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10. CONICAL PROJECTIONS 

In elementary texts on map projections, the projection surfaces are often described as 
developable surfaces, such as the cylinder (cylindrical projections) and the cone (conical 
projections), or a plane (azimuthal projections).  These surfaces are imagined as enveloping or 
touching the datum surface and by some means, usually geometric, the meridians, parallels 
and features are projected onto these surfaces.  In the case of the cone, a plane containing the 
axis of the cone cuts the cone on a line joining the base and the apex.  If the cone is cut along 
this line (a generator of the cone) it can be laid flat (developed).  If the axis of the cone 
coincides with the axis of the Earth, the projection is said to be normal aspect, if the axis lies 
in the plane of the equator the projection is known as transverse and in any other orientation it 
is known as oblique.  [It is usual that the descriptor "normal" is implied in the name of a 
projection, but for different orientations, the words "transverse" or "oblique" are added to the 
name.]  This simplified approach is not adequate for developing a general theory of 
projections (which as we can see is quite mathematical) but is useful for describing 
characteristics of certain projections.  In the case of conical projections, some characteristics 
are a common feature: 
 

(i) Meridians are equally spaced straight lines radiating from a central point O. 
(ii) Parallels, in general, are unequally spaced concentric circles having a centre at O.  
(iii) Meridians of longitude and parallels of latitude form an orthogonal network of lines. 
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 Figure 10.1 Conical projection.  u,v curves on the datum surface projected 

as U,V curves on the projection surface 
 
Figure 10.1 shows a schematic diagram of a conical projection demonstrating the basic 
characteristics common to all conical projections (normal aspect).  Conical projections have a 
general circular shape when the whole of the Earth is displayed; the U-curves (parallels of 
latitude) are concentric circles and the V-curves (meridians of longitude) are equally spaced 
radial lines.  In Figure 10.1, the centre for the circular U-curves and the radial V-curves is the 
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pole, but this is not always the case.  In some conical projections, the pole is shown as a line.  
The origin of the X,Y Cartesian coordinates is shown at the intersection of a central V-curve (a 
central meridian 0λ ) and a selected U-curve (a parallel of latitude 0φ ).  A point P is shown on 
the projection with polar coordinates ,r θ  where r is a radial distance from the centre of the 
projection, the origin of the polar coordinate system and θ  is an angle measured positive 
anticlockwise, negative clockwise from the central meridian.  All projection equations for 
conical projections are given in terms of polar coordinates. 
 

10.1. The Gaussian Fundamental Quantities of Conical Projections 

For conical projections, the projection surface is a plane and the U,V curvilinear coordinate 
system is an orthogonal system of U and V-curves that are concentric circular arcs of radius r 
and straight radial lines at angles θ  from a central V- curve.  The functional relationships 
connecting the U,V coordinate system with the X,Y,Z Cartesian coordinate system were given 
previously by equations (2.2) and are restated here in more explicit form 
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Referring to Figure 10.1, the X,Y Cartesian coordinates are related to the ,r θ  polar 
coordinates by the equations 
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where  is the radius of the U-curve (a parallel of latitude) passing through the X,Y 
coordinate origin. 

0r

 
The Gaussian Fundamental Quantities of the projection surface are given by equations (5.3) 
and are restated here recognising that U-curves are circular arcs of radius r and V-curves are 
radial lines at angles θ  from a cental meridian and Z = 0 
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The partial derivatives ,  etX X
r θ

∂ ∂
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c  can be obtained from (10.2) 
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Substituting equations (10.4) into (10.3) gives 
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 (10.5) 

Note that 0F = , which reflects the fact that the r-curves and θ -curves (U and V-curves that 
are concentric circles and radial lines) intersect at right angles. 
 
Now, considering the datum surface to be a sphere of radius R and the u,v curves as parallels 
and meridians ,φ λ , the Gaussian Fundamental Quantities E,F,G relating the functional 
relationships 
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are 
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Expressions for E,F,G can be obtained from the Transformation Matrix (6.7) in the following 
form 
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 (10.8) 

Noting that r has replaced U, θ  has replaced V, φ  has replaced u and λ  has replaced v. 
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Now from equations (10.5) we have 1E = , 0F =  and 2G r= , and substituting into the 
Transformation Matrix (10.8) gives 
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These expressions can be simplified if the following conditions for normal aspect Conical 
projections are enforced (these conditions can be "understood" by inspection of Figure 10.1) 
 
(i) ( )r f φ=  i.e., the radius of a parallel of latitude (a U-curve) on the projection is 

a function of the latitude φ  only and 
 
(ii) ( 0n )θ λ λ= −  i.e., the polar angle θ  (the angle between a V-curve and the central 

meridian) is a linear function of λ  only.  n is a scalar quantity known 
as the cone constant. 

 
These two conditions mean that 
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 (10.10) 

Substituting these differential relationships into (10.9) gives the Gaussian Fundamental 
Quantities E,F,G for normal aspect Conical projections 
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Using these differential relationships and particular scale conditions we can derive 
CONFORMAL, EQUAL AREA and EQUIDISTANT Conical projections. 
 
The scale conditions are: 
 

For CONFORMAL Conical projections: 2E G m
e g
= =  

 

 EQUAL AREA Conical projections: 1J
j
=  

 

 EQUIDISTANT Conical projections: 1E
e
=  
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In addition, since the datum surface is a sphere of radius R, the Gaussian Fundamental 

 

Quantities of the datum surface are 
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10.2. Conformal Conical Projections 

For a Conformal Conical projection the scale condition to be enforced is 

 2E G m
e g
= =  (10.13) 

Alternatively, using the notation for meridian and parallel scale factors we may write the scale 
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Note that in equation (10.16) the cone constant 

 n θ
λ
∂

=
∂

 (10.17) 

is used, see equations (10.10) and the conditions for normal aspect Conical projections. 

nforcing the scale condition  gives the differential relationship 

 

 
 h k=E

cos
r nr

R Rφ φ
∂

=
∂

 

and rearranging gives 
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Note: The minus sign is introduced to reflect the fact that the radius r increases as the 
latitude φ  decreases. 

 
tegrating (10.18) gives In
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where  is the natural logarithm of the constants of integration.  Using the laws 

of logarithms, lo
( 2 1lnC C C= −

g p

)
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Taking antilogarithms of both sides gives 
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and from condition (ii) above 

 ( )0nθ λ λ= −  (10.20) 

Equations (10.19) and (10.20) are the general equations for Conformal Conic projections, but 
the constants n and C must be determined. 
 
To determine the constants n (the cone constant) and C, geometric constraints relating to 
standard parallels are employed, remembering that a standard parallel is defined as a parallel 
of latitude along which the scale factor is constant and equal to unity. 
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Consider the case of a single standard parallel 
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 Figure 10.2 Schematic diagram of a Conical projection with a single 

standard parallel 1φ  having a radius . 1r
 
 
Setting the scale factor k in equation (10.16) equal to unity along a standard parallel 1φ  gives 
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That can be rearranged to give an equation for the cone constant n as 
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Inspection of equation (10.21) shows that if the radius of the standard parallel  is fixed then 
the cone constant n can be determined.  Referring to Figure 10.2, the two choices for fixing  
are: 

1r

1r

 
 (a) Make the radius of the standard parallel equal to the tangent length of the cone.   

 1 cotr R 1φ=  (10.22) 

 (b) Make the radius of the standard parallel equal to the meridian distance on the 
Earth from the pole to the tangent point of the cone. 
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10.2.1. Conformal Conic Projection with a single standard parallel (radius = tangent length) 

 

Projection equations: 
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Cone constant: 1 1
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To determine the constant C, consider the radius  1r
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Figure 10.3 shows a Conformal Conic projection of the northern hemisphere.  The projection 
has a single standard parallel 1φ  whose radius is equal to the tangent length of the cone.  The 
graticule interval is 15 , central meridian  and the X,Y coordinate origin is at 0 30λ = 0λ  and 

.  A point P is shown whose coordinates are 0 45φ = 0Pφ =  and . 90Pλ =
 
The projection parameters, scale of the projection and the X,Y coordinates of P can be 
computed in the following way. 
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 Figure 10.3 Conformal Conic projection, single standard parallel  

(radius of standard parallel = tangent length of cone). 
1 45φ =

  Graticule interval 15 , central meridian , 0 30λ =

  X,Y coordinate origin at  0 0and 45λ φ =
 
The scale of the projection can be obtained from the general relationship 
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From measurements on Figure 10.3, the length 1 41.5 mmr = and from the previous 
calculations on the Earth.  Note that this is really the tangent length of a 
cone touching the Earth at latitude .  The scale of the projection is then 
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The Cartesian equations for Conical projections (of the northern hemisphere) are 
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The radius  of the parallel 0r 0φ  is given by (10.24) and since the Cartesian origin is at the 
intersection of the central meridian 0λ  and the standard parallel 0φ  then . 0 1r r=
 
For the point P at  and  and with C and n for the projection 0φ = 90λ =
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