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ABSTRACT 

The Bursa–Wolf and Molodensky1–Badekas transformations are conformal three-

dimensional (3D) Cartesian coordinate transformations commonly used in surveying, 

photogrammetry and geodesy.  They are also called similarity or seven-parameter 

transformations and they combine a scale change, three axes-rotations and three origin-

shifts in a practical mathematical model of the relationships between points in two 

different 3D coordinate systems.  They differ slightly in their operation; the Molodensky–

Badekas transformation uses a centroid but the Bursa-Wolf transformation does not, hence 

additional information (the centroid coordinates) is required when using the Molodensky–

Badekas transformation; a factor that makes the Bursa–Wolf transformation more popular.  

This paper aims to provide an explanation of both transformations. 

 

INTRODUCTION 

3D conformal transformations, also known as similarity transformations (since conformal 

transformations preserve shape and angles between vectors in space remain unchanged) are 

commonly used in surveying, photogrammetry and geodesy.  For instance, in engineering 

surveying applications 3D transformations are used measure objects (e.g., sections of 

elevated roadways) off-site before they are moved on-site to make sure they will fit with 

                                     

1 Molodensky is also spelt as Molodenskii 
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existing construction, and in tunnelling operations, 3D transformations are used to control 

the direction and orientation of tunnel boring machines.  In photogrammetry they are used 

in the (interior and exterior) orientation of digital images of structures and aerial 

photographs.  In geodesy, the main thrust of this paper, 3D transformations are used to 

convert coordinates related to one geodetic datum to another, and this operation is 

commonly known as datum transformation.  In such applications, the rotations between 

the two 3D coordinate axes are small (usually less than 1 second of arc) and certain 

approximations are used to simplify rotation matrices; these simplified matrices are a 

common feature of the Bursa–Wolf and the Molodensky–Badekas transformations. 

The names of the two transformations are an acknowledgement to the authors M. Bursa 

(1962), H. Wolf (1963), M.S. Molodensky et al. (1962) and J. Badekas (1969) of technical 

papers and reports on transformation methods related to the orientation of reference 

ellipsoids and 3D geodetic networks. 

3D conformal transformations are often given in the form 

 

22 1

X

ZYX Y

Z

X X t

Y s Y t

tZ Z

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

R  (1) 

The subscripts [ ]  and 1 [ ]2  refer to the X,Y,Z Cartesian coordinates of systems 1 and 2 

respectively.  s is a scale factor,  is a 3  rotation matrix (the product of rotationsXYZR 3×

, ,X Yt t

2 

 about the coordinate axes) and  are translations between the origins of 

the two systems measured in the directions of the system 2 coordinate axes. 

, ,X Y Zr r r Zt

Alternatively, the transformation can be given in the form of a vector equation 

  (2) 2 1ZYXs=l R l 2+ t

⎤
⎥⎦1

1

T

X Y Z⎡ ⎤= ⎢ ⎥⎣ ⎦l  and  are position vectors or vectors of coordinates in 

systems 1 and 2 respectively and 

2
2

T

X Y Z⎡= ⎢⎣l

2
2

T

X Y Zt t t⎡ ⎤= ⎢ ⎥⎣ ⎦t  is a vector of translations measured in 

the directions of system 2 coordinates axes.  In these notes, both forms will be used where 

appropriate. 

                                     

2  [In this paper, rotations are considered positive anticlockwise when looking along the axis towards the 

origin; the positive sense of rotation being determined by the right-hand-grip rule where an imaginary right 

hand grips the axis with the thumb pointing in the positive direction of the axis and the natural curl of the 

fingers indicating the positive direction of rotation.] 
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In geodetic datum transformations the Z-axis is in the direction of the minor axis of a 

reference ellipsoid (an ellipsoid of revolution) passing through the north pole; the X-Z 

plane is the Greenwich meridian plane (the origin of longitudes); the X-Y plane is the 

equatorial plane of the ellipsoid (the origin of latitudes); the X-axis is in the direction of 

the intersection of the Greenwich meridian and equatorial planes and the Y-axis is 

advanced 90° east along the equator. 

The right-handed coordinate system and positive anticlockwise rotations (given by the 

right-hand-grip rule3) are consistent with conventions used in mathematics and physics 

and will be used in these notes. 

 

The Bursa–Wolf and the Molodensky–Badekas transformations have a modified form of 

equation (1) where 

(i) the rotation matrix  has the approximated form where the subscript s refers 

to 
XYZR SR

small rotation angles  about the coordinate axes and , ,X Y Zε ε ε

 

1

1

1

Z Y

ZYX S Z X

Y X

ε ε

ε

ε ε

ε

⎡ ⎤−⎢ ⎥
⎢ ⎥

≅ = −⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

R R  (3) 

 (ii) the scale factor s is expressed in the form 

  (4) 1s = +ds

                                    

where ds is a small value usually expressed in ppm4. 

The two transformations are then given in the form 

 

 

3 The right-hand-grip rule is a useful rule for determining the positive direction of rotations.  An imaginary 

right hand grips the coordinate axis with the thumb pointing in the positive direction of the axis and the 

natural curl of the fingers indicate the positive direction of rotation.  There is also a left-hand-grip rule to 

define positive clockwise rotations, but this will not be used in these notes. 

4 ppm is parts-per-million.  A scale factor of  expressed as 1  has  or 

.  ppm is also "mm per km" since there are 1 million millimetres in 1 kilometre. 

1.000045s = ds+ 0.000045ds =

45 ppmds =

 3 



BURSA–WOLF TRANSFORMATION 
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Figure 1:  
Geometry of Bursa-Wolf transformation

P
Figure 1 shows the geometry of the Bursa–Wolf 

transformation.  the X,Y,Z axes of system 1 are 

rotated by very small angles  from the 

X,Y,Z axes of system 2, and the origins of the two 

systems are displaced by translations  in 

the directions of the X,Y,Z axes of system 2.   

and  are vectors of coordinates in both systems 

and t is a vector of translations. 

, ,X Y Zε ε ε

, ,X Y Zt t t

1l

2l

The mathematical relationship between coordinates in both systems can be written in the 

form of a vector equation 

  (5) ( )2 2 1 sds= + +l t R 1l

Yt

Alternatively, the Bursa–Wolf transformation may be written as 

 ( )
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1

1 1

1

Z Y X

Z X

ZY X

X X t

Y ds Y

tZ Z

ε ε

ε ε

ε ε
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 (6) 

 

MOLODENSKY–BADEKAS TRANSFORMATION 
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Figure 2:  
Geometry of Molodensky-Badekas transformation
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Figure 2 shows the geometry of the 

Molodensky–Badekas transformation 

that makes use of a centroid.  The 

X,Y,Z axes of system 1 are rotated 

by very small angles  from 

the X,Y,Z axes of system 2, and the 

origins  of the two systems 

are displaced.  The 

, ,X Y Zε ε ε

1  and O 2O

1 1 1, ,X Y Z  system 

is a centroidal system whose origin is 

at a centroid G of a set of points in 

system 1 and whose axes are parallel 

to the X,Y,Z axes of system 1. 
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In Figure 2, the centroid G is displaced from  by translations  measured in the 

directions of the X,Y,Z axes of system 2 and 

2O

2

, ,X Y Zt t t

2

T

X Y Zt t t⎡ ⎤= ⎢ ⎥⎣ ⎦t  is the position vector of the 

centroid. 

The mathematical relationship between coordinates in both systems, including a scale 

factor , can be developed by using vector equations, where from Figure 2 we 

may write 

1s = +ds

 ( )2 2 1 sds= + +l t R 1l  (7) 

where 

 1

11

G

G

G

X X X

Y Y Y

Z ZZ

⎡ ⎤

1 1

⎡ ⎤−⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥= = − = −⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

l l g  (8) 

, ,G G GX Y Z  are the coordinates of the centroid and 1
1

T

G G GX Y Z⎡ ⎤= ⎢ ⎥⎣ ⎦g  is the position 

vector of the centroid in system 1 coordinates. 

Alternatively, the Molodensky–Badekas transformation may be written as 

 ( )

22 1

1

1 1

1

Z Y X

Z X

ZY X

XX t

Y ds Y

tZ Z

ε ε

ε ε

ε ε
Yt
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 (9) 

 

SOME PROBLEMS IN THE DESCRIPTION OF THE MOLODENSKY–BADEKAS 

TRANSFORMATION 

There are several variations of the Molodensky–Badekas transformation. 

The transformation shown above [see equations (7) and (9)] is similar to the one described 

in Krakiwsky and Thomson (1974, p. 608-9) in the section headed MOLODENSKII MODEL 

where they state: 

"There are two different versions of the Molodenskii model: the first version exists in the 

literature [Veis 1960; Molodenskii et al 1962; Badekas 1969], and the second version is given 

herin." 

 5 



They then go on to describe "the first version": 

"The first version of Molodenskii's model is obtained by assuming that the position vector of 

the initial point is known in a geodetic system that is parallel to the average terrestrial 

system.  The model is (Figure 3)" 

  ( ) ( ) ( ) ( )0 1 0i k kiAT G AT G
F r r R rεκ ρ= + + + − =i

)

 

In Krakiwsky and Thomson (1974) the average terrestrial system is our system 2, the 

geodetic system is our system 1 and the initial point is our centroid.  In their notation, 

 are position vectors, (  is the scale factor and  is the rotation 

matrix.  Inspection of their Figure 3 (not shown here) reveals that their vector (  is 

identical with our vector 

0, ,  and k ki ir r r ρ 1 κ+ Rε

)ki
G

r

1l ; their vector  is identical to our vector  and their vector 

sum 

iρ 2l

( )0 AT
r +( )k

G AT
r  is equivalent to our translation vector t.  So their transformation, 

that they describe as "the first version of Molodenskii's model" is effectively the same as 

our equations (7) and (9). 

 

Krakiwsky and Thompson (1974) describe two Molodenskii models – where the original 

authors (Molodensky et al 1962) describe only one – and the mathematical description is 

entirely different from the original.  This is a possible source of confusion. 

 

In Molodensky et al. (1962), the authors derive a set of differential equations for 

transforming coordinates from one geodetic datum to another.  Their equations 

(Molodensky et al., (I.3.2), p. 14), linked changes in x, y, z Cartesian coordinates of a point 

with, (i) rotations  of the Cartesian axes about some fixed point , (ii) 

"progressive translations"  of the ellipsoid origin between x, y, z Cartesian axes, 

and changes in the ellipsoid parameters  and  with changes in curvilinear coordinates 

.  Subsequent publications by other authors have described "Molodensky's" 

transformation in terms different from the original. 

, ,x y zε ε ε

dx

0 0 0, ,x y z

0 0, ,dy dz0

aδ fδ

, , hδφ δλ δ
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This confusion was addressed by Soler (1976, p.2) who states: 

"… the differential equations published in the English translation of [Molodensky 

et al., 1962] are equivalent to conventional conformal transformations.  This dissipates 

the confusion created recently by some authors [Badekas, 1969], Krakiwsky and 

Thomson, 1974], who credited [Molodensky et al., 1962] with a model they never 

wrote." 

It is now common in the literature to describe three Molodensky transformations: 

 (i) The Molodensky–Badekas transformation: a seven-parameter conformal 

transformation (or similarity transformation) linking rotations  and 

translations  between the X,Y,Z Cartesian axes and a scale factor  

to changes in the Cartesian coordinates. 

, ,X Y Zε ε ε

, ,X Y Zδ δ δ sδ

 (ii) The standard Molodensky transformation: a five-parameter transformation linking 

translations  between the X,Y,Z Cartesian axes, and changes in the 

ellipsoid parameters  and  with changes in curvilinear coordinates . 

, ,X Y Zδ δ δ

aδ fδ , , hδφ δλ δ

 (iii) The abridged Molodensky transformation: a modified version of the standard 

Molodensky transformation obtained by certain simplifying assumptions.  The 

abridged Molodensky transformation equations do not contain the ellipsoidal 

heights h of points to be transformed. 

 

There is another form of the Molodensky–Badekas transformation that is commonly cited.  

Referring to Figure 2, the vector t can be written as the sum of two vectors 

 2 1 1O O OG= +t  

where  are the origins of systems 1 and 2 respectively and G is the centroid and all 

vectors have components in system 2.  Now, the vector 

1,O O2

1OG  (in system 2) is equal to the 

scaled and rotated position vector of the centroid in system 1, i.e., 

  ( )1 11 sOG ds= + R g

And, denoting  

 2 1
2

T

O O X Y Z⎡ ⎤= Δ Δ Δ⎢ ⎥⎣ ⎦  
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equation (9) may be written as 

 

( ) ( )

( )

2 121

1 1

1 1 1 1

1 1

1

1 1

1
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Z X Z X

Y X Y X G

Z Y

Z X

Y X

X XX X

Y ds Y Y ds

Z ZZZ

ds

ε ε ε ε

ε ε ε ε

ε ε ε ε

ε ε

ε ε

ε ε

GY

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤Δ− −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥= + − + Δ + + −⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− −Δ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦
⎡ ⎤−⎢ ⎥
⎢ ⎥

= + −⎢
⎢
⎢ −⎢⎣ ⎦ 221

G

G

G

X X X

Y Y Y

ZZZ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤Δ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ + Δ +⎢ ⎥ ⎢ ⎥⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎥ Δ⎢ ⎥⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦⎣ ⎦

 (10) 

The last term in equation (10) is the position vector of the centroid related to the origin 

 1O but with Cartesian components in system 2.  In equation (10), the product of the scale 

 and the rotation matrix for small angles  produces products of small quantities, 

i.e., , etc which, if ignored, give the transformation in the form 

( ds+

ds

)

Y

1

G

X

Z

1 sR

,X dsε ε

 

( )

( )

( )
2 22

1

1

1

Z YG G

G Z X

G GY X

dsXX X X

Y Y Y ds Y Y

Z Z ZZ ds

ε ε

ε ε

ε ε

⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ −Δ −⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢= Δ + + − + −⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−Δ − +

⎥

⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 (11) 

This is a common expression of the Molodensky–Badekas transformation but it should be 

noted that  in the last vector are components of the position vector of the 

centroid in system 1, but in the second vector  are components in system 2.  

, ,G G GX Y Z

, ,G G GX Y Z

This is an important difference that is not mentioned in many publications. 

The following sections show how the rotation matrices  and  are obtained XYZR SR
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THE 3D ROTATION MATRIX 
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Figure 3: 3D Rotations   r , r , rX Y Z

Figure 3 shows the rotation of the 

orthogonal X,Y,Z axes to new 

(orthogonal) axes  by a 

sequence of rotations .  The 

first rotation,  about the X-axis, 

rotates the X,Y,Z axes to  

(X and  axes unchanged).  The 

second rotation, r  about the Y -

axis, rotates the  axes to 

 (

, ,X Y Z′′′ ′′′ ′′′

, ,X Y Zr r r

X Y

Y

, ,X Y Z′ ′ ′

Xr

, ,Z′ ′

′

′

X ′

Z ′′, ,X Y′′ ′′  and Y  unchanged).  

The final rotation,  about the 

-axis, rotates the  

axes to . 

Y ′′

Zr

X Y′′

′′′

′

Z ′′ , ,Z′′ ′′

, ,Z′′X Y′′′ ′

The three rotations in order are: 

(i) Rotation of about the X-axis.  This rotates the Y and Z axis to  with 

the X and  axes coincident.  Coordinates in the new system will be given by the 

matrix equation 

Xr

X ′

andY ′ Z ′

r Y 

( )

1 0 0

0 cos sin

0 sin cos

X X

X X

X

X X

Y r

r r ZZ

⎡ ⎤ ⎡ ⎤⎡ ⎤′⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥′⎢ ⎥ = ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥−′⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
R

 (12) 

(ii) Rotation of about the new Y axis.  This rotates the to  with 

the Y  and Y  axes coincident.  Coordinates in the new system will be given by the 

matrix equation 

Yr

′′

′ andY Z′ ′ andX Z′′ ′′

′

 

( )

cos 0 sin

0 1 0

sin 0 cos

Y Y

Y Y

Y

X Xr r

Y

r rZ Z

⎡ ⎤ ⎡

Y

⎤⎡ ⎤′′ ′−⎢ ⎥ ⎢⎢ ⎥⎢ ⎥ ⎢⎢′′ ′⎢ ⎥ ⎢= ⎢⎢ ⎥ ⎢⎢ ⎥⎢ ⎥ ⎢⎢ ⎥′′ ′⎢ ⎥ ⎢⎢ ⎥⎣ ⎦⎣ ⎦ ⎣
R

⎥
⎥⎥ ⎥⎥ ⎥
⎥
⎥⎦

 (13) 
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(iii) Rotation of about the new axis.  This rotates the  to X and  

with the Z  and Z  axes coincident.  Coordinates in the new system will be given 

by the matrix equation 

Zr Z ′′ andX Y′′ ′′ ′′′ Y ′′′

′′ ′′′

 

( )

cos sin 0

sin cos 0

0 0 1

Z Z

Z Z

Z

X Xr r

Y r r

Z Z

⎡ ⎤ ⎡

Y

⎤⎡ ⎤′′′ ′′⎢ ⎥ ⎢⎢ ⎥⎢ ⎥ ⎢⎢ ⎥′′′ ′′⎢ ⎥ ⎢= −⎢⎢ ⎥ ⎢⎢ ⎥⎢ ⎥ ⎢⎢ ⎥′′′ ′′⎢ ⎥ ⎢⎢ ⎥⎣ ⎦⎣ ⎦ ⎣
R

⎥
⎥
⎥⎥ ⎥
⎥
⎥⎦

Y

 (14) 

The coefficient matrices , ,  above are 3D rotation matrices which can be 

multiplied together (in that order) to give another rotation matrix  
ZR YR ZR

ZYXR

 Z Y X ZYX

X X X

Y Y

Z ZZ

⎡ ⎤ ⎡ ⎤ ⎡′′′⎢ ⎥ ⎤
⎢ ⎥ ⎢⎢ ⎥ ⎥
⎢ ⎥ ⎢′′′⎢ ⎥ = =

⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥ ⎥
⎢ ⎥ ⎢′′′⎢ ⎥ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣⎣ ⎦

R R R R

⎦

⎥
⎥

 (15) 

with 

  (16) 
Y Z X Z X Y Z X Z X Y Z

ZYX Y Z X Z X Y Z X Z X Y Z

Y X Y X Y

c c c s s s c s s c s c

c s c c s s s s c c s s

s s c c c

⎡ ⎤+ −⎢ ⎥
⎢= − − +⎢
⎢ ⎥−⎢ ⎥⎣ ⎦

R

where, for instance, . cos sin sinZ Y X Z Y Xc s s r r r=

Rotation matrices, e.g. , ,  and  are orthogonal, i.e., the sum of squares of 

the elements of any row or column is equal to unity.  They have the unique property that 

their inverse is equal to their transpose, i.e.  which will be used in later 

developments. 

XR YR ZR ZYXR

1 T− =R R

 

THE 3D ROTATION MATRIX FOR SMALL ANGLES 

For small rotation angles  the rotation matrix  may be simplified by the 

approximations 

, ,X Y Zε ε ε ZYXR

  

cos 1

sin (radians)

sin sin 0

X

X X

Z Y

ε

ε ε

ε ε

and equation (16) becomes the anti-symmetric (or skew-symmetric) matrix [equation (3)] 

(Harvey 1986). 
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1

1

1

Z Y

S Z

Y X

ε ε

ε

ε ε
Xε

⎡ ⎤−⎢ ⎥
⎢ ⎥

= −⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

R  (17) 

It should be noted that  is no longer orthogonal but its inverse will, nevertheless, be 

given by its transpose ( , since it is the approximate form of the orthogonal 

matrix  (Hotine 1969, p. 263). 

sR
1−R )s

Xε

T
s = R

T
ZYXR

In the least squares development to follow it is useful to split (17) (the rotation matrix for 

small angles) into two parts 

 

1 0 0 0

0 1 0 0

00 0 1

Z Y

S Z

Y X

ε ε

ε

ε ε

⎡ ⎤ ⎡ ⎤−⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= + = + −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

R I U  (18) 

 

LEAST SQUARES SOLUTION OF TRANSFORMATION PARAMETERS 

To determine the Bursa–Wolf or the Molodensky–Badekas transformation parameters; 

scale ds, rotations  and translations , , ,X Y Zε ε ε , ,X Y Zt t t common points are required.  

Common points are those points whose coordinates are known in both Cartesian systems 

and each common point will yield three equations; one equation linking X-coordinates in 

both systems, one equation linking Y-coordinates and one equation linking Z-coordinates.  

For n common points there will be 3n equations in 7 unknowns (the parameters) and least 

squares can be used to obtain the best estimates of the parameters.  There are two least 

squares techniques that may be used; they are (i) combined least squares that allows 

individual weighting of the coordinates of common points, and (ii) parametric least squares 

that assumes all pairs of common points have the same weight.  The second method of 

solution is simpler and more commonly used. 

Here, weight w is a measure of precision and is inversely proportional to variance  or 2σ

2

1
w

σ
∝ .  Hence precise observations with a small variance have a large weight 
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COMBINED LEAST SQUARES SOLUTION FOR PARAMETERS 

BURSA–WOLF TRANSFORMATION 

Using equation (18) the Bursa–Wolf transformation [Equation (5)] can be written as 

  (19) ( )( )2 1 ds= + + +l I U l1 2t

⎤
⎥⎦

2

2

t

1

2t

1

Y

X

Y t

Z

where  and  are vectors of coordinates in both systems 

and may be regarded as observations, ds is a very small quantity usually expressed in ppm, 

 is a vector of translations (in system 2), I is the Identity matrix and U, 

defined in equation 

1
1

T

X Y Z⎡ ⎤= ⎢ ⎥⎣ ⎦l

2

T

X Y Zt t t⎡ ⎤
⎢ ⎥⎣ ⎦

2
2

T

X Y Z⎡= ⎢⎣l

2 =t

(18), contains the small rotations . , ,X Y Zε ε ε

Expanding equation (19) gives 

  
( ) ( )2 1 1

1 1 1s

ds

ds ds

= + + + +

= + + +

l I U l I U l

R l I l U l t

Now  since a vector pre-multiplied by the Identity matrix is equal to the 

vector and  since ds is small (usually < 1ppm) and the off-diagonal elements of 

U (the small rotations ) are usually less than 1 second of arc ( ) the 

products will be exceedingly small and may be neglected.  Hence, for practical purposes we 

may write 

1ds ds=I l l

1ds Ul 0

, ,X Y Zε ε ε 4.8 06E −

  (20) 2 1 1s ds= + +l R l l

Expanding equation (20) gives, for a single common point, the expanded matrix equation 

 

22 1

1

1

1

Z Y X

Z X

ZY X

X X t

Y Y ds

tZ Z

ε ε

ε ε

ε ε

⎡ ⎤ ⎡ ⎤ ⎡⎡ ⎤ ⎤ ⎡ ⎤−⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= − + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥− ⎢ ⎥⎣ ⎦⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢⎣ ⎦ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

X

Y

Z

t

t

t

 

Expressed as three separate equations, we have 

  

2 1 1 1 1

2 1 1 1 1

2 1 1 1 1

Z Y

Z X

Y X

X X Y Z X ds

Y X Y Z Y ds

Z X Y Z Z ds

ε ε

ε ε

ε ε

= + − + +

= − + + + +

= − + + +

and these equations may be re-formed into another expanded matrix equation as 
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2 1

1 0 0 0

0 1 0 0

0 0 1 0

X

Y

Z

X

Y

Z

t

t

tX Z Y X

Y Z X Y

Z Y X Z

ds

ε
ε
ε 1

X

Y

Z

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤− ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

= − ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎢ ⎥
⎢ ⎥
⎢ ⎥

+

⎢ ⎥⎣ ⎦

 (21) 

Equation (21) can be re-arranged as 

 

1 1 2

1 0 0 0 0

0 1 0 0 0

00 0 1 0

X

Y

Z

X

Y

Z

t

t

tZ Y X X X

Z X Y Y Y

Y X Z Z Z

ds

ε
ε
ε

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤− ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− + −⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎢ ⎥
⎢ ⎥
⎢ ⎥

=

⎢ ⎥⎣ ⎦

 (22) 

And this equation has the general form 

  (23) ( )ˆ ˆ,F =l x 0

ˆ ˆ,l x  are estimates derived from the least squares process and ˆ . ˆ and δ= + = +l l v x x x

l is the vector of observations, v is a vector of residuals (small corrections to observations) 

x is the vector of parameters and δ  is a vector of small corrections to the parameters.  

The vectors l and x are 

x

1

1

1

2

2

2

  and   

X

Y

Z

X

Y

Z

tX
t

Y
t

Z

X

Y

Z
ds

ε
ε
ε

⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

l x  

The linearized form of equation (23) is the matrix equation 

  (24) 0δ+ =Av B x f

where the matrices A and B contain partial derivatives 
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( )
( )

( )

0 0 0

0 0 0

0 0 0

1 1

1 0

1 0 0

Z Y

Z X

Y X

ds
F

ds

ds

ε ε

ε ε

ε ε

⎡ ⎤+ − −⎢ ⎥
⎢ ⎥∂

= = − + −⎢ ⎥
⎢ ⎥∂
⎢ ⎥− +⎢ ⎥⎣ ⎦

A
l

0 0

1 0

1−

 (25) 

 
1 1

1 1

1 1

1 0 0 0

0 1 0 0

0 0 1 0

Z Y X
F

Z X

Y X Z

⎡ ⎤−⎢ ⎥∂ ⎢= = −⎢∂ ⎢ ⎥−⎢ ⎥⎣ ⎦

B
x

1

1

1

Y ⎥
⎥  (26) 

The vectors v and δ are x

 

1

1

1

2

2

2

  and   

X

X Y

Y
Z

Z
X

X

Y
Y

Z
Z

t
v t
v t
v

v

v

v

ds

δ

δ

δ

δεδ
δε

δε

δ

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

v x  

The vector of numeric terms  where the superscript indicates approximate 

values or starting estimates in an iterative sequence and 

(0 ,F= −f l )0x

)
2

2

0 0 0 0 0 0 0 0
T

X Y Z X Y Zt t t dsε ε ε⎡ ⎤= ⎢ ⎥⎣ ⎦x  

This gives the numeric terms  as 0f

 

( )
(
( )

0 0 0 0
1 1 1 1

0 0 0 0 0
1 1 1 1 2

0 0 0 0
1 1 1 1

X Y Z

Y X Z

Z X Y

t Z Y X ds X X

t Z X Y ds Y Y

t Y X Z ds Z Z

ε ε

ε ε

ε ε

⎡ ⎤− − + + + −⎢ ⎥
⎢ ⎥
⎢ ⎥= − + − + + −⎢ ⎥
⎢ ⎥
⎢ ⎥− − + + + −
⎣ ⎦

f  (27) 

The least squares solution for the vector of small corrections to the parameters δ  and the 

vector of residuals v is 

x

  (28) 
1

T

δ −=

=

x N t

v QA k
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where 

  (29) 

( )

0

1

0

T
e

T
e

T
e

e e

e δ

−

=

=

=

=

= −

N B W B

t B W f

Q AQA

W Q

k W f B x

The adjusted parameters  and adjusted observation ˆ are x̂ l

  (30) 
0ˆ

ˆ

δ= +

= +

x x x

l l v

The least squares solution is iterative, i.e., a set of approximate values of the parameters is 

determined  and these are used to compute the vector of numeric terms .  The normal 

equations are formed and solved for δ  and these values are used to determine a new set 

of approximate parameters  and numeric terms .  The normal equations are solved 

and the next set of δ  computed, and so on, until the elements of δ  are sufficiently small 

in which case the last approximate vector  contains the "correct" parameters. 

0x 0f

x
0x 0f

x x
0x

In equations (29), Q is a cofactor matrix containing estimates of the variances of the 

observations, which in this case are the coordinates of the common points.  By definition, 

weight matrices  and the subscript "e" denoted equivalent.  k is a vector of 

Lagrange multipliers. 

1−=W Q

The dimensions of the matrices, shown as ( ), for ,rows cols  number of common pointsn =  

and  are:  number of parametersu =

  

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

3 ,3

3 ,3 3 ,3

(3 ,3 )

(3 ,3 )

0
3 ,6 3 , 6 ,6 6 ,1 ,1 3 ,1 3 ,1

(6 ,6 )3 ,6 6 ,3

1

,3 3 , ,

0
,3 3 ,1 ,1

n n

n n n n

n n

n n

n n n u n n n u n n

T
n n en n n n

e e

T
eu n n u u u

T
eu n n u

δ

−

=

=

=

=

A B Q v x f k

A Q A Q

Q W

B W B N

B W f t

 

For  common points denoted A, B, C and D whose coordinates are known in both 

systems 1 and 2, the least squares solution for the  parameters would have the 

matrix equation 

4n =

7u =

  ( ) ( ) ( ) ( ) (
0

3 ,6 6 ,1 3 , ,1 3 ,1n n n n u u nδ+ =A v B x f )

 15 



or 

 

0

0

0

0

0 0 0

0 0 0

0 0 0

0 0 0

AA AA

B B B

C CC C

D
DD D

δ
B

⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥+ =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦

fA Bv
A v B

xv BA f
v BA f

f

)

)

 

The sub-matrices  would be identical with dimensions (  or 3 rows by 6 

columns and would contain elements as per equation 

, , ,A B C DA A A A 3,6

(25). 

The sub-matrices  would all have dimensions (  and each would contain 

elements as per equation 

, , ,A B C DB B B B 3,u

(26) relating to system 1 coordinates of the common points A, B, 

C and D. 

The sub-vectors  would all have dimensions (0 0 0 0, , ,A B C Df f f f )3,1  and each would contain 

elements as per equation (27) that are functions of the system 1 and 2 coordinates of the 

common points A, B, C and D and the approximate values of the parameters. 

 

COMBINED LEAST SQUARES SOLUTION FOR PARAMETERS 

MOLODENSKY–BADEKAS TRANSFORMATION 

Using equation (18) the Molodensky–Badekas transformation [Equation (7)] can be written 

as 

 ( )( )2 1 ds= + + +l I U l1 2t  (31) 

where 1
1

T

X Y Z⎡= ⎢⎣l ⎤
⎥⎦  and the other variables are as described previously, but noting 

that the vector of translations t is different from t in the Bursa–Wolf transformation. 

Expanding equation (31) using the approximations discussed in the previous section gives 

 

( ) ( )2 1

1 1 1

1 1 2

s

s

ds

ds ds

ds

= + + + +

= + + +

= + +

l I U l I U l

R l I l U l t

R l l t

1 2

2

t

 (32) 

Expanding equation (32) gives, for a single common point, the expanded matrix equation 

 

22 1 1

1

1

1

Z Y X

Z X

ZY X

X XX t

Y Y ds

tZ Z Z

ε ε

ε ε

ε ε
YY t

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤− ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= − + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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Expressed as three separate equations, we have 

 

2 1 1 1 1

2 1 1 1 1

2 1 1 1 1

Z Y

Z X

Y X

X X Y Z X ds

Y X Y Z Yds

Z X Y Z Z ds

ε ε

ε ε

ε ε

= + − + +

= − + + + +

= − + + +

X

Y

Z

t

t

t

 

and these equations may be re-formed into another expanded matrix equation as 

 

21 1

1 0 0 0 0

0 1 0 0 0

00 0 1 0

X

Y

Z

X

Y

Z

t

t

tZ Y X X X

Z X Y Y Y

ZY X Z Z

ds

ε
ε
ε

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤ ⎡⎢ ⎥ ⎡ ⎤ ⎡ ⎤−⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢− + −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦⎣ ⎦ ⎣⎢ ⎥
⎢ ⎥
⎢ ⎥

⎤
⎥
⎥
⎥ =⎥
⎥
⎥⎦

⎢ ⎥⎣ ⎦

 (33) 

Following the development for the Bursa–Wolf least squares solution we have 

  0δ+ =Av B x f

where 

 

( )
( )

( )

0 0 0

0 0 0

0 0 0

1 1

1 0

1 0 0

Z Y

Z X

Y X

ds

ds

ds

ε ε

ε ε

ε ε

⎡ ⎤+ − −⎢ ⎥
⎢ ⎥
⎢ ⎥= − + −⎢ ⎥
⎢ ⎥

− +⎢ ⎥⎣ ⎦

A

0 0

1 0

1−

 (34) 

 

1 1

1 1

1 1

1 0 0 0

0 1 0 0

0 0 1 0

Z Y X

Z X

Y X Z

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢= ⎢
⎢ ⎥−⎢ ⎥⎣ ⎦

B

1

1

1

Y ⎥− ⎥  (35) 

 

( )
( )
( )

0 0 0 0
1 1 1 1

0 0 0 0 0
1 1 1 1 2

0 0 0 0
1 1 1 1 2

X Y Z

Y X Z

Z X Y

t Z Y X ds X X

t Z X Yds Y Y

t Y X Z ds Z Z

ε ε

ε ε

ε ε

⎡ ⎤− − + + + −⎢ ⎥
⎢ ⎥
⎢= − + − + + −⎢
⎢ ⎥
⎢ ⎥− − + + + −⎢ ⎥⎣ ⎦

f

2

⎥
⎥  (36) 

and the solution for the parameters δ  is identical to the one set out in the Bursa–Wolf 

solution. 

x
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PARAMETRIC LEAST SQUARES SOLUTION FOR PARAMETERS 

BURSA–WOLF TRANSFORMATION 

In the same manner as the Combined Least Squares Solution [see equation (21)] we have 

the expanded matrix equation for a single common point as 

 

2 1

1 0 0 0

0 1 0 0

0 0 1 0

X

Y

Z

X

Y

Z

t

t

tX Z Y X

Y Z X Y

Z Y X Z

ds

ε
ε
ε 1

X

Y

Z

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤− ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

= − ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎢ ⎥
⎢ ⎥
⎢ ⎥

+

⎢ ⎥⎣ ⎦

 (37) 

Equation (37) can be re-arranged as 

 

1 1 1 2

1 1 1 2

1 1 1 2

1 0 0 0

0 1 0 0

0 0 1 0

X

Y

Z
X

X
Y

Y
Z

Z

t

t

tZ Y X X Xv

v Z X Y Y

v Y X Z Z Z

ds

ε
ε
ε

1

1

1

Y

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤⎡ ⎤ − −⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ + − =⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ − −⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎡ ⎤
⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎢ ⎥⎣ ⎦

 (38) 

and this equation has the general form 

  (39) + =v Bx f

where the vector of residuals v has been added to the left-hand-side to reflect the fact that 

measurements (the coordinates) contain random errors and do not fit the model exactly.  

The residuals are simply an acknowledgement of a slight discordance between model and 

reality. 

The least squares solution for the vector of parameters x is 

  (40) 1−=x N t

where 

  (41) 
1

T

T

−

=

=

=

N B WB

t B Wf

W Q
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In equations (41), Q is a cofactor matrix containing estimates of the variances of the 

observations, which in this case are the coordinates of the common points and by 

definition, weight matrices .  It is often difficult to assess the variances of the 

coordinate differences and in this method of solution for the transformation parameters it 

is often assumed that all measurements (the coordinate differences) have the same 

variance, and in this case . 

1−=W Q

1−= =W Q I

 

PARAMETRIC LEAST SQUARES SOLUTION FOR PARAMETERS 

MOLODENSKY–BADEKAS TRANSFORMATION 

In the same manner as the Combined Least Squares Solution [see equation (33)] we have 

the expanded matrix equation for a single common point as 

 

2 1 1

1 0 0 0

0 1 0 0

0 0 1 0

X

Y

Z

X

Y

Z

t

t

tZ Y X XX

Y Z X Y

Z Y X Z Z

ds

ε
ε
ε

Y

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤ ⎢ ⎥⎡ ⎤ −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢= − ⎢ ⎥⎢ ⎥ ⎢ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥

⎡ ⎤
⎢ ⎥
⎢ ⎥

⎥ ⎢ ⎥+⎥ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎢ ⎥⎣ ⎦

 (42) 

Equation (42) can be re-arranged as 

 

1 1 1 2

1 1 1 2

1 1 1 2

1 0 0 0

0 1 0 0

0 0 1 0

X

Y

Z
X

X
Y

Y
Z

Z

t

t

tZ Y X X Xv

v Z X Y Y

v Y X Z Z Z

ds

ε
ε
ε

1

1

1

Y

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤ ⎢ ⎥− −⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥+ − =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ − −⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎢ ⎥⎣ ⎦

 (43) 

and this equation has the general form 

  (44) + =v Bx f

The least squares solution for the vector of parameters x is identical to the parametric 

least squares solution for the Bursa–Wolf transformation shown above. 
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RELATIONSHIP BETWEEN BURSA–WOLF TRANSLATIONS AND 

MOLODENSKY-BADEKAS TRANSLATIONS 

From equations (5) and (7) we may write the two transformations in vector form as 

Bursa–Wolf  (45) ( )2 1 sds= + +l R l1 Bt

Molodensky–Badekas ( )2 1 sds= + +l R l1 Mt  (46) 

where the  are Bursa–Wolf and Molodensky–Badekas translations respectively. ,B Mt t

Equating equations (45) and (46) gives 

 ( ) ( )11 1s B sds ds+ + = + +R l t R l t1 M

ds

 (47) 

Letting  and 1s = + 1 1= −l l g1

M

g

 then equation (47) becomes 

  
( )1 1 1

1 1

s B s M

s s

s s

s s

+ = − +

= − +

R l t R l g t

R l R g t

giving 

  (48) 1M B ss= +t t R
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