 To find Y
φ

∂
∂

 Let 
4 2

z π φ
= + , then 1

2
z
φ

∂
=

∂
 and ( )ln tanY R z=  

  Now, let , then tanu = z lnY R u= , Y R
u u

∂
=

∂
 and 2secu z

z
∂

=
∂

 

  Y
φ

∂
∂

 can now be found using the chain rule for derivatives 
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( )2

2

1sec
2

cos
14 2

2 sin cos
4 2 4 2

      where  
2sin cos 4 2

sin 2

sin
2

cos

Y Y u z R z
u z u

R

R A
A A

R
A
R

R

φ φ
π φ

π φ π φ

π φ

π φ

φ

∂ ∂ ∂ ∂ ⎛ ⎞ ⎛ ⎞= = ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ⎝ ⎠ ⎝ ⎠

⎛ ⎞+⎜ ⎟
⎝ ⎠=
⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= = +

=

=
⎛ ⎞+⎜ ⎟
⎝ ⎠

=

 

 hence    and   0
cos

Y R Y
φ φ λ

∂
= =

∂ ∂
∂   (9.24) 

 Substituting (9.23) and (9.24) into the general equations for the Gaussian Fundamental 
Quantities E,F,G gives 

 

2 2 2

2

2 2
2

2
2

cos

0

cos

X Y RE

X X Y YF

X YG R

RJ EG F

φ φ φ

φ λ φ λ

λ λ

φ

⎛ ⎞ ⎛ ⎞∂ ∂
= + =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

∂ ∂ ∂ ∂
= + =

∂ ∂ ∂ ∂

∂ ∂⎛ ⎞ ⎛ ⎞= + =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

= − =

 (9.25) 

(iii) Scale Factors h (meridian) and k (parallel) 
 

 Using equations (9.11) and (9.12) 

1 1
cos cos

1 1
cos cos

E Rh
Re

Gk R
g

φ φ

φ φ

= = =

= = =

 (9.26) 

 Note that the scale factors h and k are equal and the projection is conformal since 
. 0f F= =

 

(iv) Scale factor along equator 0 1k =  
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9.2.2. The Loxodrome and Mercator's projection 

 
Mercator's projection has the unique property that a loxodrome on the datum surface of the 
Earth (sphere or ellipsoid) is shown as a straight line on the projection. 
 

loxodrome

 
 
 

Figure 9.3 – Loxodrome on the Earth's surface. 
 
 
A loxodrome or rhumb line is a curved line on the sphere (or ellipsoid) such that every 
element of the curve ds intersects a meridian at a fixed angle α .  In marine and air 
navigation, aircraft and ships sailing or flying on fixed compass headings are moving along 
loxodromes, hence knowledge of loxodromes is important in navigation. 
 
Formulae for computation of loxodromic distance and azimuth on the sphere can be derived 
by considering an elemental rectangle on the surface 
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φ +  

dφ

dφ

d

φ

λ

λ + 

R 

φ dλ

R cos

ds
α

P

Q

λ

 
 

 
Figure 9.4 – The Elemental Rectangle on the spherical Earth 

 
In Figure 9.4, P and Q are two points on the surface of the spherical Earth separated by dφ  
and dλ ; elemental changes in latitude and longitude respectively (the parametric curves of 
meridians and parallels).  R is the radius of the Earth, ds is the elemental distance between P 
and Q and α  is the azimuth of the element of distance. 
 
Two differential relationships can be determined from the diagram 

 costan R d
R d

φ λα
φ

=  (9.27) 

 cosds R dα φ=  (9.28) 

To determine the azimuth of a loxodrome between two points we may write (9.27) as 

 tan
cos
dd φλ α

φ
=  

and since the azimuth is constant then tan constantα =  and integration gives 

 
2 2

1 1

tan
cos
dd

λ φ

λ φ

φλ α
φ

=∫ ∫  

Knowing that ln tan
cos 4 2
dφ π φ

φ
⎧ ⎛= +⎨ ⎜

⎝ ⎠⎩ ⎭∫
⎫⎞
⎬⎟  (a standard integral result) gives 

 2 1
2 1 tan ln tan ln tan

4 2 4 2
π φ π φλ λ α

⎡ ⎤⎧ ⎫ ⎧ ⎫⎛ ⎞ ⎛ ⎞− = + − +⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎩⎣ ⎦⎭
 

which can be rearranged to give 

 2 1

2 1

tan
ln tan ln tan

4 2 4 2

λ λα
π φ π φ

−
=

⎧ ⎫ ⎧⎛ ⎞ ⎛+ − +⎨ ⎬ ⎨⎜ ⎟ ⎜
⎝ ⎠ ⎝⎩ ⎭ ⎩

⎫⎞
⎬⎟

⎠⎭

 (9.29) 

The distance along the loxodrome between two points can be obtained by writing (9.28) as 
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cos
R dds φ

α
=  

and since the azimuth and R are constants, the length of the loxodrome is given by integration 
as 

 
2

1
cos

Rs ds d
φ

φ

φ
α

= =∫ ∫  

which is evaluated as 

 ( 2 1cos
Rs )φ φ

α
= −  (9.30) 

Hence given two points on the surface of the spherical Earth, the azimuth of the loxodrome 
between them is computed from (9.29) and then the distance is computed from (9.30). 
 
Now, the bearing θ  between two points A and B on Mercator's projection having X,Y 
coordinates is given by 

 tan AB

AB

X
Y

θ Δ
=

Δ
 

and using the projection equations (9.22) the bearing θ  can be written as 

 

( ) ( )0 0tan
ln tan ln tan

4 2 4 2

ln tan ln tan
4 2 4 2

B AAB

B AAB

B A

B A

R RX
Y R R

λ λ λ λ
θ

π φ π φ

λ λ
π φ π φ

− − −Δ
= =

Δ ⎧ ⎫ ⎧⎛ ⎞ ⎛− − − ⎫⎞
⎨ ⎬ ⎨⎜ ⎟ ⎜

⎝ ⎠ ⎝⎩ ⎭ ⎩
−

=
⎧ ⎫ ⎧⎛ ⎞ ⎛ ⎞− − −⎨ ⎬ ⎨⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎩

⎬⎟
⎠⎭

⎫
⎬
⎭

 (9.31) 

Inspection of equations (9.31) and (9.29) reveals that the bearing on the map projection 
between two points is identical to the azimuth of the loxodrome between the same two points 
on the Earth's spherical surface.  This is the unique property possessed by Mercator's 
projection, which has made it such an invaluable projection for navigation and exploration. 
 

9.3. EQUAL AREA CYLINDRICAL PROJECTION 

For an Equal Area Cylindrical projection the scale condition to be enforced is 

 1J
j

=  (9.32) 

where  and 2 2J EG F= − 2j eg f= − .  Since the meridians and parallels on the datum 
surface (a sphere) intersect at right angles then 0f =  and the U and V curves on the 
projection surface also intersect at right angles (a property of normal aspect cylindrical 
projections), hence 0F = .  Therefore, the scale condition (9.32) can be written as 
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2

2
1J EG F EG E G

j eg e geg f
−

= = =
−

=  

Now, the meridian scale factor Eh
e

=  and the parallel scale factor Gk
g

= ; this leads to 

the scale condition for Equal Area Cylindrical projections being expressed as 

 1h k× =  (9.33) 

Where, from (9.7) and (9.8) 

 E dYh
R de φ

= =  (9.34) 

 
cos

G dXk
R dg φ λ

= =  (9.35) 

Using (9.33), (9.35) and (9.35) gives this scale condition as 

 1
cos

dY dX
R d R dφ φ λ

=  (9.36) 

In a similar way to the derivation of the projection equations for the Conformal Cylindrical 
projection we simplify this equation by enforcing a particular scale condition: that the scale 
factor along the equator be unity.  Using (9.35), this condition can be written as 

 0
0

1
cos

dXk
R dφ λ

= =  (9.37) 

Now since  this particular scale condition gives the differential equation 0 0  and cos 1φ = 0φ =

 dX R dλ=  (9.38) 

Integrating (9.38) gives 

 1X R d R Cλ λ= = +∫  

1C  is a constant of integration that can be evaluated by considering that when 00,X λ λ= =  
and 1C R 0λ= −  giving 

 ( )0X R λ λ= −  (9.39) 

Substituting (9.38) into (9.36) gives the differential equation 

 cosdY R dφ φ=  (9.40) 
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Integration gives 

 
2

cos

sin

Y R d

R C

φ φ

φ

=

= +
∫  

2C
sin

 is a constant of integration that can be evaluated by considering that when  0, 0 ,Y φ= =

0 0φ = .  Hence 2 0C =  giving 

 sinY R φ=  (9.41) 

Equations (9.39) and (9.41) are the projection equations for an Equal Area Cylindrical 
projection. 
 

equator

Y

X

λ0
 

Figure 9.5  Equal Area Cylindrical projection. 
Scale 1:270 million, graticule interval 30º, central meridian  0 135λ =

 
The particular scale condition (scale factor along equator equal to unity) used to simplify the 
differential equation (9.36) can have a more general meaning and we may write that the scale 
factor along a particular parallel of latitude equals unity 

 0
0

1
cos

dXk
R dφ λ

= =  (9.42) 

where 0φ  denotes a standard parallel.  This leads to a more general differential equation 

 0cosdX R dφ λ=  (9.43) 

Solving this equation, treating 0cosφ  as a constant gives 

 ( )0cosX R 0φ λ λ= −  (9.44) 

Substituting (9.43) into (9.36) gives the differential equation 

 
0

cos
cos

RdY dφ φ
φ

=  (9.45) 
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Integrating gives 

 
0

sin
cos
RY φ

φ
=  (9.46) 

Equations (9.44) and (9.46) are the general equations for an Equal Area Cylindrical 
projection. 
 

φ

φ

λ0

0

0

X

Y

 
 

Figure 9.6  Equal Area Cylindrical projection. 
Scale 1:270 million, graticule interval 30º, central meridian  0 135λ =

Standard parallels 0N Sφ φ φ= =  at 30º 
 
 

9.3.1. Properties of an Equal Area Cylindrical Projection 

 
(i) Projection is Equal Area 
 
(ii) Gaussian Fundamental Quantities E,F,G 
 

 The projection equations are: ( )0

0

cos
sin

cos

X R
RY

0φ λ λ
φ

φ

=

=

−  (9.47) 

 where 0φ  is the latitude of standard parallels 0N Sφ φ φ= =  

 

 Using these equations, we may determine expressions for the derivatives 

, , ,X X Y Y
φ λ φ λ

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂
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  0X
φ

∂
=

∂
 0cosX R φ

λ
∂

=
∂

 (9.48) 

  
0

cos
cos

Y R φ
φ φ

∂
=

∂
 0Y

λ
∂

=
∂

 (9.49) 

 Substituting (9.48) and (9.49) into the general equations for the Gaussian Fundamental 
Quantities E,F,G gives 

 

2 2 2 2

2
0

2 2
2 2

0

2 2

cos
cos

0

cos

cos

X Y RE

X X Y YF

X YG R

J EG F R

φ
φ φ φ

φ λ φ λ

φ
λ λ

φ

⎛ ⎞ ⎛ ⎞∂ ∂
= + =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

∂ ∂ ∂ ∂
= + =

∂ ∂ ∂ ∂

∂ ∂⎛ ⎞ ⎛ ⎞= + =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

= − =

 (9.50) 

 Note that 
2

2

cos 1
cos

J R
j R

φ
φ

= =  which satisfies the equal area scale condition 

 
(iii) Scale Factors h (meridian) and k (parallel) 
 

 Using equations (9.34) and (9.35) 0

0
0

cos 1 cos
cos cos

1 coscos
cos cos

E Rh
Re

Gk R
Rg

0

φ φ
φ φ

φφ
φ φ

= = =

= = =

 (9.51) 

 Note that the scale factors h and k multiplied together equal unity and the projection is 
equal area since . 0f F= =

 

(iv) Scale factor along equator 0cosequatork φ=  

 

9.3.2. Pseudocylindrical Equal Area projection 

Imposing the scale condition 1J
j

=  leads to the general differential equation for equal area 

cylindrical given by (9.36) 

 1
cos

dY dX
R d R dφ φ λ

=  (9.52) 

To simplify this equation we may impose the scale condition: that the scale factor along every 
parallel is unity.  Using (9.35), this condition can be written as 
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 1
cos

dXk
R dφ λ

= =  (9.53) 

This gives the differential equation 

 cosdX R dφ λ=  (9.54) 

Integrating and solving for the constant of integration gives 

 ( )0cosX R φ λ λ= −  (9.55) 

Substituting (9.54) into (9.52) gives the differential equation 
 dY R dφ=  

Integrating and solving for the constant of integration gives 

 Y Rφ=  (9.56) 

Equations (9.55) and (9.56) are the projection equations for an Equal Area Pseudocylindrical 
projection known as the Sinusoidal projection or the Sanson-Flamsteed projection 
 

Y

X

λ0  
 

Figure 9.7  Sinusoidal Pseudocylindrical Equal Area projection. 
Scale 1:270 million, graticule interval 30º, central meridian  0 30λ =

 

9.3.3. Properties of Sinusoidal Pseudocylindrical Projection 

 
(i) Projection is Equal Area 
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(ii) Gaussian Fundamental Quantities E,F,G 
 

 The projection equations are: ( )0cosX R
Y R

φ λ λ
φ

=

=

−  (9.57) 

 Using these equations, we may determine expressions for the derivatives 

, , ,X X Y Y
φ λ φ λ

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

 

  ( )0sinX R φ λ λ
φ

∂
= − −

∂
 cosX R φ

λ
∂

=
∂

 (9.58) 

  Y R
φ

∂
=

∂
 0Y

λ
∂

=
∂

 (9.59) 

 Substituting (9.48) and (9.49) into the general equations for the Gaussian Fundamental 
Quantities E,F,G gives 

 

( )( )
( )

2 2
22 2

0

2
0

2 2
2 2

2 2

1 sin

sin cos

cos

cos

X YE R

X X Y YF R

X YG R

J EG F R

φ λ λ
φ φ

φ φ λ λ
φ λ φ λ

φ
λ λ

φ

⎛ ⎞ ⎛ ⎞∂ ∂
= + = + −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

∂ ∂ ∂ ∂
= + = − −

∂ ∂ ∂ ∂

∂ ∂⎛ ⎞ ⎛ ⎞= + =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

= − =

 (9.60) 

 Note that 
2

2

cos 1
cos

J R
j R

φ
φ

= =  which satisfies the equal area scale condition 

 
(iii) Scale Factors h (meridian) and k (parallel) 
 

 Using equations (9.34) and (9.35) 

( ) ( )0
0

sin
sin

cos 1
cos

REh
Re

G Rk
Rg

φ λ λ
φ λ λ

φ
φ

−
= = = −

= = =
 (9.61) 

 Note that the scale factors h and k multiplied together do not equal unity since 0F ≠  
but the projection is still equal area as we can see from the more general expression 

1J
j

=  

 

(iv) Scale factor along equator 1equatork =  
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9.4. EQUIDISTANT CYLINDRICAL PROJECTION 

For an Equidistant Cylindrical projection the scale condition to be enforced is 

 1E
e

=  (9.62) 

Alternatively, using the notation for meridian and parallel scale factors we may write the scale 
condition as 

 1h =  (9.63) 

where using (9.7) and (9.8) 

 1E dYh
R de φ

= = =  (9.64) 

This leads to the differential equation 

 dY R dφ=  (9.65) 

Integrating this equation gives 

 
2

Y R d

R C

φ

φ

=

= +
∫  

2C  is a constant of integration that can be evaluated by considering that when , 0Y = 0φ =  
and  giving 2 0C =

 Y Rφ=  (9.66) 

In a similar way to the Conformal and Equal Area Cylindrical projections a particular scale 
condition: that the scale factor along the equator be unity.  Using (9.35), this condition can be 
written as 

 0
0

1
cos

G dXk
R dg φ λ

= = =  

Now since  this particular scale condition gives the differential equation 0 0  and cos 1φ = 0φ =

 dX R dλ=  (9.67) 

Integrating (9.67) gives 

 1X R d R Cλ λ= = +∫  

1C  is a constant of integration that can be evaluated by considering that when 00,X λ λ= =  
and 1C R 0λ= −  giving 

 ( )0X R λ λ= −  (9.68) 
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Equations (9.68) and (9.66) are the projection equations for an Equidistant Cylindrical 
projection. 
 

X

Y

λ0

equator

ce
nt

ra
l

m
er

id
ia

n

 
 

Figure 9.8  Equidistant Cylindrical projection. 
Scale 1:270 million, graticule interval 30º, central meridian  0 135λ =

 
The particular scale condition (scale factor along equator equal to unity) used to obtain the 
equation for the meridians can have a more general meaning and we may write that the scale 
factor along a particular parallel of latitude equals unity 

 0
0

1
cos

dXk
R dφ λ

= =  (9.69) 

where 0φ  denotes a standard parallel.  This leads to a more general differential equation 

 0cosdX R dφ λ=  (9.70) 

Solving this equation, treating 0cosφ  as a constant gives 

 ( )0cosX R 0φ λ λ= −  (9.71) 

Equations (9.71) and (9.66) are the general equations for an Equidistant Cylindrical 
projection 
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Figure 9.9  Equidistant Cylindrical projection. 
Scale 1:270 million, graticule interval 30º, central meridian  0 135λ =

Standard parallels 0N Sφ φ φ= =  at 45º 
 

9.4.1. Properties of an Equidistant Cylindrical Projection 

 
(i) Projection is Equidistant (along meridians) 
 
(ii) Gaussian Fundamental Quantities E,F,G 
 

 The projection equations are: ( )0cosX R
Y R

0φ λ λ
φ

=

=

−  (9.72) 

 where 0φ  is the latitude of standard parallels 0N Sφ φ φ= =  

 Using these equations, we may determine expressions for the derivatives 

, , ,X X Y Y
φ λ φ λ

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

 

  0X
φ

∂
=

∂
 0cosX R φ

λ
∂

=
∂

 (9.73) 

  Y R
φ

∂
=

∂
 0Y

λ
∂

=
∂

 (9.74) 
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 Substituting (9.73) and (9.74) into the general equations for the Gaussian Fundamental 
Quantities E,F,G gives 

 

2 2
2

2 2
2 2

0

2 2
0

0

cos

cos

X YE R

X X Y YF

X YG R

J EG F R

φ φ

φ λ φ λ

φ
λ λ

φ

⎛ ⎞ ⎛ ⎞∂ ∂
= + =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

∂ ∂ ∂ ∂
= + =

∂ ∂ ∂ ∂

∂ ∂⎛ ⎞ ⎛ ⎞= + =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

= − =

 (9.75) 

 
(iii) Scale Factors h (meridian) and k (parallel) 
 

  
0 0

1

cos cos
cos cos

E Rh
Re

G Rk
Rg

φ φ
φ φ

= = =

= = =
 (9.76) 

 Note that the scale factor h = 1, hence the projection is equidistant (along the 
meridians). 

 

(iv) Scale factor along equator 0cosequatork φ=  
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