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INTRODUCTION
The aim of this paper is to clarify some confusing
nomenclature of some statistical terms frequently used in the
surveying literature.  These terms are Standard Deviation and
Variance, Root Mean Square (RMS), Mean Square Error and
Standard Error.

Much confusion arises from a lack of appreciation of the
differences between population values and estimates of these
population values based on samples.  Moreover, there is
confusion as to how the statistical concept of unbiasedness
when associated with the usual divisor of n-1 in the
definition of the sample variance leads to a biased estimate of
population standard deviation.

The results are not new and can be found in any elementary
textbook (or rather any collection of several elementary
textbooks), but we demonstrate from examples drawn from
the surveying literature that the confusion is definitely real.

POPULATION QUANTITIES AND
MATHEMATICAL EXPECTATION

Population is a potential set of quantities that we want to
make inferences about based on a sample from that
population.  Consider a finite population, such as the
examination marks mi  of a group of N students in a single

subject.  In this case calculating statistics presents no
problems since we have complete information about the

population.  The mean m, variance s2 and standard
deviation s  of the finite population  are,
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Note that the variance s2 is the average squared difference
of a member from the population mean m.

For large finite populations (such as all students in a country),
we may wish to estimate the population average based on the
sample average with some idea of the accuracy of estimation.

Now consider surveying measurements, drawn from infinite
populations with the attendant difficulties of estimation since
population averages can never be known.  To deal with this,
probability density functions have been introduced to model
infinite populations.  In surveying, Normal (Gaussian)
probability density functions are the usual model.
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A probability density function is a non-negative function
where the area under the curve is one.  For f x( ) ³0 and

f x dx( ) =
-¥

+¥z 1 the values of f x( )  are not probabilities.

The probability a member of the population lies in the

interval a to b is f x dx
a

b
( )z .  The population mean m is

defined as (Kreyszig 1970, p.77)

m =
-¥

+¥z x f x dx( )    (4)

where f x( )  replaces 1

N
 and the integral replaces the

summation in (1).

By analogy with (2), the population variance s
2 is defined as

the mean squared difference from m (Kreyszig 1970, p.80)

s m
2 2
= -

-¥

+¥z x f x dxa f ( )    (5)

where f x( )  replaces 1

N
 and the integral replaces the

summation in (2).  Similarly to (3), the population standard
deviation s  is defined as

s m= -
-¥

+¥z x f x dxa f2 ( )
   (6)

For the family of Normal probability density functions
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d2 and the standard deviation s  is d.  This explains the usual
presentation in statistics texts of the family of Normal
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If we denote a potential member of the infinite population as
X, another name for the population mean m is the
expectation of X and is usually written as E Xk p.

m =E Xk p    (7)

We can consider more general expectations E g Xa fl q where

(Kreyszig 1970, p.83)

E g X g x f x dxa fl q a f=
-¥

+¥z ( )
   (8)

In other words g x f xa f ( ) is substituted for x f x( )  in the
right hand side of (4).  In statistics texts X is called a random
variable.  Hence, using the notation of expectation, the

population variance s2 is

s m m
2 2 2
= - = -

-¥

+¥z x f x dx E Xa f a fo t( )
   (9)

ESTIMATES OF POPULATION QUANTITIES
AND THE IDEAS OF UNBIASEDNESS
AND DEGREES OF FREEDOM

Suppose that we have a sample of n potential members of a
Normal population X X Xn1 2, ,L .  Throughout, we will

assume that these members will be obtained independently of
one another.  Furthermore, we have a rule for estimating one

of the three population quantities m, s2 or s , which we will
denote generically as k .  We write this rule as,

T h X X Xn= 1 2, ,Lb g  (10)

Then T is also a random variable with mean mT E T= k p and

variance sT E T E T2 2
= - k pb g{ } .  An overall measure of the

accuracy of T is its mean square error m E T2 2
= -ka fn s.

It turns out that (see Appendix)

m E T E T E T E T2 2 2 2
= − = − + −κ κb go t l qc h{ } l qc h

(11a)
This is the equation given by Gauss (1821-28, p. 11) for what
he termed m the mean error or mean error to be feared.

The term k - E Tk p in (11a) is the difference between the

population quantity k  and the average value of the estimating
rule T and is termed the bias of T.  Hence, (11a) can be
expressed in words as

mean square error =  variance +  bias2a f       (11b)

When the bias is zero, T is said to be unbiased and mean
square error equals variance.

The usual rule for estimating m is the sample mean X ,

T X
n

Xi
i

n

= = å
1

 (12)

The usual rule for estimating s2 is the sample variance s2,

T s
n

X Xi
i

n

= =
-

-å2 21
1
c h  (13)

The usual rule for estimating s  is the sample standard

deviation s, T s
n

X Xi
i

n

= =
-

-å
1

1

2c h  (14)

Other rules are possible; e.g. we could use as a rule for

estimating s2, T e
n

X Xi
i

n

= = -å2 21 c h  (15)

It was Sir Ronald Aylmer Fisher who demonstrated that s2

should be preferred to e2  for estimating s2 (Box 1978, pp.

72-3), and this lead him to the idea of n-1a f degrees of

freedom for estimating s2 in a sample of n independent
observations.
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A simple illustration may explain the importance of the
divisor n-1 rather than n.  Consider a population of N =1
only, called m1.  By definition, the population mean is just

m1 [see (1)], and by (2) and (3) s
2 and s  are both zero since

there is no variation in the population.  However, if we have a
sample of size one, from an infinite population i.e. n=1, we
must use this single observation to estimate m.  Clearly, we
have no further information in this sample to estimate
variation in the population.  That is we have used all our

degrees of freedom to estimate m, hence, our estimate of s2

(or s ) must be undefined.  However, if we use e2  in (15) our

estimate is zero but if we use s2 in (13) the answer is
undefined (division by zero!) as we should expect.  See
Kendall and Buckland (1971) for an excellent discussion of
the concept of degrees of freedom.

It can be shown that for the rule T X= , T is unbiased for m

and its variance is s
2

n
 (Kreyszig 1970, p. 175), hence the

standard deviation of X  is 
s

n
 and is referred to as the

standard error of X .

The usual rule for estimating the standard error of X  is,

standard error=
s

n
 (16)

This formula shows why, intuitively, we think that the larger
the sample size the more precise our determinations are.  A
simple way to remember this is to note that to double the
precision of measurement we must quadruple the number of
measurements taken.

It also can be shown that s2 is an unbiased estimator of s2

but that s is a biased estimator of s .  This was known as
early as 1920 by Fisher (1920, p. 760), long before the
concept of unbiasedness was formally introduced as a term in
theoretical statistics.  Referring to the formulae above, the
action of “taking a square root” changes the property of
unbiasedness.  This is more an accident of mathematics rather
than a cause of faulty estimation but it is not well appreciated
in general.  This result could in fact be used as an argument
for using biased estimators.  However, it can be shown that

the appropriate divisor is cn for unbiased estimation of s
giving
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and G xa f is a gamma function (Spiegel 1968).  A proof of
this equation is given in the Appendix and it is interesting to

note that cn  is undefined when n=1 thus s* is also

undefined for a sample of one.  Values of cn are given in
Table 1.

n

n

cn

2 3 4 5 10 15 20 30 90

1 1 2 3 4 9 14 19 29 89

0 64 157 2 55 3 53 8 51 1351 1851 2850 88 50

-

. . . . . . . . .

Table 1.  Values of the divisor cn for unbiased
estimation of s

So far, the emphasis has been on defining rules for estimating
population quantities.  When we substitute measured values
into these rules for estimators, we obtain a single number
called an estimate.  We are interested in three distinct
definitions for the population quantities.  For example, the
mean can have three different connotations.  The first is the
theoretical definition of m given by (4); the second is the rule
we apply to estimate m given by (12).  The third is the
number, or estimate, we obtain when we substitute a
particular sample in that rule.  This distinction should be
borne in mind when using the terms mean and average to
describe the same quantity or process.  The same subtle
differences apply to the usage of standard deviation and mean
square error.

SOME EXAMPLES FROM SURVEYING
LITERATURE

Confusion of terminology and confusion of useage appear
quite frequently in surveying literature some examples
follow:

[1] STANDARD ERROR.  The Geodetic Glossary
(NGS 1986, p.77) says:

“error, standard  Equivalent, for the most part to
standard deviation.  However, standard error is also used
to mean a number of things such as the standard deviation
of the mean and the standard deviation calculated from
large samples.”

It is evident from the foregoing section that standard error
is in no way equivalent to standard deviation in any sense.
We have shown that standard error has the population

sense of 
s

n
 which is the standard deviation of the rule
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X  for estimating m.  If we wished to estimate 
s

n

(standard error) we would use the rule 
s

n
 and would

obtain a single number for any particular sample, which
we could also call standard error.  The importance of
standard error is in finding a confidence interval.

[2] ROOT MEAN SQUARE (RMS). The Geodetic
Glossary (NGS 1986, p.77) says:

“error, root-mean-square  A quantity measuring
deviation of a random variable from some standard or
accepted value; its value is determined by

s x x Nn n= -åb g2

where xnl q is the set of N random variables, and xnl q
the corresponding set of accepted values.”

This at first glance looks like the rule s above.  Confusion

springs from the term xnl q since x  is almost universally

accepted as a mean value.  In fact in this definition, it
refers to a set of accepted values and the terms within the
summation are in fact differences.  The equation would be
better expressed as

RMS= -å
1 2

n
x ai i

i

n

b g  (19)

where ai  refers to accepted value.  This is in fact how
RMS is used in geoid modelling where the accepted value
is often zero (Featherstone et al 1997, Table 1).  When the
accepted value in any sample is a (a constant) and the
mean of the sample is x , then (19) becomes (see
Appendix)

RMSa f b g a f2 2 21
= -
R
S
T

U
V
W
+ -ån

x x x ai
i

n
(20a)

or in words

RMS estimate of variance + estimate of biasa f a f2 2
=

           (20b)
and this is the sample analogue of (11b) above.

To illustrate these three formulae the first row of Table 1
in Featherstone et al has a mean of 1.237, a standard
deviation of 2.616 and rms of 2.894 based on a sample of
59.  The accepted, or target value is zero.  In the right-
hand-side of (20a)

x a x- = - = =a f a f2 2 20 1237 15302. .
and

1 1 58

59
2 616 6 7275

2 2 2

n
x x

n

n
si

i

n

- =
-

= =åb g . .

The left-hand-side of (20a) is 2 894 8 37522. .=  which is

actually 1237 2 6162 2. .+ .  This means that their column,
headed st.d, does not correspond to the usual definition of
standard deviation but rather to our e, given by (15).
Clearly, the difference is of no practical importance to the
interpretation of their results.

[3] AN EXAMPLE OF CLEARLY DEFINED ROOT
MEAN SQUARE (RMS)
Rapp (1997) in a paper on geoid modelling presents data
in Table 2.  There are two columns labelled RMS, in each
case relating to differences.  It is clear that our formula

(19) is used with the accepted values ai  equal to zero.
Another column in the table gives the means of the
difference between the two models.  The squares of these
means correspond to the bias-squared term in our
equations (20a) and (20b).

[4] EXAMPLES OF POORLY DEFINED ROOT MEAN
SQUARE (RMS)
Grejner-Brzezinska et al (1998) in a paper on GPS error
modelling states:

“Examples of estimated standard deviations (Root-
Mean-Square, RMS) for position, velocity, and
orientation are plotted in Figs. 13-15.”

Clearly, estimated standard deviations are meant and there
are no accepted values present.

Langley (1991) in a paper on the mathematics of GPS
states:

“We can determine s  experimentally by making a
large number of observations and calculating the sum
of the squares of the errors in the observations divided
by one less than the number of observations made.  It
is this method of computation that gives s  its alias of
root-mean-square error (rms) error.”

This corresponds to our formula (19) with accepted

values ai  all equal to zero and the divisor n-1 instead of
n.  It will only be a good estimator of s  when the bias is
zero.  He has used a hybrid of s given in (14) and RMS
given in (20a) and (20b).

[5] SCIENTIFIC CALCULATOR FUNCTION KEYS.
Many calculators, e.g. the Hewlett-Packard HP32SII, have
two function keys for calculating standard deviation,
labelled s and s .  The s  key corresponds to the s  of (3)
and is therefore applicable where we have complete
information on a finite population.  Since it is rare that the
entire population could be sampled in any surveying
exercise, this value would be inappropriate.  The other
function key s corresponds to the s of (14), which is an
estimator of s  in an infinite population defined by (6).

The difference in the two values that may arise is simply
due to the divisor, either n or n-1.
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Clearly, this difference will only be important in small
samples.  Traditionally a sample size n£30 is regarded
as small.

CONCLUSION
We have highlighted the distinction between population
values and sample values of statistical parameters and re-
stated well-known rules for the calculation of means and
variances or their estimators.  In the process, we have
demonstrated that statisticians regularly use a biased
estimator of s .

Fisher (1922, p. 366) in his summary states:
“During the rapid development of practical statistics in
the last few decades, the theoretical foundations of the
subject have been involved in great obscurity.  Adequate
distinction has seldom been drawn between the sample
recorded and the hypothetical population from which it
has been drawn.”

We have shown that this lack of distinction between
population values and sample values remains a source of
confusion.

Our paper should also clarify the distinction between Root
Mean Square (RMS) and standard deviation.  RMS values
include components of variance and bias and we have
demonstrated that the concept of RMS has a population
definition and a corresponding estimate in a sample from that
population.  Using sample RMS and means can indicate bias
in mathematical models as is clearly demonstrated in the
papers by Rapp (1997) and Featherstone et al (1997).

APPENDIX

Proof that mean square error variance + bias= a f2

Mean square error is defined as the average squared
difference of a member T of a random population from some
population quantity k .  Using the notation of expectation we
may write

mean square error= -E T ka fn s2 (A1)

We may write
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Proof that s* is an unbiased estimator of the
population standard deviation s .

For n  independent normal random variables X X X1 2, ,L n

each with with mean 0 and variance 1 the sum of the squares,

usually denoted by c
n

2  (chi-squared), has a probability
density function
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where f xa f = 0 when x<0 and n  is a positive integer
known as the degrees of freedom.

If X X Xn1 2, ,L  are independent normal random variables

with mean m and variance s2 then (Kreyszig 1970, p. 181)
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where n-1 has replaced n  in (A3).  Now from (A4) we may
write s equal to some function of T or

s g T
n

n s
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-

-a f a fs
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and by the general definition of expectation, we may write
the expected value of s as
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but n s
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 which when substituted into (A6) with

(A5) simplifies to
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and the integral in (A7) evaluates to unity.  This simplifies to
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Since k is a constant, the rules of expectation can be used to
give

E s E
k

s* = RST
UVW
=n s 1
s

and s* is an unbiased estimator of the population standard
deviation s .

Proof that RMS estimate of variance + biasa f a f2 2
=  when

accepted value ai  is a constant

From (19) with a ai =  (a constant) we have
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