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ENGINEERING SURVEYING 1 
 
 

PLANES LINES AND DIRECTION COSINES 
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Figure 1 

 
 
VECTOR BETWEEN TWO POINTS IN SPACE 
 

The vector  between the two points 1 2PP


 1 1 1 1, ,P x y z  and  2 2 2 2, ,P x y z  is denoted as 

 
    

1 2 3

2 1 2 1 2 1

d d d

x x y y z z

  

     

d i j j

i k k
 (1) 

1 2,d di j  and  are the component vectors of d. 3d k

 
i, j, k are unit vectors in the directions of the positive x, y and z-axes respectively. 
 

1 2 1 2 2 1 3 2, ,d x x d y y d z z      1  are the Cartesian components of d. 
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THE DISTANCE d BETWEEN TWO POINTS IN SPACE 
 
The magnitude of vector d is denoted by d  or d and is the distance between  and 

 

 1 1 1 1, ,P x y z

 2 2 2 2, ,P x y z

      2 2

2 1 2 1 2 1d x x y y z z      d
2

 (2) 

 
 
DIRECTION COSINES OF A LINE BETWEEN TWO POINTS IN SPACE 
 
The direction of the line  is defined by the angles 1 2PP ,   and   which are the angles the 

line makes with the positive x, y and z-axes respectively. 
 
The direction cosines of the line , denoted by l, m and n are 1 2PP

 2 1 2 1 2cos , cos , cos 1x x y y
l m n

d d
   

     
z z

d


 (3) 

Direction cosines have the following property 

 

     

     
 

2 2

2 2 2 2 1 2 1 2 1
2 2 2

2 2

2 1 2 1 2 12

2
2

cos cos cos

1

1

x x y y z z

d d d

x x y y z z
d

d
d

  
  

    

     



2

2



 

hence 

  (4) 2 2 2 2 2 2cos cos cos 1      or      1l m n      

Also 

      2 1 2 1 2 1cos cos cosx x y y z z      d   (5a) 

or      2 1 2 1 2 1l x x m y y n z z d       (5b) 

and dl dm dn  d i j k  (5c) 

 
 
UNIT VECTOR BETWEEN TWO POINTS IN SPACE 
 

The unit vector in the direction of d is denoted by  and is defined as d̂

 
     2 1 2 1 2 11 2 3ˆ x x y y z zd d d

d d d

  
      

d
d i j k i j k

d d d d
 (6) 

Unit vectors can be defined in terms of their direction cosines, e.g. 

 ˆ l m n  d i j k  (7) 
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DIRECTION NUMBERS 
 
Say that the distance d is scaled by a factor k then 

         2 2

2 1 2 1 2 1kd k x x k y y k z z     
2

 

Letting the numbers      2 1 2 1 2 1, ,L k x x M k y y N k z z       then 

 
 2 12 1

2 2
cos

k x xx x L
l

d kd L M N



   

  2
 

and similarly for m and n.  Hence the direction numbers L, M, N are proportional to the 
direction cosines l, m, n 

 
2 2 2 2 2 2 2 2

, ,
L M

l m n
L M N L M N L M N

  
      2

N
 (8) 

 

 

THE NORMAL EQUATION OF A PLANE 
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Figure 2 
 
 
ABCD is a plane.  The normal to the plane from the origin O cuts the plane at P and the 

position vector of P is OP  p


.  The distance OP = p.  Q is any other point in the plane. 
 

The vectors OP  and 


PQ


 are perpendicular so their dot product will be zero 

          0P P P Q P Q P Q Px y z x x y y z z        i j k i j k  
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With l, m, n as the direction cosines of p and bearing in mind equations (3) and (5) we may 
write 

 

        
     

 2 2 2 2

0

0

0

Q Q Q

Q Q Q

Q Q Q

pl pm pn x pl y pm z pn

pl x pl pm y pm pn z pn

plx pmy pnz p l m n

        

     

     

i j k i j k

 

But  and 2 2 2 1l m n   , ,Q Q Qx y z  are the coordinates of any point in the plane, thus with 

some rearrangement, we may write the equation of a plane in terms of the direction cosines of 
the normal to the plane or 
 

The Normal equation of the plane lx my nz p    (9) 

 
Note that the set of direction cosines which when used as coefficients for x, y, z gives a 
positive right-hand-side to the equation, is the set of direction cosines of the normal directed 
from the origin to the plane. 
 
Note also 

 1
l m n

x y z
p p p

     
      

     
  (10) 

  
2 2 2

2 2 2
2

1l m n
l m n

2

1

p p p p

     
          

      p
 (11) 
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GENERAL EQUATION OF A PLANE 
 

The general equation of a plane is Ax By Cz D    (12) 

 





O

y
x

z

P

BA

C

DD

D .
p

Ax + By + Cz = D

E

F

G

 
 

Figure 3 
 
The connection between the General equation of a plane Ax By Cz D    and the Normal 
equation of the plane  may be established in the following manner. lx my nz p  
 
In Figure 3, the plane  intersects the x, y and z-axes at E, F and G.  The 
intercept on the x-axis can be found by setting 

Ax By Cz D  
0y   and 0z   in (12) giving the distance 

OE x D A  .  Similarly, the plane cuts the y and z-axes at y D B  and z D C  
respectively.  A normal to the plane from the origin O passes through the plane at P and the 
distance OP = p.  ,   and   are the angles the normal makes with the positive x, y and z-
axes respectively. 
 
In the plane OEP containing the x-axis and the normal 

 cos
p p p

A
x D A D

     

and similarly cos , cos
p p

B C
D D

    

Now  hence 2 2 2cos cos cos 1    

  
2

2 2 2 2 2 2cos cos cos 1
p

A B C
D

         
 

  
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and 
2 2

1p

D A B C


  2
 

Substituting into the equations above gives the direction cosines l, m and n of the normal to 
the plane and the perpendicular distance p from the origin to the plane as 

 
2 2

cos
A

l
A B C

 
  2

 (13a) 

 
2 2

cos
B

m
A B C

 
  2

 (13b) 

 
2 2

cos
C

n
A B C

 
  2

 (13c) 

 
2 2

D
p

A B C


  2
 (13d) 

These equations demonstrate the connection between the General equation of the plane and 
the Normal equation of the plane.  Note that the coefficients A, B and C are identical to 
direction numbers L, M and N and the General equation of the plane Ax By Cz D    is 
often expressed as Lx My Nz P    where P is identical to D. 
 
 
DISTANCE FROM POINT  0 0 0, , x y z  TO PLANE Ax By Cz D    

 
The perpendicular distance between the origin and the plane Ax By Cz D    is given by 
(13d) 

 
2 2

D
p

A B C


  2
 

For the parallel plane passing through the point  0 0 0, ,x y z  we have  

and the perpendicular distance between the origin and this parallel plane is 
0 0 0Ax By Cz D   0

 0
0 2 2

D
p

A B C


  2
 

The perpendicular distance d between the two parallel planes is 0p p  hence 

 

0

2 2 2 2 2

0

2 2 2

D D
d

A B C A B C
D D

A B C

 
   



 

2

 

hence 

 0 0 0

2 2 2

Ax By Cz D
d

A B C

  


 
 (14) 

Note that d is considered as a positive quantity and any negative sign attached to it may be 
disregarded. 
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In addition, if the General equation of a plane is given as 0Ax By Cz D    , which is 
very common, then (14) would be written as 

 0 0 0

2 2 2

Ax By Cz D
d

A B C

  


 
 

 
 
EQUATION OF PLANE PASSING THROUGH POINTS  1 1 1, ,x y z ,  2 2 2, ,x y z ,  3 3 3, ,x y z  

 
There are three methods of computing a plane passing through three points and each of these 
methods will be compared by way of an example.  Figure 4 shows a plane defined by three 
points, 1, 2 and 3 where the coordinates of each point are shown as, for example , 

 and  
1 5.0x 

1 6.7y  1 1.5z 
 

y

x

z

.

.

.

2

3

1

(1.4, 4.8, 5.9)

(5.0, 6.7, 1.5)

(4.0, 1.2, 1.6)

 
 
 

Figure 4 
 
 
Method 1:  Determinant 
 
The General equation of a plane may be written as 

 0Ax By Cz D     (14) 

This is slightly different from equation (12), where D is a positive quantity on the right-hand-
side rather than a positive quantity on the left-hand-side of the equation.  The equation of the 
plane (14) passing through three points is given in the form of a 3rd order determinant 
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1 1 1

2 1 2 1 2 1

3 2 3 2 3 2

0

x x y y z z

x x y y z z

x x y y z z

  
  
  

  (15) 

or expanded into 2nd order determinants 

      2 1 2 1 2 1 2 1 2 1 2 1
1 1

3 2 3 2 3 2 3 2 3 2 3 2

0
y y z z x x z z x x y y

x x y y z z
y y z z x x z z x x y y

     
     

      1  (16) 

Substituting the coordinates of points 1, 2 and 3 gives 

      
5.5 0.1 1.0 0.1 1.0 5.5

5.0 6.7 1.5 0
3.6 4.3 2.6 4.3 2.6 3.6

x y z
   

     
 

 

Evaluating the determinants and gathering terms gives 

 

           24.01 5.0 4.04 6.7 17.09 1.5 0

24.01 120.05 4.04 27.068 17.9 26.85 0

24.01 4.04 17.9 119.832 0

x y z

x y z

x y z

        

      
    

 

Expressing the result in the form of the General equation of the plane  with 
D as a positive quantity on the right-hand-side gives 

Ax By Cz D  

 24.01 4.04 17.9 119.832x y z    

where  24.01, 4.04, 17.9, 119.832A B C D    
 
Using equations (13) 

 
2 2 2

cos 0.794523
A

l
A B C

  
 

 

 
2 2 2

cos 0.133689
B

m
A B C

   
 

 

 
2 2 2

cos 0.592335
C

n
A B C

  
 

 

 
2 2 2

3.965401
D

p
A B C

 
 

 

and the Normal equation of the plane lx my nz p    is 

  0.794523 0.133689 0.592335 3.965401x y z  

 
Note that equations (15) and (16) can be expressed as the determinant 

 
1 1 1

2 1 2 1 2 1

3 1 3 1 3 1

0

x x y y z z

x x y y z z

x x y y z z

  
  
  

  (17) 
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or expanded into 2nd order determinants 

      2 1 2 1 2 1 2 1 2 1 2 1
1 1

3 1 3 1 3 1 3 1 3 1 3 1

0
y y z z x x z z x x y y

x x y y z z
y y z z x x z z x x y y

     
     

      1  (18) 

Substituting the coordinates of points 1, 2 and 3 gives 

      
5.5 0.1 1.0 0.1 1.0 5.5

5.0 6.7 1.5 0
1.9 4.4 3.6 4.4 3.6 1.9

x y z
   

     
   

 

Evaluating the determinants gives 

            24.01 5.0 4.04 6.7 17.09 1.5 0x y z          

This is exactly the same result as before.  Hence equations (15) and (17) give identical results. 
 
 
Method 2:  Vector cross product 
 
The vector cross product of vectors a and b is 

 ˆsin  a b a b p p  (19) 


a

b

p
The result of a vector cross product is a vector p 
perpendicular to the plane containing a and b. 
 

sina b  is a scalar quantity and  is a unit vector.  

The direction of p is given by the right-hand-screw 

p̂

 rule, i.e. if a and b are in the plane of the head of a screw then a clockwise rotation of a to b 
through an angle   would mean that the direction of p would be the same as the direction of 
advance of a right-handed screw turned clockwise. 
 
If 1 2 3a a a  a i j k  and b i1 2 3b b b  j k  then the vector cross product can be written as 

      1 2 3 2 3 3 2 1 3 3 1 1 2 2 1

1 2 3

a a a a b a b a b a b a b a b

b b b

  

        
i j k

a b i j k p  (20) 

The perpendicular vector 1 2 3p p p  p i j k  where   1 2 3 3 2 2 1 3 3, 1p a b a b p a b a b      

and 3 1 2 2 1 p a b a b   are the components. 

 

The perpendicular unit vector 31 2ˆ
pp p

l m n      
p

p i j k i j k
p p p p

.   

The direction cosines l, m, n of the perpendicular vector p are also the direction cosines of the 
normal to the plane and hence are the coefficients in the Normal equation of the plane (9).  
Substituting the coordinates of one of the three points defining the vectors a and b into the 
Normal equation of the plane will yield the perpendicular distance p from the origin to the 
plane.  Note that p in the Normal equation of the plane (9) is not the magnitude of the 
perpendicular vector p resulting from the cross product (19). 
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The method of computation is set out below using the example data of Figure 4 
 
Let a be the vector from point 1 to point 2. 

     
1 2 3

2 1 2 1 2 1

1.0 5.5 0.1

a a a

x x y y z z

  

     

   

a i j k

i j k

i j k

 

Let b be the vector from point 1 to point 3. 

     
1 2 3

3 1 3 1 3 1

3.6 1.9 4.4

b b b

x x y y z z

  

     

   

b i j k

i j k

i j k

 

The perpendicular vector p is given by the vector cross product 

 

     1 2 3 2 3 3 2 1 3 3 1 1 2 2 1

1 2 3

1.0 5.5 0.1 24.01 4.04 17.9

3.6 1.9 4.4

a a a a b a b a b a b a b a b

b b b

  

  

        

      
 

i j k

p a b i j k

i j k

i j k

 

The magnitude 30.219393p  and the unit vector ˆ 0.794523 0.133689 0.592335   p i j k  

 
The direction cosines of the normal are 0.794523, 0.133689, 0.592335l m n    

nz p  
 and the 

Normal equation of the plane is .  Substituting the coordinates of point 1 
gives 

lx my

          0.794523 (5.0) 0.133689 6.7 0.592335 1.5 3.965401       

Since p is a negative quantity, the signs of l, m and n are reversed to give the direction from 
the origin to the plane and the Normal equation of the plane is 

  0.794523 0.133689 0.592335 3.965401x y z  

This is identical to the result obtained in Method 1 
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Method 3:  Solution of simultaneous equations 
 
The Normal equation of a plane may be written in the form of equation (10) 

 1
l m n

x y z
p p p

     
       

     
 

With ,
l m

p p

   
   
   

 and 
n

p

 
 
 

 as unknown coefficients, the x, y and z coordinates of three points 

defining a plane will yield three simultaneous equations, written in matrix form as . Ax b
 

 

 
 
 

1 1 1

2 2 2

3 3 3

1

, ,

1

x y z l p

x y z m p

x y z n p

  
      
     

A x 1

 
   
  

b  

The solution for  and p can be determined from equation (11) 1x A b

 
2 2 2

2

1l m n

p p p

     
       

      p
. 

The direction cosines l, m, n then follow and the Normal equation of the plane is determined. 
 
The method of computation is set out below using the example data of Figure 4 

 

 
 
 

1 1 1

2 2 2

3 3 3

5.0 6.7 1.5 1

4.0 1.2 1.6 , , 1

1.4 4.8 5.9 1

x y z l p

x y z m p

x y z n p

    
           
         

A x

 
   
  

b  

The matrix inverse  1

0.005007 0.269794 0.074438

0.178250 0.228653 0.016690

0.146205 0.122004 0.173576



 
   
  

A

The solution vector 

 
 
 

0.200364

0.033714

0.149376

l p

m p

n p

   
        
     

x  

2 2 2

2

1
0.063595

l m n

p p p p

     
        

     
 and 3.965401p   

Multiplying the numeric values in the vector x by p gives 0.794523, 0.133689l m    and 
.  The Normal equation of the plane is 0.592335n 

  0.794523 0.133689 0.592335 3.965401x y z  

This is identical to the result obtained in Method 1 
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DIRECTION OF STRIKE AND MAXIMUM DIP ON AN INCLINED PLANE 
 
 

STRIKE
g

a
bf

y

x

z

y'
x'

A

B
C

D

A'

B'

p

f

n

 
 
 

Figure 5 
 
 
In Figure 5, ABCD is a portion of an inclined plane.  A' and B' are vertical projections of A 
and B onto a horizontal x-y plane (A'B'CD) and the line CD is the intersection of the inclined 
and horizontal planes.  The xyz Cartesian coordinate origin is at A' with the z-axis vertical. 
 
The line AB is a level line on the inclined plane and is known as the strike line.  The line CD, 
which is parallel to AB, is also a strike line as is any other parallel line in the inclined plane.  
The line perpendicular to the strike line is the direction of maximum dip.  In Figure 5, the y-
axis and the x-axis are the North and East directions respectively the y'-axis is the direction of 
strike and the x'-axis is the direction of maximum dip. 
 
The direction of strike can be determined from the normal equation of the plane by 
considering a clockwise rotation of the X-Y axes about the Z-axis by an angle  .  If the Y-axis 
is the direction of north then   will be the bearing of the strike line of the inclined plane.  A 
clockwise rotation about the Z-axis can be represented by the matrix equation 
 
 

 

.

f

y

y'

x x'

.
z

 

 

' cos sin 0

' sin cos 0

' 0 0 1

x x

y y

z z

 
 

     
          
          

 (21) 

 
 

 
Referring to Figure 5, when the y'-axis is the direction of strike, the y' coordinate of any point 
along the normal to the inclined plane will be zero, i.e., the normal will lie in the z-x' plane.  
Hence, from equation (21) 

 ' sin cosy x y 0     (22) 
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Now the x and y coordinates of the point where the normal pierces the inclined plane are 
cosp   and cosp   respectively, giving 

 
cos

tan
cos

p m

p l




 
   (23) 

The "whole circle" bearing     of the strike line must be determined by 

resolving the correct quadrant for the angle 

0 360 

  given by equation (23). 
 
 
DIRECTION OF STRIKE AND MAXIMUM DIP ON AN INCLINED PLANE 
(ALTERNATIVE DERIVATION) 
 
As an alternative to the derivation above, consider the normal equation of the plane 

 expressed as the surface lx my nz p    , , constantx y z  , i.e., to each point  , ,x y z  of 

a region in space there corresponds a number or scalar  , ,x y z  equal to a constant value.  

  is called a scalar function of position.  If we apply the vector differential operator 

x y z

  
   

  
i j k  (  is known as del or nabla) to the scalar function   we obtain the 

gradient 
x y z

     
   

  
i j k . 

  is a vector perpendicular to the surface  , , constantx y z   and it points in the direction 

in which   increases at its greatest.  Hence if  , , constantx y z   defines a plane then   

is in the direction of maximum rise, the opposite direction of maximum dip.  The direction of 
strike will be ±90° from this direction. 
 
If  , ,x y z lx my nz p      then l m n   i j k  and l, m and n are the direction 

cosines cos , cos ,l m cosn    .  Referring to Figure 6,   is in the direction of 
maximum rise and its projection on the x-y plane has a bearing  .  This is the bearing of 
maximum rise.  The bearing of the strike line will be .  From Figure 6 the bearing 
of the line of maximum rise can be found from 

90  

 
cos

tan
cos

l

m




   

and since  tan cot 90A A    and 
1

cot
tan

B
B

  then the bearing of the strike line can be 

found from 

 tan
m

l
 
  

This is the same as equation (23). 
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Figure 6 
 
 


