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Figure 1.  Satellite S in elliptical orbit about the earth F 

 

Figure 1 shows a satellite S is in an elliptical orbit of period T about the earth F where T is the time 

between two successive passages through perigee P.  The orbital ellipse has semi-axes a and b ( )a b>  and 

eccentricity ( )2 2 2e a b a= −  and the earth is at one of the focal points with OF ae= .  The orbital 

ellipse has an auxiliary circle of radius a and S is located on the ellipse by the orbital radius r and the true 

anomaly θ  and Q is located on the auxiliary circle by the radius a and the eccentric anomaly E.  The line 

QR is perpendicular to the major axis (2a) and passes through S.  As S moves in its elliptical orbit, a 

fictitious satellite S′, located on the auxiliary circle by the radius a and the mean anomaly M, moves around 

the auxiliary circle with constant angular velocity and with a period of revolution identical to the orbital 

period T.  When the satellite S is at perigee P, anomalies θ , E and M all equal zero. 

The following relationships are fundamental in orbital mechanics 

M, E and e are related by Kepler’s equation which is an outcome of Kepler’s 2nd law (Deakin 2007) 

 sinM E e E= −   (1) 

,E θ  and e are related by 
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e, r and θ  are related by 



2 

 

 
( )21

1 cos

a e
r

e θ

−
=
+

  (3) 

The orbital period T (in seconds) of the satellite is known to be (Deakin, 2007, p. 27) 
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where 8 3 23986005 10  m sGM = ×  is the geocentric gravitational constant that is the product of the 

universal constant of gravitation G and the mass of the earth M (GRS80) and n is the mean motion of the 

satellite, defined as 
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If 0t  is the time (in seconds) when the satellite passes through perigee and t is some time after 0t  then 0t t−  

is the time of flight and the mean anomaly M can be expressed as 

 ( )0M n t t= −   (6) 

and Kepler’s equation written as 

 ( )0 sinM n t t E e E= − = −   (7) 
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Figure 1.  Mean anomaly M versus Eccentric anomaly E for 0, 0.5, 1e =  

In orbital mechanics it is often required to compute the position of a satellite at time t  when the mean 

motion n and 0t  are known quantities as well as orbital constants a and e.  To achieve this, Kepler’s 

equation must be solved for E and there are a number of different methods to solve Kepler’s equation. 

Of particular interest are three methods, (i) a series expansion, (ii) Newton-Raphson iteration and (iii) an 

iterative scheme using the bisection method. 
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Solution of Kepler’s equation by trigonometric series 

To solve Kepler’s equation for the eccentric anomaly E equation (1) is recast as 

 sinE M e E= +   

and Lagrange’s theorem1 used to derive an expression for E as a trigonometric series in M 
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This equation, given by Battin (1987, eq. 5.17), ignores terms with coefficients 7e  and greater.  It is a 

recasting of an earlier equation (also derived using Lagrange’s theorem) given by Moulton (1914, p. 169).  An 

explanation of Lagrange’s theorem and the derivation of (8) is given in the Appendix. 

With the aid of the computer algebra package Maxima2 this series can be extended to higher orders of the 

eccentricity e and multiples of the mean anomaly M (see Appendix). 
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Colwell (1993, Appendix D) uses Lagrange’s Theorem and the computer algebra system Mathematica to 

obtain a series for E where the coefficients of 2 3 10, , , ,e e e e…  are functions of powers of sines and cosines of M. 

For orbits with small eccentricities ( )0.2e <  the series (8) and (9) are rapidly convergent, but it is known 

that this series will diverge for some values of M when the eccentricity 0.6627434194e > …  (Battin 1987, 

p.205).  This result, first shown by Laplace (1749–1827), is known as the Laplace Limit. 

Efficient evaluation of the trigonometric series for E 

The trigonometric series (8) and (9) can be expressed in the form 

 
1

sin
N

k
k

E M c kM
=

= +∑  (10) 

                                            
1 Also known as Lagrange’s reversion theorem.  In 1770, Joseph Louis Lagrange (1736–1813) published his power series 
for reversion: ‘Nouvelle méthode pour résoudre les équations littérales par le moyen des séries’ in Mémoires de l 

Académie Royale des Sciences at Belles-Lettres de Berlin, Vol. 24, pp. 251-326.  

(http://gallica.bnf.fr/ark:/12148/bpt6k229222d).  See Wikipedia 
2 Maxima is based on a 1982 version of MACSYMA, which was developed at MIT with funding from the United States 

Department of Energy and other government agencies.  See Appendix. 
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and for 6N =  the six coefficients 1 2 6, , ,c c c…  from (8) are 
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The summation 
1

sin
N

k
k

S c kM
=

= ∑  in (10) can be evaluated using Clenshaw summation3 (see Appendix) that 

avoids multiple evaluations if the sine function and (10) can be written as 

 1
1
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where 1y  is obtained from the backward recurrence formula  
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Using Clenshaw’s summation means that there is one evaluation of sinM  and one evaluation of cosM  in 

determining the eccentric anomaly E. 

Example 1 

Use Clenshaw summation to evaluate E from (8) with 0.100e =  and 5 0.087266463 radiansM = =� . 

The coefficients kc  from (11) are 

e k ek ck 

0.1 1 0.100000000000 9.987505208E-02 
 2 0.010000000000 4.983354167E-03 
 3 0.001000000000 3.728906250E-04 
 4 0.000100000000 3.306666667E-05 
 5 0.000010000000 3.255208333E-06 
 6 0.000001000000 3.375000000E-07 

 

Clenshaw recurrence 

k yk 2 cosM =  1.992389396 

8 0 sinM =   0.087155743 
 

7 0  ck 

6 0.000000337500  3.375000000E-07 

5 0.000003927640  3.255208333E-06 

4 0.000040554554  3.306666667E-05 

3 0.000449763450  3.728906250E-04 

2 0.005838903540  4.983354167E-03 

1 0.111058658132  9.987505208E-02 

 
6

1
1
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5.554588758940 degr
sin si

ees
n

N

k
k

E M c kM M S M y M

=

=

= + = + = + =



∑  

A Matlab function Kepler_series.m is shown in the Appendix. 

                                            
3 Clenshaw summation evaluates a sum of products of indexed coefficients by functions which obey a recurrence relation. 



5 

 

Solution of Kepler’s equation by Newton-Raphson iteration 

As an alternative to the trigonometric series method, a value for E can be computed using the Newton-

Raphson method for the real roots of the equation ( ) 0f E =  given in the form of an iterative equation 

 
( )
( )1
n

n n

n

f E
E E

f E
+ = −

′
  (14) 

where n denotes the nth iteration and ( )f E  is found from Kepler’s equation (1) as 

 ( ) sinf E E e E M= − −   (15) 

The derivative ( ) ( ){ }
d

f E f E
dE

′ =  is given by 

 ( ) 1 cosf E e E′ = −   (16) 

Substituting (15) and (16) into (14) gives 

 1 1 cos
n

n n

n

M M
E E

e E
+

−
= −

−
 (17) 

where the second term is a correction to nE  and sinn n nM E e E= −  

With an initial value 0E , the correction ( ) ( )0 01 cosM M e E− −  is evaluated and subtracted from 0E  

giving an updated value 1E  and the process is repeated to obtain 2 3, ,E E … .  This iterative process can be 

concluded when the difference between 1nE +  and nE  reaches an acceptably small value. 

Initial value E0 

It is common practice to use 0E M=  as the initial (or starting value) in the iterative scheme, but it should 

be noted that this will not always lead to convergence. 

Example 2 

For values 7M = � , 0.999e =  and with 0E M=  as the initial value, the following results are obtained for 

the first 14 iterations 

n 
nE  (degrees) 

0 7.000000000 
1 832.869123399 

2 275.954960202 

3 -87.610599131 

4 -48.562394340 

5 -11.225112021 

6 340.962526137 

7 -5996.812219845 

8 -2084.497865298 

9 778.410987047 

10 -737.535684055 

11 14598.350404127 

12 7099.442370278 

13 1056.785610878 

14 -12039.362753148 

This example of non-convergence is shown in Meeus (1991, p. 189) with the comment that convergence to the 

true value ( )52.270261528 degreesE =  did not occur until after the 47th iteration.  



6 

 

A faster convergence can be achieved with a better initial value 0E .  The selection of initial values for 

iteration schemes has been the subject of many papers and Odell & Gooding (1986), Meeus (1991), Colwell 

(1993) and Esmaelzadeh & Ghadiri (2014) have summaries of modern iterative solutions and initial values.  

Here we use an equation for 0E  from Smith (1979), who in his development, included the following points 

relating to the solution for the root of ( ) sinf E E e E M= − − : 

 (i) Due to symmetry (see Figure 1) it is only necessary to consider cases where 0 M π≤ ≤  

 (ii) ( ) sinf M e M= −  is negative or zero; ( ) ( )( )1 sinf M e e M e+ = − +  is positive or zero and 

the derivative ( ) 1 cosf E e E′ = −  is positive which means that ( )f E  must vanish somewhere 

within the interval ( ),M M e+ .  Thus the solution for ( ) 0f E =  is bounded and 

 M E M e≤ ≤ +  (18) 

Smith (1979) then used these bounds in the equation for a straight line 1 2 1

1 2 1

y y y y

x x x x

− −
=

− −
 to obtain 

 
( ) ( ) ( )

( )0

0 f M f M e f M

E M M e M

− + −
=

− + −
 

which is simplified and re-arranged as (Smith 1979, eq. 5) 

 
( )0

sin

1 sin sin

e M
E M

M e M
= +

− + +
 (19) 

Smith (1979) tested this initial value in solutions for E in Regions I and II that are known to be problematic 

in iterative solutions (Meeus 1991, Chapter 29, Figures 4, 5 and 6) 

 
Region I: 0.05 and 0.01 0.99

Region II: 0.005 0.4 and 0.95 0.999

M e

M e

π≤ ≤ ≤ ≤

≤ ≤ ≤ ≤
 

Example 3 

Using (19) with values 7M = � , 0.999e =  gives 0 .527006574 deg8 es3 reE =  and the correct result of 

52.270261528 degreesE =  is obtained after 5 iterations. 

n 
nE  (degrees) 

0 38.527006574 
1 57.412628477 

2 52.682423402 

3 52.273242571 

4 52.270261686 

5 52.270261528 

6 52.270261528 

 

Odell & Gooding (1986) note that (19) will not produce Newton-Raphson convergence for values of e greater 

than about 0.9995.  The source of the problem, they say, is that if 00 E E< <  with 0 M E π< < <  then 

1E  (the estimate of E after one iteration) will exceed E (the true value) and sometimes will be much bigger 

than π .  This is clearly the case with the example above (even with 0.999e =  being less than 0.9995) and 

this does not satisfy their requirements for convergence where every iteration must produce a value closer to 

the true value.  But the iterative scheme does converge on the true solution after 5 iterations.  Odell & 

Gooding (1986) are focussed on schemes of one or two iterations only to maximise computer efficiency. 
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Example 4 

Interestingly using (19) with values 7M = � , 1e =  gives 0 .620614337 deg8 es3 reE =  and the correct result 

of 52.386793829 degreesE =  is obtained after 5 iterations. 

n 
nE  (degrees) 

0 38.620614337 
1 57.555617286 

2 52.802877860 

3 52.389831537 

4 52.386793993 

5 52.386793829 

6 52.386793829 

A Matlab function Kepler_Newton.m is shown in the Appendix. 

Solution of Kepler’s equation using the Bisection Method 

The Bisection Method is a numerical method for the real roots of ( ) 0f x = .  The method is always 

convergent and is simple to implement, but it is relatively slow as its rate of convergence is linear. 

It is based on a result from calculus known as the Intermediate Value Theorem or Balzano’s Theorem4 that 

can be expressed as (Apostol 1967): 

Let ( )f x  be a continuous function at each point of a closed interval ,a b 
   and assume 

that ( )f a  and ( )f b  have opposite signs, then there is at least one c in the open interval 

( ),a b  such that ( ) 0f c = . 

And c is a root of ( ) 0f x =  bounded by the open interval ( ),a b . 

The Bisection Method can be understood by following Dahlquist & Björck (1974): 

Suppose that ( )f x  is continuous and two points 0 0,a b  are found at which the function values ( )0f a  and 

( )0f b  have opposite signs, i.e. ( ) ( )0 0 0f a f b < . 

A sequence of intervals ( ) ( ) ( )1 1 1 2 2 2 3 3 3, , , ,I a b I a b I a b= > > …  can be determined which all contain a root 

of ( ) 0f x =  and each interval is half the size of the previous interval.  This sequence can be terminated 

when the interval bounds ( ),k ka b  become sufficiently close. 

The intervals ( ), , 1,2, 3,
k k k
I a b k= = …  are determined recursively as follows: 

The mid-point of the interval 1kI −  is 

 ( )1
1 12k k k

c a b− −= +  (20) 

Evaluate ( )kf c  and determine the bounds of the next interval kI  according to the rule 

                                            
4 Bernard Bolzano (1781–1848), a Catholic priest who made many important contributions to mathematics in the first 

half of the 19th century, was one of the first to recognize that many ‘obvious’ statements about continuous functions 

require proof.  His observations concerning continuity were published posthumously in 1850 in Paradoxien des 

Unendlichen [Paradoxes of the infinite].  An English translation of Bolzano’s paper on the Intermediate Value Theorem 

(Bolzano 1817) is given by Russ (1980). 
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 ( )
( ) ( )
( ) ( )

1

1

,   if  0
,

,   if  0
k k k

k k
k k k

c b f c
a b

a c f c

−

−

 <= 
 >

 (21) 

From the construction of ( ),k ka b  it follows immediately that ( ) 0kf a <  and ( ) 0kf b >  and that each 

interval kI  of length k k kd b a= −  contains a root of ( ) 0f x = .  After n steps the root is contained in the 

interval of length nd  where 

 ( ) ( ) ( )
2 3

1 1 1 1
1 2 3 02 2 2 2

n

n n n n
d d d d d− − −= = = = =�  (22) 

and 0 0 0d b a= −  is the initial interval length.  A re-arrangement of (22) gives 

 02n

n

d

d
=  (23) 

If ε  is some desired tolerance then the integer number of iterations n to achieve this tolerance is 

 0 0 0
2

1
ceil log ceil ln ceil 1.443 ln

ln 2

d d d
n

ε ε ε

           = = =               
 (24) 

where ( )ceil x  is the ceiling function and ( )2log x  is the binary logarithm (logarithm to the base 2).  The 

ceiling function rounds a fractional number to the next highest integer and binary logarithms can be 

evaluated from the natural logarithm eln logx x≡  using the rule: 2

ln
log 1.443 ln

ln 2

x
x x= ≈ .  

2.71828182e 8459≈  is the base of the natural logarithms. 

For example, if 1
0 2
d π=  and the tolerance 1.0 E 15ε = −  then ( )ceil 50.491 51n = = . 

The Bisection method must succeed.  If the interval happens to contain two or more roots, bisection will find 

one of them.  If the interval contains no roots and merely straddles a singularity, it will converge on the 

singularity (Press et al. 1992). 

The Appendix contains a Matlab function Kepler_Bisection.m that is based on a BASIC program shown in 

Sky & Telescope August 1985 by Roger W Sinnott (1985).  Sinnott calls his method ‘Binary Search’ and 

Meeus (1991) features Sinnott’s binary search as a foolproof method of solving Kepler’s equation for 

0 1e< ≤ . 
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Appendix 

Reversion of a series 

If we have an expression for a variable z as a series of powers or functions of another variable y then we may, 

by a reversion of the series, find an expression for y as series of functions of z.  Reversion of a series can be 

done using Lagrange's theorem, a proof of which can be found in Battin (1987). 

Suppose that 

 ( )y z xF y= +  (25) 

then Lagrange's theorem states that for any f 

 

( ) ( ) ( ) ( )

( ){ } ( )

( ){ } ( )

( ){ } ( )

2
2

3 2
3

2

1

1

1!

2!

3!

!

n n
n

n

x
f y f z F z f z

x d
F z f z

dz
x d

F z f z
dz

x d
F z f z

n dz

−

−

′= +

 ′+  
 
 ′+  
 

+

 ′+  
 

+

�

�  (26) 

As an example, consider Kepler’s equation expressed in the form 

 sinE M e E= +  (27) 

And we wish to find an expression for E as a function of M. 

Comparing the variables in equations (27) and (25), z M= , y E= , x e=  and ( ) ( ) sinF z F M M= = .  

And if we choose ( )f y y=  then ( )f z z=  and ( ) 1f z′ =  then Lagrange's theorem gives 

 

2 3 2 4 3
2 3 4

2 3

1

1

sin sin sin sin
2! 3! 4 !

sin
!

n n
n

n

e d e d e d
E M e M M M M

dM dM dM
e d

M
n dM

−

−

     = + + + + +          

 + +  

�

�  (28) 

This can also be expressed as (Colwell 1993) 

 ( ) ( ) ( )
1

1
1

1
, sin

!

n
n n

n n n
n

d
E M a M e a M M

n dM

∞ −

−
=

= + =∑   (29) 

Neglecting terms of order 7e  and higher, the derivatives up to the 5th order are 

 

( )

( )

( )

2

2
3 2 3

2

3

2

3
4 3 3

3

3 3

3

sin 2 cos sin sin 2

1
sin 6 cos sin 3 sin 9 sin 3 3 sin

4
1

3 sin 3 3 sin
2

sin 24 cos sin 40cos sin 8 sin 4 4 sin 2

1
4 sin 4 2 4 sin 2

2

d
M M M M

dM
d

M M M M M M
dM

M M

d
M M M M M M M

dM

M M

= =

= − = −

= −

= − = −

= − ⋅
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( )

( )

4
5 4 2 3 5

4

4 4

4

5
6 5 3 3 5

5

5 5

5

sin 120 cos sin 440 cos sin 65 sin

1
625 sin 5 405 sin 3 10 sin

16
1

5 sin 5 3 5 sin 3 10 sin
2

sin 720 cos sin 4800 cos sin 2256 cos sin

243 sin 6 192 sin 4 15 sin2

1
6 sin 6 4 6 sin 4

2

d
M M M M M M

dM

M M M

M M M

d
M M M M M M M

dM
M M M

M M

= − +

= − +

= − ⋅ +

= − +

= − +

= − ⋅( )52 15 sin 2M+ ⋅
  

Inserting the derivatives into (28) gives a series expression for E (Moulton 1914, p. 169) 

 

( ) ( )

( ) ( )

2 3 4
2 3 3

2 3

5 6
4 4 5 5 5

4 5

sin sin 2 3 sin 3 3 sin 4 sin 4 2 4 sin 2
2! 3!2 4 !2

5 sin 5 3 5 sin 3 10 sin 6 sin 6 4 6 sin 4 2 15 sin 2
5!2 6!2

e e e
E M e M M M M M M

e e
M M M M M M

= + + + − + − ⋅

+ − ⋅ + + − ⋅ + ⋅ +�   

that simplifies to 

 

( ) ( )

( ) ( )

2 3 4

5 6

sin sin 2 3 sin 3 sin 2 sin 4 sin2
2 8 6

125 sin 5 81sin 3 2 sin 243 sin 6 192 sin 4 15 sin 2
384 720

e e e
E M e M M M M M M

e e
M M M M M M

= + + + − + −

+ − + + − + +�   (30) 

This can be re-arranged as (Battin 1987, eq. 5.17) 

 

3 5 2 4 6

3 5 4 6

5 6

1 1 1 1 1
sin sin 2

8 192 2 6 48
3 27 1 4

sin 3 sin 4
8 128 3 15
125 27

sin 5 sin 6
384 80

E M e e e M e e e M

e e M e e M

e M e M

     = + − + +  + − + +        
     + − +  + − +        
     + +  + +  +       

� �

� �

� � �  (31) 

Series reversion using Lagrange’s Theorem and Maxima 

Maxima is a fully functioned Computer Algebra System (CAS) and is a derivative of MACSYMA which had 

its origins in the 1960s at Massachusetts Institute of Technology (MIT).  MACSYMA (Project MAC’s 

SYmbolic MAnipulator and Project MAC was the Project on Mathematics And Computation) was the first 

of the ‘modern’ computer algebra systems and the forerunner of programs such as Maple and Mathematica.  

Its development grew out of research funded by the U.S. Department of Energy (DOE) and the source code 

(DOE MACSYMA) was maintained by William Schelter from 1982 until his death in 2001.  In 1998 he 

obtained permission to release the Maxima source code under GNU5 General Public License (GPL).   

Maxima can be used in two modes; (i) typing simple input commands into the console screen that are acted 

on with the result as output printed to the console; or (ii) as a ‘batch’ file of instructions that are executed 

sequentially with output printed to the console.  Batch files are the more useful way to use Maxima and the 

results shown in this paper have been generated from a Maxima text file ‘Lagrange.txt’ shown below, 

followed by a copy of the output screen. 

  

                                            
5 GNU is a recursive acronym for ‘GNU’s not Unix’ chosen because GNU’s design is Unix-like, but differs from Unix by being free 

software and containing no Unix code.  GNU is a computer operating system developed by the GNU project aiming to be a complete 

Unix-compatible software system composed wholly of free software.  
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Maxima Batch File (Lagrange.txt) for trigonometric series for E to order e10 

/*********************************************************************/ 
/* Maxima program for Lagrange's Theorem                             */ 
/*                                                                   */ 
/* path and file name:                                               */ 
/* D:\Projects\Geospatial\Geodesy\Satellite Orbits\Lagrange.txt      */ 
/*********************************************************************/ 
 
/* set the order to compute */ 
pow:10$ 
/* use Lagrange’s theorem to obtain a trigonometric series in M  */ 
E:M + e*sin(M)$ 
for k: 2 thru pow do 
       (E: E + e^k/k!*diff(sin(M)^k,M,k-1))$  
/* reduce the expression for E to a trigonometric series in multiple  */ 
/* values of M                                                        */ 
E : trigreduce(E)$ 
E : expand(E)$ 
/* group coefficients of of M and sin(kM)     */ 
coeff(E,M)*M + sum(coeff(E,sin(k*M))*sin(k*M),k,1,pow); 
 

Maxima Console output of trigonometric series for E to order e10 

Maxima 5.24.0 http://maxima.sourceforge.net 
using Lisp Clozure Common Lisp Version 1.7-dev-r14645M-trunk  (WindowsX8632) 
Distributed under the GNU Public License. See the file COPYING. 
Dedicated to the memory of William Schelter. 
The function bug_report() provides bug reporting information. 
(%i1)  
read and interpret file: D:/Projects/Geospatial/Geodesy/Satellites Orbits/Lagrange.txt 
(%i2)                              pow : 10 
(%i3)                          E : e sin(M) + M 
                                        k         k 
                                       e  diff(sin (M), M, k - 1) 
(%i4)     for k from 2 thru pow do E : -------------------------- + E 
                                                   k! 
(%i5)                          E : trigreduce(E) 
(%i6)                            E : expand(E) 
(%i7)     sum(coeff(E, sin(k M)) sin(k M), k, 1, pow) + coeff(E, M) M 
             10                     9                  8         10 
      78125 e   sin(10 M)   531441 e  sin(9 M)    128 e    2048 e 
(%o7) ------------------- + ------------------ + (------ - --------) sin(8 M) 
            145152               1146880           315       2835 
           7           9                    10        8       6 
    16807 e    823543 e               2187 e     243 e    27 e 
 + (-------- - ---------) sin(7 M) + (-------- - ------ + -----) sin(6 M) 
     46080      1474560                 8960      560      80 
           9         7        5 
    78125 e    3125 e    125 e 
 + (-------- - ------- + ------) sin(5 M) 
     516096     9216      384 
          10      8      6    4 
      16 e     4 e    4 e    e 
 + (- ------ + ---- - ---- + --) sin(4 M) 
       945      45     15    3 
           9        7       5      3 
      243 e    243 e    27 e    3 e 
 + (- ------ + ------ - ----- + ----) sin(3 M) 
      40960     5120     128     8 
      10     8     6    4    2 
     e      e     e    e    e 
 + (----- - --- + -- - -- + --) sin(2 M) 
    17280   720   48   6    2 
       9       7     5     3 
      e       e     e     e 
 + (------ - ---- + --- - -- + e) sin(M) + M 
    737280   9216   192   8 
(%i8)  
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Recurrence Relations 

A recurrence relation is an equation that recursively defines a sequence.  Once one or more initial terms are 

given each further term of the sequence is defined as a function of the preceding terms.  As examples, 

consider the trigonometric functions 

 ( ) ( )sin 2 cos sin 1 sin 2k k kφ φ φ φ= − − −  (32) 

 ( ) ( )cos 2cos cos 1 cos 2k k kφ φ φ φ= − − −  (33) 

With initial values ( )sin 0 0= , ( )cos 0 1=  in (32) and (33) gives successively 

 

2sin 2 2 cos sin , cos2 2 cos 1

sin 3 2 cos sin 2 sin , cos 3 2 cos cos2 cos

sin 4 2cos sin 3 sin 2 , cos 4 2cos cos 3 cos2

sin 5 cos 5

φ φ φ φ φ

φ φ φ φ φ φ φ φ

φ φ φ φ φ φ φ φ

φ φ

= = −

= − = −

= − = −

= =� �

  

Recurrence relations for even multiples are obtained by replacing φ  with 2φ  in (32) and (33) to give 

 ( ) ( )sin 2 2 cos2 sin2 1 sin 2 2k k kφ φ φ φ= − − −  (34) 

 ( ) ( )cos2 2cos2 cos2 1 cos2 2k k kφ φ φ φ= − − −  (35) 

Clenshaw summation 

Suppose that a (truncated) sum S is denoted by 

 ( ) ( ) ( ) ( ) ( )0 0 1 1 2 2
0

N

N N k k
k

S u F x u F x u F x u F x u F x
=

= + + + + = ∑�  (36) 

ku  are coefficients independent of x, and ( )F x  obey the recurrence relation 

 ( ) ( ) ( )1 1k k k k kF x a F x b F x+ −= +  (37) 

where the coefficients ,
k k
a b  may be functions of x as well as k.  Note that in many applications a does not 

depend on k, and b is a constant independent of x or k. 

The sum S can be evaluated from 

 ( ) ( ) ( )1 0 2 1 1 0 0S b F x y F x y F x u= + +  (38) 

where the quantities ky  are obtained from the backward (or reverse) recurrence formula 

 
1 1 2

0, for 

, for , 1, 2, , 3,2,1k
k k k k k

k N
y

a y b y u k N N N+ + +

 >= 
 + + = − −

…

 (39) 

Equation (39) is Clenshaw’s recurrence formula and (38) is the associated sum; equations (38) and (39) 

combined are called Clenshaw’s summation (Clenshaw 1955, Deakin & Hunter 2011). 

Clenshaw’s summation can be explained by writing out (36) as 

 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1 1 2 2 8 8 7 7 6 6

2 2 1 1 0 0

N N N N N NS u F x u F x u F x u F x u F x u F x

u F x u F x u F x

− − − −= + + + + + + +

+ + +

� �

 (40) 

and re-arranging (39) as 

 1 2k k k k k ku y a y b y+ += − −  (41) 
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Then substituting (41) into (40) gives 

 

( ) ( )
( )

( ) ( ) ( )
( ) ( )

1 1 2 1 1 1 1

2 2 1 1 2

8 8 9 9 10 8 7 7 8 8 9 7 6 6 7 7 8 6

2 2 3 3 4 2 1 1 2 2 3 1 0 1 2

N N N N N N N N N N N N

N N N N N N

S y a y b y F x y a y b y F x

y a y b y F x

y a y b y F x y a y b y F x y a y b y F x

y a y b y F x y a y b y F x u b y b

+ + + − − + −

− − − − −

   = − − + − −   
 + − − + 
     + − − + − − + − − +     
   + − − + − − + + −   

�

�

( )1 2 0y F x 
   (42) 

Noting that in the last line 1 2b y  has been added and subtracted.  Examining the terms containing a factor of 

8y  in (42) involves 

 ( ) ( ) ( )8 7 7 7 6 8F x a F x b F x y − −   (43) 

And as a consequence of the recurrence relation (37) the term in     will equal zero and similarly for all 

other ky  down through and including 2y .  The only surviving terms in (42) are 0 1,u y  and 1 2b y ; and so the 

sum S is given by (38). 

Summation 
1

sin
N

k
k

S c kφ
=

= ∑   

Consider the (truncated) trigonometric series 

 1 2 3
1

sin sin 2 sin 3 sin sin
N

N k
k

S c c c c N c kφ φ φ φ φ
=

= + + + + = ∑�  (44) 

The trigonometric functions sin , sin2 , sin 3 ,φ φ φ …  obey the recurrence relation (32) so S can be evaluated 

using Clenshaw summation.  Write the recurrence relation (32) in another form replacing k with 1k +  giving 

 ( ) ( )sin 1 2 cos sin sin 1k k kφ φ φ φ+ = − −  (45) 

Equation (45) has the same form as (37) where ( ) sinkF x kφ= , 2 coska φ=  and 1kb = − .  Clenshaw’s 

backward recurrence formula (39) becomes  

 
1 2

0, for 

2 cos , for , 1, 2, , 3,2,1k
k k k

k N
y

y y c k N N Nφ + +

 >= 
 − + = − −

…

 (46) 

The associated sum (see equation (38) with ( )0( ) sin 0 0F x = =  and ( )1 sinF x φ= ) is 

 1
1

sin sin
N

k
k

S c k yφ φ
=

= =∑  (47) 
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Matlab function Kepler_series.m 

function E = Kepler_series(e,M) 

%  

% Kepler_series is a function that solves Kepler's equation  

% M = E - e*sin(E) for E using a trigonometric series to the order e^10 derived  
% from Lagrange's Theorem.  M = mean anomaly, E = eccentric anomaly and  

% e = orbit eccentricity.  Clenshaw summation is used to evaluate the series. 

% 

% example:  >> format long g 

%           >> d2r = 180/pi; 
%           >> M = 5/d2r; 

%           >> e = 0.1;  

%           >> E = Kepler_series(e,M); 

%           >> E           

%           E = 0.0969458710753345 

%           >> 
 

%-------------------------------------------------------------------------- 

% Function:  Kepler_series 

% 

% Usage:     E = Kepler_series(e,M); 
% 

% Author:    R.E.Deakin,  

%            1/443 Station Street, 

%            BONBEACH, VIC 3196, AUSTRALIA. 

%            email: randm.deakin@gmail.com 

%            Version  1.0   22 December 2017 
% 

% Functions required:   

%    none 

%         

% Purpose:    
%    Solution of Kepler's equation: M = E - e*sin(E) for E 

%    where M = mean anomaly, E = eccentric anomaly and e = orbit eccentricity 

% 

% Variables: 

%    A       - A = 2*cos(M) is a constant in Clenshaw recurrence 
%    c()     - array of coefficients in the trigonometric series 

%    e       - orbital eccentricity 

%    e2,e3,...  - powers of eccentricity 

%    E       - eccentric anomaly (radians) 

%    k       - integer counter 

%    M       - mean anomaly (radians) 
%    N       - order of series 

%    y1,y2   - Clenshaw recurrence variables 

% 

% Remarks:  

%    The solution of Kepler's equation for the eccentric anomaly E is given in  
%    the form of a trigonometric series: 

%    E = M + c(1)*sin(M) + c(2)*sin(2*M) + ... + c(N)*sin(N*M) 

%    where the coefficients c(1), c(2), ..., c(N) are functions of powers of  

%    the eccentricity e.   

%    Clenshaw summation is used to evaluate the series. 

%    The series is accurate for values of eccentricity e < 0.2.   
%    For values of e > 0.2, Newton-Raphson, or another iterative scheme should  

%    be used. 

% 

% References: 

%    [1] Battin, R.H., (1987), 'An Introduction to the Mathematics and Methods 
%           of Astrodynamics', American Institute of Aeronautics and  

%           Astronautics (AIAA), Inc., New York. 

%    [2] Deakin, R.E., (2017), 'Solutions of Kepler's Equation', Private Notes,  

%           December, 2017. 

%-------------------------------------------------------------------------- 
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% calculate the value of the eccentric anomaly E using the trigonometric  

% series expansion given in Ref[1], eq.(5.16), p.202 and Ref[2]. 

 

% set powers of eccentricity 

e2 = e*e; 

e3 = e2*e; 
e4 = e3*e; 

e5 = e4*e; 

e6 = e5*e; 

e7 = e6*e; 

e8 = e7*e; 
e9 = e8*e; 

e10 = e9*e; 

 

% set an array c() for the coefficients c(1),c(2),...,c(10) 

N = 10; 

c = zeros(N,1); 
  

% set the values of the coefficients c1, c2, ... c10  Ref[2], eq.(9) 

c(1) = (e-1/8*e3+1/192*e5-1/9216*e7+1/737280*e9); 

c(2) = (1/2*e2-1/6*e4+1/48*e6-1/720*e8+1/17280*e10); 

c(3) = (3/8*e3-27/128*e5+243/5120*e7-243/40960*e9); 
c(4) = (1/3*e4-4/15*e6+4/45*e8-16/945*e10); 

c(5) = (125/384*e5-3125/9216*e7+78125/516096*e9); 

c(6) = (27/80*e6-243/560*e8+2187/8960*e10); 

c(7) = (16807/46080*e7-823543/1474560*e9); 

c(8) = (128/315*e8-2048/2835*e10); 

c(9) = (531441/1146880*e9); 
c(10) = (78125/145152*e10); 

 

% set up y1 and y2 for Clenshaw's backward recurrence 

y2 = 0; 

y1 = 0; 
 

% calculate y1 from Clenshaw's backward recurrence 

A = 2*cos(M); 

for k = N:-2:1 

    y2 = A*y1-y2+c(k); 

    y1 = A*y2-y1+c(k-1); 
end 

 

% calculate the eccentric anomaly 

E = M + y1*sin(M); 

return 
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Matlab function Kepler_Newton.m 

function [E,count] = Kepler_Newton(e,M) 

%  

% Kepler_Newton is a function that solves Kepler's equation  

% M = E - e*sin(E) for E 
% where M = mean anomaly, E = eccentric anomaly and e = orbit eccentricity 

% count is the n umber of iterations 

% 

% example:  >> format long g 

%           >> d2r = 180/pi; 
%           >> M = 5/d2r; 

%           >> e = 0.1;  

%           >> [E,count] = Kepler_Newton(e,M); 

%           >> E           

%           E = 0.0969458710759671     % radians 

%           >> count 
%           count = 3                  % number of iterations 

 

%-------------------------------------------------------------------------- 

% Function:  Kepler_Newton 

% 
% Usage:     [E,count] = Kepler_Newton(e,M); 

% 

% Author:    R.E.Deakin,  

%            1/443 Station Street, 

%            BONBEACH, VIC 3196, AUSTRALIA. 

%            email: randm.deakin@gmail.com 
%            Version  1.0   01 December 2017 

% 

% Functions required:   

%    None 

%         
% Purpose:    

%    Solution of Kepler's equation M = E - e*sin(E) for E  

%    where M = mean anomaly, E = eccentric anomaly and e = orbit eccentricity 

% 

% Variables: 
%    corrn   - corrn = F/df 

%    count   - number of iterations 

%    dF      - derivative of F, dF = 1 - e*cos(Psi) 

%    e       - orbital eccentricity 

%    E       - eccentric anomaly (radians) 

%    F       - function F = E - e*sin(E) - M 
%    M       - mean anomaly (radians) 

%    tol     - tolerance (a small value) 

% 

% Remarks:  

%    This function uses Newton-Raphson Iteration to solve Kepler's equation for  
%    the eccentric anomaly E.  A starting value for the iterative process is  

%    obtained from eq. (5) of Ref. [1] 

% 

% References: 

%    [1] Smith, G.R., (1979), 'A simple efficient starting value for the 

%           iterative solution of kepler's equation', Celestial Mechanics, Vol. 
%           19, pp. 163-166. 

%    [2] Odell, A.W. & Gooding, R.H., (1986), 'Procedures for solving Kepler's  

%           equation', Celestial Mechanics, Vol. 38, pp. 307-334.  

%    [3] Deakin, R.E., (2017), 'Solutions of Kepler's Equation', Private Notes,  

%           December, 2017. 
%-------------------------------------------------------------------------- 

 

% Compute the initial value of E 

E = M + e*(sin(M)/(1-sin(M+e)+sin(M)));  % eq. (5) of ref [1] 

 

% set starting values for corrn and count and the tolerance 
corrn = 1; 
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count = 0; 

tol = 1e-15; 

 

% Newton-Raphson iteration 

while (abs(corrn) > tol) 

  F  = E - e*sin(E) - M;        % function F(M) = E - e*sin(E) - M = 0 
  dF = 1.0 - e*cos(E);          % derivative of F(M) 

  if(abs(dF) < tol) 

    fprintf('\n*** derivative 1 - e*cos(E) = 0 *** \n\n'); 

    break; 

  endif 
  corrn = F/dF; 

  E = E - corrn; 

  count = count+1; 

  if(count>50) 

    fprintf('\n*** no convergence after 50 iterations ***\n\n'); 

    break; 
  endif  

end 

 

 

Matlab function Kepler_Bisection.m 

function [E,count] = Kepler_Bisection(e,M) 

%  

% Kepler_Bisection is a function that solves Kepler's equation  

% M = E - e*sin(E) for E 

% where M = mean anomaly, E = eccentric anomaly and e = orbit eccentricity 

% count is the n umber of iterations 
% 

% example:  >> format long g 

%           >> d2r = 180/pi; 

%           >> M = 5/d2r; 

%           >> e = 0.1;  
%           >> [E,count] = Kepler_Bisection(e,M); 

%           >> E           

%           E = 0.0969458710759658      % radians 

%           >> count 

%           count = 46                  % number of iterations 

 
%-------------------------------------------------------------------------- 

% Function:  Kepler_Bisection 

% 

% Usage:     [E,count] = Kepler_Bisection(e,M); 

% 
% Author:    R.E.Deakin,  

%            1/443 Station Street, 

%            BONBEACH, VIC 3196, AUSTRALIA. 

%            email: randm.deakin@gmail.com 

%            Version  1.0   01 December 2017 

% 
% Functions required:   

%    None 

%         

% Purpose:    

%    Solution of Kepler's equation M = E - e*sin(E) for E  
%    where M = mean anomaly, E = eccentric anomaly and e = orbit eccentricity 

% 

% Variables: 

%    count   - number of iterations 

%    d       - length of interval 

%    F       - F = sign(M)  F = -1 if M < 0; F = 1 if M > 0; F = 0 if M = 0 
%    e       - orbital eccentricity 

%    E       - eccentric anomaly (radians) 

%    M       - mean anomaly (radians) 
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%    M_new   - new value of M 

%    tol     - tolerance (a small value) 

%    twopi   - 2*pi 

% 

% Remarks:  

%    This function uses a Bisection iterative scheme to solve Kepler's equation  
%    for the eccentric anomaly E. 

%    The (unknown) eccentric anomaly is bounded M <= E <= (M+e) and the initial 

%    value for the iteration scheme is M+(e/2) and the initial interval width is 

%    d = e.   

% 
% References: 

%    [1] Meeus, J., (1991), 'Astronomical Algorithms', Willmann-Bell, Inc.,  

%           Richmond, Virginia, USA. 

%    [2] Deakin, R.E., (2017), 'Solutions of Kepler's Equation', Private Notes,  

%           December, 2017. 

%-------------------------------------------------------------------------- 
 

twopi = 2.0*pi; 

 

% Reduce M to a value in the range -twopi < M < twopi 

F = sign(M); 
M = abs(M)/twopi; 

M = (M-fix(M))*twopi*F; 

% Make M a value in the range  0 < M < twopi 

if M < 0 

  M = M + twopi; 

endif 
% determine the sign of reduced M 

F = 1; 

if M > pi 

  M = twopi - M; 

  F = -1; 
endif 

% set starting values for the iterative process 

% E is bounded such that M <= E <= (M+e) so the mid-point is M+(e/2).  This is  

% the initial value for E. 

E = M+(e/2); 

d = e/2; 
% set the tolerance and iteration count 

tol = 1.0E-15; 

count = 0; 

while (d > tol) 

  M_new = E - e*sin(E); 
  E     = E + sign(M-M_new)*d; 

  d = d/2; 

  count = count+1; 

  if(count > 60) 

   fprintf('\n*** no convergence after 60 iterations ***'); 

   break; 
  endif  

end 

E = F*E; 
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