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Introduction 

The logistic function or logistic curve is a common S-shape curve (sigmoid curve) with equation: 

 ( ) ( )1
rt C

K
P t

e
− +

=
+

  (1) 

where ( )P t  is the population P at time t, K is the carrying capacity and the curve’s maximum value, 

2.718281828e = … is a mathematical constant and the base of the natural logarithms, r is the growth 

parameter (steepness of the curve), 0

0

ln
P

C
K P

  =    − 
 is a constant and 0P  is the population at 0t = . 

 

Figure 1.  Logistic curve: ( ) ( )1
rt C

K
P t

e
− +

=
+

, K = 100, 0 20P = , 0.138629436r = . 

For real values of t in the range t−∞ < < +∞ , the curve has two asymptotes, ( )  as P t K t= → +∞  and 

( ) 0 as P t t= → −∞  and is symmetric about the curve’s midpoint at 0

C
t t

r
= = −  where ( ) 1

0 2
P t K= . 

There are various alternative expressions for the logistic curve and the derivation of (1) – outlined below – is 

a modern interpretation of the derivation by Pierre Verhulst in the 19th century who named the curve la 

courbe logistique [the logistic curve]. 

The properties of the logistic curve are derived and a general equation developed with a special case, the 

sigmoid curve.  This is followed by the derivation of the logistic distribution. 

Logistic regression is discussed and the method of least squares is employed to give a solution for the 

parameters of a logistic curve that is a best fit of the outcomes of binary dependent variables.  Two examples 

of this technique are shown. 

Finally, the connection between a sport rating system (Elo 1978) and the logistic curve is shown. 

References for further reading and two appendices are included. 
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A Brief History of the Logistic Function 

The development of the logistic function is due to Pierre François Verhulst (1804–1849) and his work on 

population growth in the 19th century.  In an 1838 paper titled Notice sur loi que la population suit dans son 

accroissement [A Note on the Law of Population Growth], Verhulst proposed a differential equation that 

modelled bounded population growth and solved this equation to obtain the population function.  He then 

compared actual populations with his modelled values for France (1817-1831), Belgium (1815-1833), Essex, 

England (1811-1831) and Russia (1796-1827).  In a subsequent 1844 paper titled Recherches mathématiques 

sur la loi d’accroissement de la population [Mathematical research on the Law of Population Growth] he 

named the solution to the equation he had proposed in his 1838 paper la courbe logistique [the logistic curve]. 

Verhulst’s original works on population modelling were criticised by others (and even Verhulst in an 1847 

publication) and his work was largely ignored, but in the early 20th century the logistic function was 

‘rediscovered’ and Verhulst acknowledged as its inventor.  Since then the logistic function (and logistic 

growth) is a simple and effective model of population growth that is applied in many diverse fields of 

scientific study (Cramer 2002, O’Connor & Robertson 2014, Bacaër 2011). 

Derivation of the Logistic Function 

[The notation of Bacaër (2011) is used in this derivation.] 

Verhulst proposed the following (somewhat arbitrary) differential equation for the population ( )P t  at time t 

 1
dP P

rP
dt K

 = −    
 (2) 

where ( )P t  is the population P at time t, K is the carrying capacity and r is the growth parameter. 

The differential equation (2) for the population P is solved by integration where 

 

1

dP
r dt

P
P

K

=
  −    

∫ ∫   (3) 

In order to evaluate the left-hand-side we write 

 
( )2

1

1

K K

P P K PKP P
P

K

= =
  −− −    

 

and decomposing into partial fractions gives 

 
( )

( )
( )

A K P BPK A B

P K P P K P P K P

− +
= + =

− − −
  

from which the relation ( )A K P BP K− + =  is obtained which must hold for all values of K and P.  

Choosing particular values for P yields A and B as follows: (i) when 0P = , AK K=  and 1A = ; (ii) when 

P K= , BK K=  and 1B = .  Using this result gives 

 
( )

1 1 1

1

K

P P K P P K P
P

K

= = +
  − − −    

  

and (3) becomes 

 
1 1
dP dP r dt

P K P
+ =

−∫ ∫ ∫   (4) 
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Using the substitution u K P= −  with du dP= −  in the second integral gives 

 
1 1
dP du r dt

P u
− =∫ ∫ ∫   

and using the integral results 
1

lndx x C
x

= +∫  and adx ax C= +∫  where the C’s are constants of 

integration gives 

 ( )ln lnP K P rt C− − = +  (5) 

where ln denotes the natural logarithm and ln logex x≡  and 2.718281828e = … , and the constants of 

integration have been combined and added to the right-hand-side. 

Re-writing (5) as 

 ( ) ( )ln lnK P P rt C− − = − +  

and using the laws of logarithms: log log log
a a a

M
M N

N
= −  gives  

 ( )ln
K P

rt C
P

−
= − +  

Now, raising both sides to the base e and noting that lnxe x=  gives 

 ( )rt CK P
e

P

− +−
=  (6) 

that can be re-arranged as 

 ( ) ( )1
rt C

K
P P t

e
− +

= =
+

  (7) 

An equation for the constant C can be found when 0t =  in which case ( )0 0
1 C

K
P P

e−
= =

+
 and a re-

arrangement gives  

 0 0

0 0

  and  C CK P P
e e

P K P

− −
= =

−
 (8) 

Taking natural logarithms of both sides of the second member of (8) and noting ln xe x=  gives 

 0

0

ln
P

C
K P

  =    − 
 (9) 

Properties of the Logistic Curve 

Asymptotes 

The curve described by (7) is a symmetric S shape (see Figure 1) with two asymptotes, the upper one being 

the line ( )  as P t K t= → +∞  and the lower one being the line ( ) 0 as P t t= → −∞ .   

Midpoint 

The midpoint of the curve is when ( ) 1
2

P t K=  and this occurs when the exponent ( )rt C+  in (7) is equal 

to zero and 
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 0

C
t t

r
= = −  (10) 

Thus the midpoint of the logistic curve is at ( )1
0 2
,t K  

Symmetry 

The logistic curve is symmetric about the midpoint. 

This can be confirmed by writing the denominator of (7) as ( ) ( ) ( )01 1 1
r t C rrt C r t t

e e e
− +− + − −+ = + = +  

giving 

 ( ) ( )01
r t t

K
P P t

e
− −

= =
+

  (11) 

Now using (11) with 0d t t= −  a distance along the t-axis, the sum of the logistic function ( )P d  and its 

reflection about the vertical axis through 0t , ( )P d−  is 

 

( )
( ) ( )
( )( )

( )
( )

( )

1 1

1 1 11

2

2
2

2

rd rd

rd rd rd rd

rd rd

rd rdrd rd

rd rd

rd rd

K e K eK K

e e ee

K K e e

e e e

K e e

e e
K

−

− − − −

−

− +−

−

−

+ + +
+ =

+ + ++

+ +
=

+ + +
+ +

=
+ +

=

  

Thus the logistic function is symmetric about the midpoint ( )1
0 2
,t K  

Also, due to symmetry we may write 
( ) ( )0 01 1

r t t r t t

K K
K

e e
− − −

= −
+ +

 and (11) becomes 

 ( ) ( )01
r t t

K
P P t K

e
−

= = −
+

 (12) 

Inflexion point 

The midpoint is also the inflexion point of the logistic curve where the second derivative 
2

2
0

d P

dt
= .  This can 

be proved by the following 

First, to simplify the analysis write the denominator of (7) as ( )1 1
rt C rt Ce e e

− + − −+ = +  and using the first 

member of (8) we let  

 0

0

C K P
A e

P

− −
= =  (13) 

and (7) becomes 

 ( )
1 rt

K
P P t

Ae−
= =

+
  (14) 

Differentiating (14) with respect to t gives 

 ( ) ( )2
1 rt rtdP

K Ae Are
dt

−− −= − + −   
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and differentiating again gives 

 ( ) ( ) ( ) ( )
2 3 2 2

2

2
2 1 1rt rt rt rtd P
K Ae Are K Ae Ar e

dt

− −− − − −= + − − +   

Second, solving 
2

2
0

d P

dt
=  gives 

 

( ) ( ) ( ) ( )
( ) ( )
( ) ( )
( ) ( )

3 2 2
2

1 2

1

1

1

2 1 1 0

2 1 0

2 1 0

2 1 1

2 1

1

1

rt rt rt rt

rt rt rt

rt rt

rt rt

rt rt

rt

rt

K Ae Are K Ae Ar e

Ae Are rAre

Ae Are r

Ae Ae

Ae Ae

Ae

e A
A

− −− − − −

−− − −

−− −

−− −

− −

−

− −

+ − − + =

+ − =

+ − =

+ =

= +

=

= =

  

Taking logarithms of both sides and noting that log logp
a aM p M=  gives 

 
lnA

t
r

=   (15) 

Substituting (15) into (14) gives 

 
1

1
2ln ln 1ln

ln

1 11
1

A A A
r

r

A K K K K
P K

r Ae AAAe
Ae

−  − − −    

   = = = = =    + ++
+

 

Finally, using (9), (10) and (13) we obtain the relations 

 0

ln
ln    and   

A
A C t

r
= − =   (16) 

So, ( ) 1
0 2

lnA
P P t K

r

   = =   
 thus proving that the inflexion point is the midpoint ( )1

0 2
,t K . 

Verhulst’s equation for the logistic function 

In Verhulst’s 1838 paper he states the differential equation 

 ( )dp
mp p

dt
ϕ= −  (17) 

that links the rate of change of population p with respect to time t with mp and a function of p, ( )pϕ  where 

m is a constant.  He then supposes that ( ) 2p npϕ =  where n is another constant and then finds for the 

integral of (17) that 

 ( )1
ln ln constantt p m np

m
 = − − +   

On resolving (17) he gives the equation for the population p as 

 
mt

mt

mp e
p

np e m np

′
=

′ ′+ −
  (18) 
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where p ′  is the population at 0t = .  He then states that as t → ∞  the value of p corresponds with 

m
P

n
=  that he calls la limite supérieure de la population [the upper limit of the population]. 

The correspondence between variables in Verhulst’s 1838 paper and this paper are 

 Verhulst This paper 

 p P population 

 t t time 

 m r growth parameter 

 n no equivalent 

 p ′   0P   population at 0t =   

 
m

P
n

=   K upper limit of population 

Verhulst’s differential equation (17) can be written as 2 1
dp n

mp np mp p
dt m

 = − = −    
 that is equivalent to 

1
dP P

rP
dt K

 = −    
 that is our equation (2) and Verhulst’s logistic function (18) can be written as 

( )1 1

mt

mt

p e
p

n
p e

m

′
=

′+ −
 that is equivalent to (Bacaër 2011, eq. 6.2) 

 

( ) ( )
0 0

0 0 1
1 1

rt rt

rt
rt

P e KP e
P

P K P e
e

K

= =
+ −+ −

 (19) 

[This equation can be obtained from (14) with a bit of algebra] 

Verhulst’s method for estimating the parameters r and K 

In Verhulst’s 1844 paper he set out a method of estimating the parameters r and K from the population 

( )P t  in three different but equally spaced years; 0P  at 0t = , 1P  at 1t t=  and 2P  at 2 12t t t= = .  

Verhulst’s method is as follows. 

Using (6) the relationship ( )rt C P
e

K P

+ =
−

 can be obtained and taking logarithms of both sides gives 

ln
P

rt C
K P

 + =    −
 and using this equations at times 1 2 10,  and 2t t t t t t= = = =  gives 

 

0

0

1
1

1

2
1

2

ln

ln

2 ln

P
C

K P

P
rt C

K P

P
rt C

K P

  =    − 
  + =    − 
  + =    − 

  

and from these, the following can be obtained 
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( )

( )

( )

1

1

0

0

1

1

2 2

2

i

ii

iii

C

rt C

rt C

P
e

K P

P
e e

K P

P
e e

K P

=
−

=
−

=
−

  

Dividing (ii) by (i) and (iii) by (ii) gives two equations where Ce  has been eliminated and the left-hand-sides 

are identical 

 

( )
( )

( )

( )
( )

( )

1

1

1 0

0 1

2 1

1 2

iv

v

rt

rt

P K P
e

P K P

P K P
e

P K P

−
=

−
−

=
−

  

Equating (iv) and (v) gives 
( )
( )

( )
( )

1 0 2 1

0 1 1 2

P K P P K P

P K P P K P

− −
=

− −
 and cross-multiplying and gathering terms gives 

 ( ) ( )2 2 2 2
1 0 2 0 1 2 1 0 1 22 0P P P K P P P P P PP K− − + − =   

Dividing both sides by K and rearranging gives (Bacaër 2011, p.38) 

 
( )1 0 1 2 1 0 2

2
1 0 2

2P P P P P P P
K

P P P

+ −
=

−
  (20) 

noting the conditions 2
1 0 2 0 1 1 2 0 2 and 2P P P P P PP P P> + >  for finite and positive K. 

Once K is known, r can be obtained from (iv) as 

 
( )
( )

01 0

1 0 1 1 1

1 11 1
ln ln

1 1

P KP K P
r

t P K P t P K

   −−   = =     − −   
  (21) 

Logistic Function – Various forms 

Various forms of the logistic function have been developed so far in this paper – see (7), (11), (12), (14) and 

(19) 

 ( ) ( ) ( ) ( )
( )0 0

0

011 1 1 1 1

rt

rt C r t t r t t rt
rt

P eK K K K
P t K

PAee e e e
K

− + − − − −
= = = − = =

++ + + + −

  (22) 

where ( ) 0 0
0 0

0 0

ln
0 , ln , , ,

P K P C A
P P C A t

K P P r r

  − = = = = − =   − 
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Figure 2.  Logistic curve: ( ) ( )01
r t t

K
P t

e
− −

=
+

, K = 100, 0 10t = , 0.138629436r =  

Logistic Function – A General Form 

Considering (12), a general form for the logistic function can be given as 

 
( )0

1 2
2

1
k x x

A A
y A

e
−

−
= +

+
  (23) 

 

Figure 3.  Logistic curve: 
( )0

1 2
2

1
k x x

A A
y A

e
−

−
= +

+
, 1 2 020, 120, 0.138629436, 60A A k x= = = =  

1y A=  is the lower asymptote of the curve given by (23) when x → −∞  and 2y A=  is the upper 

asymptote of the curve when x → +∞ .  The midpoint of the curve is ( )1
0 1 22
,x A A +    when 0x x=  then 

( )0 0 1
k x x

e e
− = =  and ( )1

1 22
y A A= +   
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Sigmoid Function 

The sigmoid function is a special case of the logistic function.  The sigmoid curve is a symmetric S-shape 

with a midpoint at ( )1
2

0,  and asymptotes 0 as y x= → −∞  and 1 as y x= → +∞ . 

 
1

1 1

x

x x

e
y

e e−
= =

+ +
 (24) 

 

Figure 4.  Sigmoid curve: 
1

1 x
y

e−
=

+
 

The derivative of the sigmoid function, denoted by 
dy

y
dx

′ =  is 

 ( ) ( ) ( )
( )

1 2

2
1 1 1

1

x
x x x

x

d e
y e e e

dx
e

−− −− − −

−

 ′ = + = − + − =  
+

  (25) 

and from (24) 
1x y

e
y

− −
=  and 

1
1 xe

y

−+ =  giving 

 ( )1y y y′ = −   (26) 

The 2nd derivative of the sigmoid function, denoted by 
2

2

d y d dy
y

dx dxdx

 ′′ = =    
 is 

 

( )

( ) ( ) ( ) ( )

( )
( )

2

3 2

2

1

2 1 1

2
1

11

1 2

x x

x x x x x

x x

x
x

d
y e e

dx

e e e e e

e e

ee

y y

−− −

− −− − − − −

− −

−−

 ′′ = +   
 = − + − + + −  

  =  −   ++
′= −   (27) 

And as before, the inflexion point of the sigmoid curve will be at the point where 0y ′′ =  and using (27) 

0y ′′ =  when 1
2

y =  which occurs at the midpoint ( )1
2

0,  
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The Logistic Distribution 

This section assumes some knowledge of statistical concepts and a brief outline of some of these is given in 

Appendix A. 

Suppose X is a continuous random variable and X x=  denotes x as a possible real value of X. 

The probability density function ( )Xf x  has the following properties 

 1. ( ) 0  for any value of Xf x x≥   (28) 

 2. ( ) 1Xf x dx

+∞

−∞

=∫    (29) 

The probability that a random variable X lies between any two values x a=  and x b=  is the area under 

the density curve between those two values and is found by methods of integral calculus 

 ( ) ( )
b

X

a

P a X b f x dx< < = ∫   (30) 

The cumulative distribution function ( )XF x has the following properties 

 1. ( ) ( ) ( )
x

X XF x P X x f x dx

−∞

= ≤ = ∫  (31) 

 2. ( ) ( )X X

d
F x f x

dx
=  (32) 

In many scientific analyses of experimental data it is assumed the data are members of a probability 

distribution with a density function having a smooth bell-shaped curve with tails that approach the 

asymptote ( ) 0Xf x =  as x → ±∞  and a cumulative distribution function that is a symmetric S-shape with 

asymptotes ( ) ( )0 and 1X XF x F x= =  as  and x x→ −∞ → +∞  respectively. 

As an example, Appendix A shows the probability density curve and the cumulative distribution curve of the 

familiar Normal distribution with probability density function ( )
2

1

21

2

x

Xf x e

µ

σ

σ π

 −  −    =  where the infinite 

population has mean µ , variance 2σ  and standard deviation 2σ σ= + . 

Now suppose that our experimental data has a Logistic distribution and the cumulative distribution function 

is the logistic function with location parameter a and shape parameter b [see (23) with 1 0A = , 2 1A = , 

0x a=  and 1k b= ] 

 ( ) 1

1

X x a

b

F x

e

 −  −   

=

+

  (33) 

The probability density function ( )Xf x  is given by (32) as 

 ( )
1

1
1

1

x a

b
X x a

b

d d
f x e

dx dx
e

− −  −   
 −  −   

           = = +             + 
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Let 
x a

u
b

 − = −    
 and with 

1du

dx b
= −  we write ( )

1

1
1 1

x a

ubd d du
e e

dx du dx

− −  − −  

      + = +           

 and using the 

rule x xd
e e

dx
=  the probability density function of the Logistic distribution is 

 ( )
2

1

x a

b

X
x a

b

e
f x

b e

 −  −   

 −  −   

=
   +    

  (34) 

Mean and Variance of the Logistic Distribution 

The mean Xµ  and variance 2
Xσ  are special mathematical expectations (see Appendix A) and 

 { } ( )X XE X x f x dxµ

+∞

−∞

= = ∫   (35) 

 ( ){ } ( ) ( )2 22
X X x XE X x f x dxσ µ µ

+∞

−∞

= − = −∫   (36) 

Using the rules for expectations a more useful expression for the variance can be developed as 

 

( ){ } ( ){ }
{ } { } ( ) { } ( )
{ } ( ) { } { }( )

2 22 2

2 22 2

2 22 2

2

2 2

X X X X

X X X X X

X

E X E X X

E X E X E X

E X E X E X

σ µ µ µ

µ µ µ µ µ

µ

= − = − +

= − + = − +

= − = −   (37) 

The following derivations are due to Max Hunter (2018), my mentor in all things mathematical especially the 

lovely integral solutions that follow1. 

The mean 

Using (34) and (35) the mean can be written as 

 ( )
2

1

x a

b

X X
x a

b

x e
x f x dx dx

b e

µ

 −  −  +∞ +∞  

 − −∞ −∞ −   

= =
   +    

∫ ∫   (38) 

With the substitution 
x a

t
b

−
=  then x tb a= +  and dx bdt= , and with t = ∞  when x = ∞  then (38) 

becomes 

                                            
1 Max Hunter is a retired mathematician from RMIT University, Melbourne Australia.  In an earlier version 

of this document I had resorted to the use of a divergent series in solving integrals for the mean and 

variance.  Max, on reading this, sent me a note suggesting I had set back mathematics and statistics about 

300 years!  But very kindly attached several elegant solutions that avoided the use of said series. 
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( )

( ) ( ) ( )2 2 2
1 1 1

t t t

X
t t t

tb a e te e
dt b dt a dt

e e e

µ

+∞ +∞ +∞− − −

− − −−∞ −∞ −∞

+
= = +

+ + +
∫ ∫ ∫   (39) 

Three results are useful in evaluating (39). 

First 

 

( ) ( ) ( ) ( )2 2 2 2 2 2 21 2 2 11 1

x x x x

x x x x x x x
x x

e e e e

e e e e e e ee e

−

− − − −
= = =

+ + + ++ +
  (40) 

Second 

 ( )
1 1
2 2

2

2 1

2

2
cosh   and  cosh

2 2 4

x xx x x xe e e e e e
x x

−− − + + + + = = =   
  

and with ( ) ( )2
21 1 2 2x x x x x x xe e e e e e e− − − −+ = + + = + +  then ( )

( )2
2 1

2

1
cosh

4

x xe e
x

−+
=  and 

 ( )
( )

21 1
4 2 2

sech

1

x

x

e
x

e

−

−
=

+
  (41) 

Third 

 ( )( ) ( )2 21 1 1 1
2 2 4 2

tanh sech   so  tanh sech
d du d

u u x x
dx dx dt

= =   (42) 

Now to evaluate (39) it is useful to note that 

( )2
0

1

t

t

te
dt

e

+∞ −

−−∞

=
+

∫  since the integrand ( )
( )21

t

t

te
f t

e

−

−
=

+
 is 

an odd function of t since ( ) ( )f t f t− = −  and the interval of integration is symmetric.  Hence the mean 

becomes 

 

( )21

t

X
t

e
a dt

e

µ

+∞ −

−−∞

=
+

∫   (43) 

Now, using (40), (41) and (42) 

 

( )
( ) ( )( ) ( ) ( )21 1 1 1 1 1 1

4 2 2 2 2 2 22
sech tanh tanh 1 1 1

1

t

t

e d
dt t dt t dt t

dt
e

+∞ +∞ +∞− +∞

−∞−−∞ −∞ −∞

   = = = = − − =    
+

∫ ∫ ∫   (44) 

and using this result in (43) gives the mean of the Logistic distribution as 

 X aµ =   (45) 
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The variance 

Using (34), (35) and (37) gives 

 

( ){ } { } { }( )

( ) ( )

2 22 2

22

2
2

2

1

X X

X X

x a

b

x a

b

E X E X E X

x f x dx

x e
dx a

b e

σ µ

µ

+∞

−∞
 −  − +∞   

 − −∞ −   

= − = −

= −

= −
   +    

∫

∫  (46) 

and similarly to the derivation of the mean, the substitution 
x a

t
b

−
=  gives x tb a= +  and dx bdt=  

giving (46) as 

 
( )

( )

( )

( )

2 22

2 2 2

2 2

2

1 1

tt

X
t t

tb abt a etb a e
dt a dt a

e e

σ

−+∞ +∞−

− −−∞ −∞

 + + +  = − = −
+ +

∫ ∫   

and 

 

( ) ( ) ( )

2

2 2 2 2

2 2 2
2

1 1 1

t t t

X
t t t

t e t e e
b dt ab dt a dt a

e e e

σ

+∞ +∞ +∞− − −

− − −−∞ −∞ −∞

= + + −
+ + +

∫ ∫ ∫   (47) 

Now the second integral of (47) equals zero, since the integrand is an odd function of t.  And, using (44), the 

third integral of (47) equals one giving the variance as 

 

( ) ( )

2 2

2 2 2

2 2
0

2

1 1

t t

X
t t

t e t e
b dt b dt

e e

σ

+∞ ∞− −

− −−∞

= =
+ +

∫ ∫   (48) 

since the function ( )
( )

2

2
1

t

t

t e
f t

e

−

−
=

+
 is symmetric about the ( )f t  axis. 

Now, using the series expression 
( )

2 3 4

2

1
1 2 3 4 5

1
x x x x

x

= − + − + −
+

�  

 

( )
( ) 12 3 4 5

2
1

2 3 4 5 1

1

x
nx x x x x nx

x n

e
e e e e e n e

e

∞− −− − − − − −

− =

= − + − + − = −
+

∑�   (49) 

and using (49) in (48) gives 

 ( ) ( )1 12 2 2 2 2

1 10 0

2 1 2 1
n nnt nt

X
n n

b t n e dt b n t e dtσ

∞ ∞∞ ∞
− −− −

= =

= − = −∑ ∑∫ ∫   

Using the standard integral result 2 2

2

2 2ax
ax e x

x e dx x
a a a

 = − +    ∫  gives 
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( )
( )

( )

( )

( )

12 2 2

2
1

0
0

12

2
1

12

3
1

12

2
1

2 2
2 1

2
2 1 0

2
2 1

1
4 1

nt
n

X
n

n

n

n

n

n

n

e t
b n t

n n n

e
b n

n n

b n
n

b
n

σ

∞
∞ −−

=

∞
−

=
∞

−

=
∞

−

=

    = − − +   − −  −   
   = − −     −  

= −

= −

∑

∑

∑

∑   (50) 

And 

 

( ) 1

2 2 2 2 2
1

2 2 2 2 2 2 2

2 2 2
1 1

2 2

2

1 1 1 1 1
1 1

2 3 4 5
1 1 1 1 1 1 1

1 2
2 3 4 5 2 4 6

1 2 1

2

6 12

12

n

n

n n

n

n n

π π

π

∞
−

=

∞ ∞

= =

− = − + − + −

 = + + + + + − + + +    

= −

= −

=

∑

∑ ∑

�

� �

  (51) 

[Note here Euler’s remarkable result: 
2

2
1

1

6n n

π
∞

=

=∑  (Euler 1784)] 

Hence, using (51) in (50) gives the variance of the Logistic distribution as 

 
2 2

2

3X

b π
σ =   (52) 

The standard deviation σ  (the positive square-root of the variance) and the shape parameter b are 

 
3

,
3

b
b

π σ
σ

π
= =   (53) 

If X is a random variable having a Logistic distribution with parameters µ  and σ  the usual statistical 

notation is ( ),X LOG µ σ∼  and the probability density function is 

 ( )
3

2

2

3

: , sech
3 4 3 2 3

1

x

X
x

e x
f x

e

π µ

σ

π µ

σ

π π π µ
µ σ

σσ σ

 −  −    

 −  −    

 − = =       +    

  (54) 

where µ−∞ < < ∞  and 0σ >  are parameters. 
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Figure 5.  Probability density curve: ( ): ,Xf x µ σ , 5µ =  and 
2

3

π
σ =  

The cumulative distribution function of the Logistic distribution is 

 ( ) 1 1
2 2

3

1
: , 1 tanh

3
1

X x

x
F x

e

π µ

σ

π µ
µ σ

σ −  −    

   −   = = +          
+

  (55) 

using ( )1

2 2

1
tanh  and 1 tanh

1

x x x

x x x x x

e e e
x x

e e e e e

−

− − −

−
= + = =

+ + +
  

 

Figure 6.  Cumulative distribution curve: ( ): ,XF x µ σ , 5µ =  and 
2

3

π
σ =  
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Logistic Regression 

Logistic regression was developed by statistician David Cox (Cox 1958) as a means of measuring the 

relationship between a binary dependent variable (yes or no, win or loss, 1 or 0, etc.) and one or more 

independent variables by estimating probabilities using a logistic function.  The key features of logistic 

regression are (i) the conditional distribution y | x is a Bernoulli distribution2 where y | x means y given x 

and (ii) the predicted values are probabilities and are therefore restricted to (0,1). 

The model for logistic regression is the function 

 
1

1 z
y

e−
=

+
  (56) 

where 0 1 1 2 2 n nz x x xβ β β β= + + + +� .  y is the predicted variable (probability), 1 2 3, , ,x x x …  are 

independent variables (parameters) and 0 1 2, , ,β β β … are coefficients. 

An expression for z may be obtained from (56) as follows 

 

1

1
1

1

1

z

z

z

z

y
e

y ye

y
e

y

y
e

y

−

−

−

=
+

+ =
−

=

=
−

  

Taking natural logarithms of both sides, noting that 0 1 1 2 2ln  and z
n ne z z x x xβ β β β= = + + + +�  gives 

 0 1 1 2 2 ln
1

n n

y
x x x

y
β β β β

 + + + + =    −
�  (57) 

This is a non-linear function relating probabilities y with independent variables x and coefficients β .   

To enable the determination of coefficients of variables given probabilities it would be desirable to have a 

linear function relating these quantities and this may be achieved with the aid of Taylor’s theorem, that for 

a single variable, can be expressed in the following form 

 

( ) ( ) ( )
( ) ( )

( )
( )

2 3
2 3

2 3

1
1

1

2! 3!

1 !

a a a
n

n

nn
a

x a x adf d f d f
f x f a x a

dx dx dx

x ad f
R

ndx

−−

−

− −
= + − + + +

−
+ +

−

�

  (58) 

where nR  is the remainder after n terms and lim 0n
n

R
→∞

=  for ( )f x  about x a=  and 
2

2
, , etc.

a a

df d f

dx dx
 are 

derivatives of the function ( )f x  evaluated at x a= . 

Using Taylor’s theorem on the right-hand-side of (57) and evaluating the derivatives about the point y p=  

gives 

                                            
2 The probability distribution (in honour of the Swiss mathematician Jacob Bernoulli) of a random variable 

which takes the value of 1 with probability p and the value of 0 with the probability q = 1 − p. 
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( )
( )

( )
( )

( )
( )

( )
( )

2
2 3

2 32 3

1 2 1 3 3 1
ln ln

1 1 1 2 1 3 1

1
ln  higher order terms

1 1

y p p p p
y p y p y p

y p p p p p p p

p
y p

p p p

    − − +   =  + − + − + − +       − − − − −
 =  + − +   − −

�

  (59) 

If p is a close approximation of y the term ( )y p−  is small, ( )2y p−  is very much smaller and ( )3y p−  

exceedingly small and we may neglect the higher order terms in (59) and write 

 
( )

ln ln
1 1 1

y p y p

y p p p

    −   ≅  +       − − −
  

Substituting this result into (57) gives 

 
( )0 1 1 2 2 ln

1 1
n n

p y p
x x x

p p p
β β β β

  −+ + + + ≅  +   − −
�   (60) 

Now, suppose that the approximation p of the probability y is obtained from  

 
0

1

1 z
p

e−
=

+
  (61) 

where 0 0 0 0 0
0 1 1 2 2 n nz x x xβ β β β= + + + +�  and 0 0 0

0 1 2, , ,β β β …  are approximate values of the coefficients 

0 1 2, , ,β β β ….  And bearing in mind (57) 

 0 0 0 0
0 1 1 2 2 ln

1
n n

p
x x x

p
β β β β

 + + + + =    −
�   (62) 

Now, using (62) in (60) and adding a residual v to the left-hand-side to account for small random errors in 

the variables x, an equation than can be used to determine the coefficients β  in an iterative scheme is 

 
( )

0 0 0 0
0 1 1 2 2 0 1 1 2 2

1
n n n n

y p
v x x x x x x

p p
β β β β β β β β

−
+ + + + + = + + + + +

−
� �   (63) 

To see how this may work, suppose as an example, 20 students sitting an examination with the observed 

outcomes 1 2 20, , ,y y y…  as pass or fail and recorded as 1 or 0.  These outcomes are thought to be related to a 

single variable x that is hours of study in preparation for the exam and the logistic function is assumed to be 

( )0 1

1

1
x

y
e
β β− +

=
+

.  The wish is to determine the two coefficients 0 1 and β β . 

Now assume approximate values 0 0
0 1,β β  for the coefficients and following (63) the observation equation for 

the kth outcome is 

 
( )

0 0
0 1 0 1

1
k k

k k k

k k

y p
v x x

p p
β β β β

−
+ + = + +

−
  (64) 

and for the 20 observed outcomes the following equations arise 
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( )

( )

( )

( )

0 0 1 1
1 0 1 1 0 1 1

1 1

0 0 2 2
2 0 1 2 0 1 2

2 2

0 0 3 3
3 0 1 3 0 1 3

3 3

0 0 20 20
20 0 1 20 0 1 20

20 20

1

1

1

1

y p
v x x

p p

y p
v x x

p p

y p
v x x

p p

y p
v x x

p p

β β β β

β β β β

β β β β

β β β β

−
+ + = + +

−
−

+ + = + +
−
−

+ + = + +
−

−
+ + = + +

−

�

  

These equations can be rearranged into matrix form 

 

( ) ( )( )
( ) ( )( )
( ) ( )( )

( ) ( )( )

1 1 1 1 1 1 1

2 2 2 2 2 2 20
0 0

3 3 3 3 3 3 30
1 1

20 20 20 20 20 20 20

1 1 1

1 1 1

1 1 1

1 1 1

v x x y p p p

v x x y p p p

v x x y p p p

v x x y p p p

β β

β β

       − −      
       − −                 − −+ = +                         
       − −            

� � � � � �











  (65) 

or 

 + =v Bx f  

1

2

3

20

v

v

v

v

 
 
 
 
 =  
 
 
 
  

v

�

 is a vector of residuals, 

1

2

3

20

1

1

1

1

x

x

x

x

 
 
 
 
 =  
 
 
 
  

B

� �

 is a coefficient matrix, 0

1

β

β

 
 =  
  

x  is the vector of coefficients 

and 

( ) ( )( )
( ) ( )( )
( ) ( )( )

( ) ( )( )

1 1 1 1 1

2 2 2 2 20
0

3 3 3 3 30
1

20 20 20 20 20

1 1

1 1

1 1

1 1

x y p p p

x y p p p

x y p p p

x y p p p

β

β

   − −   
   − −    
     − −= +    
        
   − −      

f

� � �

 is a vector of numeric terms that can be rearranged as  

 

( )
( )
( )

( )

( )( )
( )( )
( )( )

( )( )

1 1 1 1 1

2 2 2 2 20
0 0

3 3 3 3 30
1

20 20 20 20 20

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

x p y p p

x p y p p

x p y p p

x p y p p

β

β

     − −     
     − −      
       − −= − + = − + = +      
            
     − −          

f Bx c Ay d Ay

� � � �

  (66) 

where 
0
00
0
1

β

β

 
 =  
  

x  is the vector of approximate coefficients, 

( )
( )

( )

1

2

20

1 1

1 1

1 1

p

p

p

 − 
 − =  
 
 −  

c
�

 is a vector of numeric terms, 

1

2

20

y

y

y

 
 
 
 =  
 
 
  

y
�

 is the vector of measurements, 
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( )

( )

( )

1 1

2 2

20 20

1
0 0

1

1
0 0 0

1

0

1
0 0

1

p p

p p

p p

 
 
 − 
 
 
 −=  
 
 
 
 
 −  

A

�

� � �

�

 is a diagonal coefficient matrix and 

0= −d Bx c  is a vector of numeric terms. 

Applying propagation of variances3 to (66) gives 

 T
ff yy=V AV A   (67) 

where yyV  is a diagonal matrix containing the variances of the measurements y and ffV  is a diagonal matrix 

containing the variances of the numeric terms f in (66).  The y’s in the right-hand-side of (66) are random 

variables that follow a Bernoulli distribution and take the value of 1 with a probability of p and a value of 0 

with a probability of 1q p= − .  The variance of these variables is ( )1p p−  and the general form of ffV  is 

given by 

 

( )

( )

( )

1 1

2 2

20 20

1
0 0

1

1
0 0 0

1

0

1
0 0

1

ff

p p

p p

p p

 
 
 − 
 
 
 −=  
 
 
 
 
 −  

V

�

� � �

�

  (68) 

Now, with the general relationship that weights are inversely proportional to variances, i.e. 1−=W V  the 

general form of the weight matrix W of (65) is 

 

( )
( )

( )

1 1

2 2

20 20

1 0 0

0 1 0 0

0

0 0 1

p p

p p

p p

 − 
 − =  
 
 −  

W

�

� � �

�

  (69) 

The coefficients in the vector x in (65) can now be solved using least squares4 with the standard result 

(Mikhail 1976) 

 ( ) 1
T T

−
=x B WB B Wf   (70) 

and these are ‘updates’ of the approximate values in 0x .  This iterative process can be repeated until there is 

no appreciable change in the updated coefficients.  In the literature associated with logistic regression this 

iterative least squares process of determining the coefficients is known as Iteratively Reweighted Least 

Squares (IRLS). 

  

                                            
3 Propagation of Variances is a mathematical technique of estimating the variance of functions of random 

variables that have assumed (or known) variances.  See Appendix A. 
4 Least squares is a mathematical estimation process used to calculate the best estimate of quantities from 

overdetermined systems of equations.  It is commonly used to determine the line of best fit through a number 

of data points and this application is known as linear regression. 
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A MATLAB5 function logistic.m that solves for the parameters of a logistic regression has been developed by 

Professor Geoffrey J. Gordon in the Machine Learning Department at Carnegie Mellon University, USA and 

is available from his website: http://www.cs.cmu.edu/~ggordon/IRLS-example/.  This function will also run 

under GNU OCTAVE6.  A copy of the function and an example of its use is shown in Appendix B. 

The data for the example used for explanation (20 students studying for an examination) is from the 

Wikipedia page Logistic Regression (https://en.wikipedia.org/wiki/Logistic_regression) and is shown in the 

table below. 

 

 Hours Pass  Hours Pass  Hours Pass  Hours Pass 

1 0.50 0 6 1.75 0 11 2.75 1 16 4.25 1 

2 0.75 0 7 1.75 1 12 3.00 0 17 4.50 1 

3 1.00 0 8 2.00 0 13 3.25 1 18 4.75 1 

4 1.25 0 9 2.25 1 14 3.50 0 19 5.00 1 

5 1.50 0 10 2.50 0 15 4.00 1 20 5.5 1 

Table 1.  Number of hours each student spent studying, and whether they passed (1) of failed (0) 

20 students sit an examination with the observed outcomes 1 2 20, , ,y y y…  as pass or fail and recorded as 1 or 

0.  These outcomes are related to a single variable x that is hours of study in preparation for the exam and 

the logistic function is assumed to be 
( )0 1

1

1
x

y
e
β β− +

=
+

.  The coefficients 0 1 and β β  are computed using the 

MATLAB function logistic.m.  The input data and results are shown below 

>> a 
a = 
 
   1.00000   0.50000 
   1.00000   0.75000 
   1.00000   1.00000 
   1.00000   1.25000 
   1.00000   1.50000 
   1.00000   1.75000 
   1.00000   1.75000 
   1.00000   2.00000 
   1.00000   2.25000 
   1.00000   2.50000 
   1.00000   2.75000 
   1.00000   3.00000 
   1.00000   3.25000 
   1.00000   3.50000 
   1.00000   4.00000 
   1.00000   4.25000 
   1.00000   4.50000 
   1.00000   4.75000 
   1.00000   5.00000 
   1.00000   5.50000 
 
>> y' 
ans = 
 
   0   0   0   0   0   0   1   0   1   0   1   0   1   0   1   1   1   1   1   1 
  

                                            
5 MATLAB (matrix laboratory) is a numerical computing environment and programming language 

developed by MathWorks. 
6 GNU OCTAVE is free software featuring a high-level programming language, primarily intended for 

numerical computations that is mostly compatible with MATLAB.  It is part of the GNU Project and is free 

software under the terms of the GNU General Public License. 
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>> xhat = logistic(a, y, [], [], struct('verbose', 1)) 
  1: [ -2.61571 0.938375 ] 
  2: [ -3.66126 1.33855 ] 
  3: [ -4.03513 1.48734 ] 
  4: [ -4.07709 1.5044 ] 
  5: [ -4.07757 1.5046 ] 
  6: [ -4.07757 1.5046 ] 
  7: [ -4.07757 1.5046 ] 
  8: [ -4.07757 1.5046 ] 
Converged. 
xhat = 
 
  -4.0776 
   1.5046 
 

The array a is the coefficient matrix B and the vector y is y noting that Ty ′ = y   

 

The iterative process has converged after 8 iterations and the coefficients are in the array xhat where 

0 4.0776β = −  and 1 1.5046β = . 

 
Figure 7.  Probability y of passing exam after x hours of study. 

( )0 1
0 1

1
 where 4.0776 and 1.5046

1
x

y
e
β β

β β
− +

= = − =
+

  

The midpoint of the symmetric curve is the point ( )1
0 2
,x , and 1

2
y =  when the exponent is zero, i.e., when 

0 1 0 0xβ β+ =  giving 0
0

1

2.7101x
β

β
= − =  

In this example, a student who studies 2 hours has a probability of passing the exam of 0.26 

 ( ) ( )4.0776 1.5046 2

1
pass 0.2557

1
P

e
− − + ×

= =
+

  

and similarly, a student who studies 4 hours has a probability of passing the exam of 0.87 

 ( ) ( )4.0776 1.5046 4

1
pass 0.8744

1
P

e
− − + ×

= =
+
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Table 2 shows probabilities of passing the exam for several values of hours of study 

Hours of study Probability of passing exam 

1 0.07 

2 0.26 

2.7101 0.50 

3 0.61 

4 0.87 

5 0.97 

 

Table 2. 

 

Logistic Curve for Dove Open Doubles Petanque Tournament 01-May-2016 

In this tournament there were 18 teams.  There were 4 Qualifying rounds (Swiss System7) and the top 9 

teams were seeded and did not play each other in Round 1 of the Qualifying.  After the Qualifying the teams 

were ranked 1–18 and teams ranked 1 to 8 went into a Principale and teams ranked 9 to 16 went into a 

Complémentaire.  The remaining two teams took no further part in the tournament.  The Principale and 

Complémentaire were single elimination finals series with play-off’s for 3rd and 4th places.  There were 36 

matches in the Qualifying and 8 matches each in the Principale and Complémentaire making a total of 52 

matches involving the 18 teams.   

Tables 3 (Qualifying), 5 (Principale) and 6 (Complémentaire) show matches and game scores in the 

tournament and Tables 4 and 7 show ranking after Qualifying and final ranking in Principale and 

Complémentaire respectively. 

 
Round 1 Round 2 Round 3 Round 4 

 16(13) v 9(4)  2(7) v 14(11)  3(13) v 14(8)  3(13) v 16(8) 
 18(6) v 14(10)  7(9) v 15(13)  15(11) v 16(12)  18(12) v 7(13) 
 5(12) v 11(8)  8(3) v 16(13)  17(11) v 6(12)  14(5) v 4(10) 
 7(13) v 1(6)  5(5) v 17(13)  5(10) v 18(13)  15(13) v 6(11) 
 2(13) v 12(0)  3(13) v 6(3)  4(13) v 13(12)  1(12) v 13(9) 
 8(13) v 4(8)  4(10) v 11(6)  8(8) v 1(9)  5(8) v 2(13) 
 15(13) v 17(1)  9(2) v 18(13)  2(10) v 7(13)  17(12) v 8(11) 
 13(10) v 6(13)  13(13) v 12(2)  11(13) v 10(4)  11(11) v 12(8) 
 3(13) v 10(7)  10(3) v 1(13)  9(8) v 12(9)  10(9) v 9(11) 

Table 3.  Dove Open Doubles: Qualifying matches 
(game scores shown in parentheses beside team number) 

 
  

                                            
7 The Swiss System (also known as the Swiss Ladder System) is a tournament system that allows 

participants to play a limited number of rounds against opponents of similar strength.  The system was 

introduced in 1895 by Dr. J. Muller in a chess tournament in Zurich, hence the name ‘Swiss System’.  The 

principles of the system are: (i) In every round, each player is paired with an opponent with an equal score 

(or as nearly equal as possible); (ii) Two players are paired at most once; (iii) After a predetermined number 

of rounds the players are ranked according to a set of criteria.  The leading player wins; or the ranking is the 

basis of subsequent elimination series. 
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Qualifying Ranking 

Rank Team Score BHN fBHN Games Points delta 
1 3 4 7 40 4:0 52:26 +26 
2 15 3 10 36 3:1 50:33 +17 
3 7 3 10 29 3:1 48:41 +7 
4 16 3 9 34 3:1 46:31 +15 
5 4 3 6 36 3:1 41:36 +5 
6 1 3 5 40 3:1 40:33 +7 
7 14 2 11 27 2:2 34:36 –2 
8 6 2 10 33 2:2 39:47 –8 
9 17 2 7 39 2:2 37:41 –4 
10 2 2 7 35 2:2 43:32 +11 
11 18 2 7 35 2:2 44:35 +9 
12 11 2 5 30 2:2 38:34 +4 
13 8 1 11 27 1:3 35:42 –7 
14 13 1 9 27 1:3 44:40 +4 
15 5 1 8 26 1:3 35:47 –12 
16 9 1 6 32 1:3 25:44 –19 
17 12 1 6 27 1:3 19:45 –26 
18 10 0 10 23 0:4 23:50 –27 

Table 4.  Dove Open Doubles: Ranking after Qualifying rounds 
(BHN is Buchholtz Number8, fBHN is Fine Buchholtz Number) 

 
 

Quarter-Finals Semi-Finals Final Playoff  
 3(11) v 6(9)  3(13) v 16(2)  3(13) v 14(7)  16(6) v 7(13) 
 16(11) v 4(10)  7(8) v 14(9)   
 1(9) v 7(11)    
 14(11) v 15(9)    

Table 5.  Dove Open Doubles: Principale matches 

 
Quarter-Finals Semi-Finals Final Playoff  

 17(10) v 9(8)  17(2) v 11(13)  11(10) v 18(13)  17(3) v 2(13) 
 11(13) v 8(4)  18(13) v 2(1)   
 13(2) v 18(13)    
 5(7) v 2(13)    

Table 6.  Dove Open Doubles: Complémentaire matches 

 
Principale Complémentaire 

Rank Team Rank Team 
1 3 1 18 
2 14 2 11 
3 7 3 2 
4 16 4 17 

= 5 

4 

= 5 

8 
6 13 
15 9 
1 5 

Table 7.  Dove Open Doubles: Final Ranking in Principale & Complémentaire 

 
  

                                            
8 The Buchholtz system is a ranking system, first used by Bruno Buchholtz in a Swiss System chess 

tournament in 1932.  The principle of the system is that when two players have equal scores at the end of a 

defined number of rounds a tie break is required to determine the top ranked player.  The scores of both 

player’s opponents (in all rounds) are added giving each their Buchholtz Number (BHN).  The player having 

the larger BHN is ranked higher on the assumption they have played against better performing players.  The 

Fine Buchholtz Number (fBHN) is the sum of the opponents Buchholtz Numbers and is used to break ties 

where player’s BHN are equal.  In the rare case that Score, BHN and fBHN are all equal then delta = points 

For – points Against is used as a tie break (see Teams 2 & 18 in Table 7). 
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A least squares solution for team ratings, based on the 36 Qualifying matches yielded the following values 

with the highest rating team, (team 15) having a rating 15 100r = . 

 

1 7 13

2 8 14

3 9 15

4 10 16

5 11 17

6 12 18

93.670 97.207 92.312

94.100 92.923 94.837

99.666 85.586 100.000
ratings

93.526 85.238 98.294

89.598 89.030 93.204

94.295 83.757 94.057

r r r

r r r

r r r

r r r

r r r

r r r

 = = = = = = = = ==  = = = = = = = = =

   

  

Using these ratings an analysis of the Qualifying matches (Table 3) yields the following tabulated results 

where Team A is the first-named team and Team B is the second-named team.  A win is recorded as 1 and a 

loss is recorded as 0, and dr is the difference in ratings.  If dr is positive then Team A is the higher ranking 

team. 

Match Team A Team B 
A Bdr r r= −  Match Team A Team B 

A Bdr r r= −  

1 1 0 12.708 19 1 0 4.829 

2 0 1 -0.780 20 0 1 1.706 

3 1 0 0.568 21 0 1 -1.091 

4 1 0 3.537 22 0 1 -4.459 

5 1 0 10.343 23 1 0 1.214 

6 1 0 -0.603 24 0 1 -0.747 

7 1 0 6.796 25 0 1 -3.107 

8 0 1 -1.983 26 1 0 3.792 

9 1 0 14.428 27 0 1 1.829 

10 0 1 -0.737 28 1 0 1.372 

11 0 1 -2.793 29 0 1 -3.150 

12 0 1 -5.371 30 0 1 1.311 

13 0 1 -3.606 31 1 0 5.705 

14 1 0 5.371 32 1 0 1.358 

15 1 0 4.496 33 0 1 -4.502 

16 0 1 -8.471 34 1 0 0.281 

17 1 0 8.555 35 1 0 5.273 

18 0 1 -8.432 36 0 1 -0.348 

Table 8.  Win/Loss and rating difference for Qualifying matches of Dove Open Doubles. 

Using the values in Table 8, Logistic Regression is used to compute the parameters of a curve representing 

the probability of Team A winning given a certain rating difference.   

The curve is assumed to have the following form: 
( )0 1

1

1
x

y
e
β β− +

=
+

 where y is the probability of winning 

and x is the rating difference between the two teams and the MATLAB function logistic.m is used to 

compute the coefficients 0 1 and β β .   
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The input arrays a and y are shown below together with the output vector xhat (Note that a′ denotes 

transpose) 

>> a' 
ans = 
 
 Columns 1 through 14: 
 
    1.00000    1.00000    1.00000    1.00000    1.00000    1.00000    1.00000    1.00000    
    1.00000    1.00000    1.00000    1.00000    1.00000    1.00000 
   12.70800   -0.78000    0.56800    3.53700   10.34300   -0.60300    6.79600   -1.98300    
   14.42800   -0.73700   -2.79300   -5.37100   -3.60600    5.37100 
 
Columns 15 through 28: 
 
    1.00000    1.00000    1.00000    1.00000    1.00000    1.00000    1.00000    1.00000    
    1.00000    1.00000    1.00000    1.00000    1.00000    1.00000 
    4.49600   -8.47100    8.55500   -8.43200    4.82900    1.70600   -1.09100   -4.45900    
    1.21400   -0.74700   -3.10700    3.79200    1.82900    1.37200 
 
 Columns 29 through 36: 
 
    1.00000    1.00000    1.00000    1.00000    1.00000    1.00000    1.00000    1.00000 
   -3.15000    1.31100    5.70500    1.35800   -4.50200    0.28100    5.27300   -0.34800 
 
>> y' 
ans = 
 
   1   0   1   1   1   1   1   0   1   0   0   0   0   1   1   0   1   0   1   0   0   0    
   1   0   0   1   0   1   0   0   1   1   0   1   1   0 
 
>> 
 
>> xhat = logistic(a, y, [], [], struct('verbose',1)) 
  1: [ -0.348917 0.277334 ] 
  2: [ -0.485595 0.504256 ] 
  3: [ -0.60651 0.733499 ] 
  4: [ -0.690405 0.902133 ] 
  5: [ -0.722152 0.964799 ] 
  6: [ -0.725415 0.970895 ] 
  7: [ -0.725443 0.970944 ] 
  8: [ -0.725443 0.970944 ] 
  9: [ -0.725443 0.970944 ] 
 10: [ -0.725443 0.970944 ] 
Converged. 
xhat = 
 
  -0.72544 
   0.97094 
 
>> 

 

The iterative process has converged after 10 iterations and the coefficients are in the array xhat where 

0 0.72544β = −  and 1 0.97094β = . 
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Figure 7.  Probability y of winning a petanque match given a rating difference x. 
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The midpoint of the symmetric curve is the point ( )1
0 2
,x , and 1

2
y =  when the exponent is zero, i.e., when 

0 1 0 0xβ β+ =  giving 0
0

1

0.74715x
β

β
= − =  

Logistic Curve for Elo Rating System 

The Elo Rating System (Elo 1978) is a mathematical process based on a statistical model relating match 

results to underlying variables representing the abilities of a team or player.  The name “Elo” derives from 

Arpad Elo9, the inventor of a system for rating chess players and his system, in various modified forms, is 

used for player or team ratings in many sports. 

The Elo Rating System calculates, for every player or team, a numerical rating based on performance in 

competitions.  A rating is a number (usually an integer) between 0 and 3000 that changes over time 

depending on the outcome of tournament games.  The system depends on a curve defined by a logistic 

function (Langville & Meyer 2012, Glickman & Jones, 1999) 

 
1

1 10

A B
A r r

b

p
 −  −   

=

+

  (71) 

where Ap  is the probability of player A winning in a match A versus B given the player ratings ,A Br r  and b 

is a shape parameter. 

The curve of this function has a similar form to the cumulative distribution curve of the Logistic distribution 

(33) with e replaced by 10 as a base, A Bx r r= −  is the rating difference between players A and B, 0a =  b 

is the shape parameter. 

                                            
9 Arpad Elo (1903 – 1992) the Hungarian-born US physics professor and chess-master who devised a system 

to rate chess players that was implemented by the United States Chess Federation (USFC) in 1960 and 

adopted by the World Chess Federation (FIDE) in 1970.  Elo described his work in his book The Rating of 

Chess Players, Past & Present, published in 1978 and his system has been adapted to many sports. 
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Figure 1.  Elo curve: 

400

1

1 10

x
y

  −   

=

+

.  Ay p=  is the probability of A winning, A Bx r r= −  is 

the rating difference and the shape parameter 400b = .  The three points on the 

curve shown thus ○ have rating differences 265, 174 and 626−  that correspond with 

probabilities 0.179, 0.731 and 0.973 respectively. 

 

The curve in Figure 3 has the shape parameter 400b =  and this value is chosen so that a player rating 

difference of approximately 200 corresponds to a probability of winning of approximately 0.75.  With Ay p=  

and A Bx r r= −  (71) becomes 

 

400

1

1 10

x
y

  −   

=

+

  (72) 

and this equation can be rearranged as 400 1
10

x
y

y

  −    −
= .  Now using the rule for logarithms that if 

logap N=  then pN a=  the expression for rating difference x is 

 10

1
400 log

y
x

y

 − = −    
  (73) 

And if probability 0.75y =  then rating difference 190.848501x = . 
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For example, suppose two players A and B with ratings 1862 and 1671 respectively play a match.  The 

probability of A winning is given by (71) as 

 
1862 1671 191 0.4775

400 400

1 1 1
0.750163482

1 10
1 10 1 10

A
p

   − −   − −        

= = = =
+

+ +

 

We might express this probability of A winning as: 

 (i) If A played B in 100 matches then A would win 75 of them (75.0163482 actually), or 

 (ii) A has a 75% chance of winning. 

 

Elo’s logistic function uses exponents with a base of 10.  This is the base of common logarithms and the 

following relationships may be useful.   

If 
1 1

1 1 10x x
y

e α− −
= =

+ +
  (74) 

noting that 10x xe α=  and 1 2.718281828459... 10e α= =  

then 10

1
log 0.434294481903...

2.302585092994...
eα = = =   (75) 

Alternatively,  

if 
1 1

1 10 1x x
y

e β− −
= =

+ +
  (76) 

noting that 10x xeβ=  and 110 10 eβ= =  

then 
1

ln10 2.302585092994...
0.434294481903...

β = = =    
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APPENDIX A: Some Statistical Definitions 

 

Experiments, Sets, Sample Spaces, Events and Probability 

The term statistical experiment can be used to describe any process by which several chance observations are 

obtained.  All possible outcomes of an experiment comprise a set called the sample space and a set or sample 

space contains N elements or members.  An event is a subset of the sample space containing n elements.  

Experiments, sets, sample spaces and events are the fundamental tools used to determine the probability of 

certain events where probability is defined as 

 ( ) n
P Event

N
=  (77) 

For example, if a card is drawn from a deck of playing cards, what is the probability that it is a heart?  In 

this case, the experiment is the drawing of the card and the possible outcomes of the experiment could be one 

of 52 different cards, i.e., the sample space is the set of 52N =  possible outcomes and the event is the 

subset containing 13n =  hearts.  The probability of drawing a heart is 

 ( ) 13
Heart 0.25

52

n
P

N
= = =  

This definition of probability is a simplification of a more general concept of probability that can be 

explained in the following manner (see Johnson & Leone, 1964, pp.32-3). 

Suppose observations are made on a series of occasions (often termed trials) and during these 

trials it is noted whether or not a certain event occurs.  The event can be almost any observable 

phenomenon, for example, that the height of a person walking through a doorway is greater 

than 1.8 metres, that a family leaving a cinema contains three children, that a defective item is 

selected from an assembly line, and so on.  These trials could be conducted twice a week for a 

month, three times a day for six months or every hour for every day for 10 years.  In the 

theoretical limit, the number of trials N would approach infinity and we could assume, at this 

point, that we had noted every possible outcome.  Therefore, as N → ∞  then N becomes the 

number of elements in the sample space containing all possible outcomes of the trials.  Now for 

each trial we note whether or not a certain event occurs, so that at the end of N trials we have 

noted Nn  events.  The probability of the event (if it in fact occurs) can then be defined as 

 ( ) lim N

N

n
P Event

N→∞

  =    
 

Since Nn  and N are both non-negative numbers and Nn  is not greater than N then 

 0 1Nn

N
≤ ≤  

Hence 

 { }0 1P Event≤ ≤  

If the event occurs at every trial then Nn N=  and 1
N

n N =  for all N and so ( ) 1P Event = .  

This relationship can be described as: the probability of a certain (or sure) event is equal to 1. 

If the event never occurs, then 0Nn =  and 0
N

n N =  for all N and so ( ) 0P Event = .  This 

relationship can be described as: the probability of an impossible event is zero. 

The converse of these two relationships need not hold, i.e., a probability of one need not imply 

certainty since it is possible that lim 1N
N

n N
→∞

=  without 1Nn =  for all values of N and a 
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probability of zero need not imply impossibility since it is possible that lim 0N
N

n N
→∞

=  even 

though 0Nn > .  Despite these qualifications, it is useful to think of probability as measured on 

a scale varying from (near) impossibility at 0 to (near) certainty at 1.  It should also be noted 

that this definition of probability (or any other definition) is not directly verifiable in the sense 

that we cannot actually carry out the infinite series of trials to see whether there really is a 

unique limiting value for the ratio 
N

n N .  The justification for this definition of probability is 

utilitarian, in that the results of applying theory based on this definition prove to be useful and 

that it fits with intuitive ideas.  However, it should be realized that it is based on the concept of 

an infinitely long series of trials rather than an actual series, however long it may be. 

Random Variables and Probability Distributions of Random Variables 

A random variable X is a rule or a function, which associates a real number with each point in a sample 

space.  As an example, consider the following experiment where two identical coins are tossed; h denotes a 

head and t denotes a tail. 

Experiment: Toss two identical coins. 

Sample space: { }, , ,S hh ht th tt= . 

Random Variable: X, the number of heads obtained, may be written as 

 

( )
( )
( )
( )

2

1

1

0

X hh

X ht

X th

X tt

=

=

=

=

 

In this example X is the random variable defined by the rule: "the number of heads obtained".  The possible 

values (or real numbers) that X may take are 0, 1, 2.  These possible values are usually denoted by x and the 

notation X x=  denotes x as a possible real value of the random variable X. 

Random variables may be discrete or continuous.  A discrete random variable assumes each of its possible 

values with a certain probability.  For example, in the experiment above; the tossing of two coins, the sample 

space { }, , ,S hh ht th tt=  has 4N =  elements and the probability the random variable X (the number of 

heads) assumes the possible values 0, 1 and 2 is given by 

 
( ) 1 2 1

4 4 4

0 1 2x

P X x=
 

Note that the values of x exhaust all possible cases and hence the probabilities add to 1 

A continuous random variable has a probability of zero of assuming any of its values and consequently, its 

probability distribution cannot be given in tabular form.  The concept of the probability of a continuous 

random variable assuming a particular value equals zero may seem strange, but the following example 

illustrates the point.  Consider a random variable whose values are the heights of all people over 21 years of 

age.  Between any two values, say 1.75 metres and 1.85 metres, there are an infinite number of heights, one 

of which is 1.80 metres.  The probability of selecting a person at random exactly 1.80 metres tall and not one 

of the infinitely large set of heights so close to 1.80 metres that you cannot humanly measure the difference is 

extremely remote, and thus we assign a probability of zero to the event.  It follows that probabilities of 

continuous random variables are defined by specifying an interval within which the random variable lies and 

it does not matter whether an end-point is included in the interval or not. 

 
( ) ( ) ( )

( )
P a X b P a X b P X b

P a X b

< ≤ = < < + =
= < <
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It is most convenient to represent all the probabilities of a random variable X by a formula or function 

denoted by ( )Xf x , ( )Xg x , ( )Xh x , etc., or by ( )XF x , ( )XG x , ( )XH x , etc. 

In this notation the subscript X denotes that ( )Xf x  or ( )XF x  is a function of the random variable X which 

takes the numerical values x within the function.  Such functions are known as probability distribution 

functions and they are paired; i.e., ( )Xf x  pairs with ( )XF x , ( )Xg x  pairs with ( )XG x , etc.  The functions 

with the lowercase letters are probability density functions and those with uppercase letters are cumulative 

distribution functions. 

For discrete random variables, the probability density function has the properties 

 1. ( ) ( )X k kf x P X x= =  

 2. ( )
1

1
X k

k

f x

∞

=

=∑  

And the cumulative distribution function has the properties 

 1. ( ) ( )X k kF x P X x= ≤  

 2. ( ) ( )
k

X X k
x x

F x f x
≤

= ∑  

As an example consider the probability distribution functions ( )Xf x  and ( )XF x  of the sum of the numbers 

when a pair of dice is tossed. 

Experiment: Toss two identical dice. 

Sample space: 

1, 1 1, 2 1, 3 1, 4 1, 5 1, 6

2, 1 2, 2 2, 3 2, 4 2, 5 2, 6

3, 1 3, 2 3, 3 3, 4 3, 5 3, 6

4, 1 4, 2 4, 3 4, 4 4, 5 4, 6

5, 1 5, 2 5, 3 5, 4 5, 5 5, 6

6, 1 6, 2 6, 3 6, 4 6, 5 6, 6

S

           =             

 

Random Variable: X, the total of the two numbers 

The probability the random variable X assumes the possible values 2, 3, 4, , 12x = …  is given in Table A1 

 
( )

2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 5 4 3 2 1

36 36 36 36 36 36 36 36 36 36 36

x

P X x=
 

Table A1.  Table of probabilities 

Note that the values of x exhaust all possible cases and hence the probabilities add to 1 

The probability density function ( )Xf x  can be deduced from Table A1 

 ( )
6 7

, 2, 3, 4, ,12
36X

x
f x x

− −
= = …  

Probability distributions are often shown in graphical form.  For discrete random variables, probability 

distributions are generally shown in the form of histograms consisting of series of rectangles associated with 

values of the random variable.  The width of each rectangle is one unit and the height is the probability 

given by the function ( )Xf x  and the sum of the areas of all the rectangles is 1.   
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Figure A1 shows the Probability histogram for the random variable X, the sum of the numbers when a pair 

of dice is tossed. 

 
Figure A1  Probability histogram 

Figure A2 shows the cumulative distribution function ( ) ( )
k

X X k
x x

F x f x
≤

= ∑  for the random variable X, the 

sum of the numbers when a pair of dice is tossed. 

 
Figure A2.  Cumulative distribution function.  [The dots at the left ends of the line 

segments indicate the value of ( )XF x  at those values of x. 
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For continuous random variables, the probability distribution functions ( )Xf x  and ( )XF x  are curves, 

which may take various forms depending on the nature of the random variable.  Probability density functions 

( )Xf x  that are used in practice to model the behaviour of continuous random variables are always positive 

and the total area under its curve, bounded by the x-axis, is equal to one.  These density functions have the 

following properties 

 1. ( ) 0  for any value of Xf x x≥  

 2. ( ) 1Xf x dx

+∞

−∞

=∫  

The probability that a random variable X lies between any two values x a=  and x b=  is the area under 

the density curve between those two values and is found by methods of integral calculus 

 ( ) ( )
b

X

a

P a X b f x dx< < = ∫  (78) 

The equations of the density functions ( )Xf x  are usually complicated and areas under their curves are found 

from tables.  In many scientific studies, the Normal probability density function is the usual model for the 

behaviour of measurements (regarded as random variables) and the probability density function is (Kreyszig, 

1970, p. 107) 

 ( )
2

1

21

2

x

Xf x e

µ

σ

σ π

 −  −    =  (79) 

µ  and σ  are the mean and standard deviation respectively of the infinite population of x and Figure A3 

shows a plot of the Normal probability density curve for 2.0µ =  and 2.5σ = . 

 
Figure A3.  Normal probability density function for 2.0µ =  and 2.5σ =  
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For continuous random variables X, the cumulative distribution function ( )XF x has the following properties 

 1. ( ) ( ) ( )
x

X XF x P X x f x dx

−∞

= ≤ = ∫  

 2. ( ) ( )X X

d
F x f x

dx
=  

In many scientific studies, the Normal distribution is the usual model for the behaviour of measurements and 

the cumulative distribution function is (Kreyszig, 1970, p. 108) 

 ( )
2

1

21

2

x
x

XF x e dx

µ

σ

σ π

 −  −    

−∞
= ∫  (80) 

The probability that X assumes any value in an interval a X b< <  is 

 ( ) ( ) ( )
2

1

21

2

x
b

X X
a

P a X b F b F a e dx

µ

σ

σ π

 −  −    < < = − = ∫  (81) 

Figure A4 shows a plot of the Normal cumulative distribution curve for 2.0µ =  and 2.5σ = . 

 
Figure A4.  Normal cumulative distribution function for 2.0µ =  and 2.5σ =  

Expectations 

The expectation { }E X  of a random variable X is defined as the average value Xµ  of the variable over all 

possible values.  It is computed by taking the sum of all possible values of X x=  multiplied by its 

corresponding probability.  In the case of a discrete random variable the expectation is given by 

 { } ( )
1

N

X k k
k

E X x P xµ
=

= = ∑  (82) 

Equation (82) is a general expression from which we can obtain the usual expression for the arithmetic mean 

 
1

1
N

k
k

x
N

µ
=

= ∑  (83) 
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If there are N possible values kx  of the random variable X, each having equal probability ( ) 1
k

P x N=  

(which is a constant), then the expectation computed from (82) is identical to the arithmetic mean of the N 

values of kx  from (83). 

In the case of a continuous random variable the expectation is given by 

 { } ( )X XE X x f x dxµ

+∞

−∞

= = ∫  (84) 

This relationship may be extended to a more general form if we consider the expectation of a function ( )g X  

of a random variable X whose probability density function is ( )Xf x .  In this case 

 ( ){ } ( ) ( )XE g X g x f x dx

+∞

−∞

= ∫  (85) 

Extending (85) to the case of two random variables X and Y 

 ( ){ } ( ) ( ), , ,XYE g X Y g x y f x y dx dy

+∞+∞

−∞−∞

= ∫ ∫  

Similarly for n random variables 

 ( ){ } ( ) ( )1 2 1 2 1 2 1 2, , , , , , , , ,n n X n nE g X X X g x x x f x x x dx dx dx

+∞+∞ +∞

−∞−∞ −∞

= ∫ ∫ ∫… � … … …  (86) 

Expressing (86) in matrix notation gives a general form of the expected value of a multivariate function 

( )g X  as 

 ( ){ } ( ) ( )E g g f d

+∞+∞ +∞

−∞−∞ −∞

= ∫ ∫ ∫ XX x x x�  (87) 

where ( )fX x  is the multivariate probability density function. 

There are some rules that are useful in calculating expectations.  They are given here without proof but can 

be found in many statistical texts.  With a and b as constants and X and Y as random variables 

 { }E a a=  

 { } { }E aX a E X=  

 { } { }E aX b a E X b+ = +  

 ( ) ( ){ } ( ){ } ( ){ }E g X h X E g X E h X± = ±  

 ( ) ( ){ } ( ){ } ( ){ }, , , ,E g X Y h X Y E g X Y E h X Y± = ±  
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Special Mathematical Expectations 

The mean of a random variable 

 { } ( )X XE X x f x dxµ

+∞

−∞

= = ∫  (88) 

The mean vector Xm  of a multivariate distribution is 

 

( )
( )
( ) { }

1

2

3

1 1

2 2

3 3

X

X
X

X

E X X

E X X
E E

E X X

µ

µ

µ

     
     
     
     = = = =     
     
     
         

m X

� ��

 (89) 

Xm  can be taken as representing the mean of a multivariate probability density function. 

The variance of a random variable 

 ( ){ } ( ) ( )2 22
X X x XE X x f x dxσ µ µ

+∞

−∞

= − = −∫  (90) 

The covariance between two random variables X and Y is 

 ( )( ){ } ( )( ) ( ),XY X Y x y XYE X Y x y f x y dx dyσ µ µ µ µ

+∞+∞

−∞−∞

= − − = − −∫ ∫  (91) 

Equation (91) can be expanded to give 

 

( )( ){ }
{ }
{ } { } { } { }
{ } { } { }
{ }
{ }

XY X Y

Y X X Y

Y X X Y

Y X X Y

Y X X Y X Y

X Y

E X Y

E XY X Y

E XY E X E Y E

E XY E X E Y

E XY

E XY

σ µ µ

µ µ µ µ

µ µ µ µ

µ µ µ µ

µ µ µ µ µ µ

µ µ

= − −
= − − +
= − − +
= − − +
= − − +
= −

 

If the random variables X and Y are independent, the expectation of the product is equal to the product of 

the expectations, i.e., { } { } { }E XY E X E Y= .  Since the expected values of X and Y are the means Xµ  

and Yµ  then { } X YE XY µ µ=  if X and Y are independent.  Substituting this result into the expansion 

above shows that the covariance XYσ  is zero if X and Y are independent. 

For a multivariate function, variances and covariances of the random variables X is given by the matrix 

equation 

 { }T

XX X YE    = − −   V X m X m  (92) 

XXV  is a symmetric matrix known as the variance-covariance matrix and its general form can be seen when 

(92) is expanded 

 

1

2

1 2

1

2
1 2 n

n

X

X
XX X X n X

n X

X

X
E X X X

X

µ

µ
µ µ µ

µ

   −      −    = − − −           −      

V �
�
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giving 

1 2 11

2 1 21

1 2 1

2

2

2

n

n

n n

X X X XX

X X X XX
XX

X X X X X

σ σ σ

σ σ σ

σ σ σ

 
 
 
 
 =
 
 
 
  

V

�

�

� � � �

�

  (93) 

Law of Propagation of Variances for Linear Functions 

Consider two vectors of random variables 1 2

T

n
X X X =   x �  and 1 2

T

n
Y Y Y =   y �  that are 

linearly related by the matrix equation 

 = +y Ax b  (94) 

where A is a coefficient matrix and b is a vector of constants.  Then, using the rules for expectations 

developed above we may write an expression for the mean Ym  using (89) 

 

{ }
{ }
{ } { }
{ }

Y

X

E

E

E E

E

=

= +

= +

= +

= +

m y

Ax b

Ax b

A x b

Am b

 

Using (92), the variance-covariance matrix yyV  is given by 

 

( )( ){ }
( )( ){ }
( )( ){ }
( ) ( )( ){ }
( )( ){ }
( )( ){ }

T

yy y y

T

x x

T

x x

T

x x

T T
x x

T T
x x

T
xx

E

E

E

E

E

E

= − −

= + − − + − −

= − −

= − −

= − −

= − −

=

V y m y m

Ax b Am b Ax b Am b

Ax Am Ax Am

A x m A x m

A x m x m A

A x m x m A

AV A

 

or 

 If = +y Ax b  and y and x are random variables linearly related then 

 T
yy xx=V AV A  (95) 

Equation (95) is known as the Law of Propagation of Variances. 
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Law of Propagation of Variances for Non-Linear Functions 

In many practical applications of variance propagation the random variables in x and y are nonlinearly 

related, i.e., 

 ( )f=y x  (96) 

In such cases, we can expand the function on the right-hand-side of (96) using Taylor's theorem. 

For a non-linear function of a single variable Taylor's theorem may be expressed in the following form 

 

( ) ( )

( )
( )

2 3
2 3

2 3

1
1

1

( ) ( ) ( )
2! 3!

1 !

a a a
n

n

nn
a

x a x adf d f d f
f x f a x a

dx dx dx

x ad f
R

ndx

−
−

−

− −
= + − + + +

−
+ +

−

�

 (97) 

where nR  is the remainder after n terms and lim 0n
n

R
→∞

=  for ( )f x  about x a=  and 
2

2
,

a a

df d f

dx dx
 etc. are 

derivatives of the function ( )f x  evaluated at x a= . 

For a non-linear function of two random variables, say ( ),f x yφ = , the Taylor series expansion of the 

function φ  about x a=  and y b=  is 

 

( ) ( ) ( )

( ) ( ) ( )( )

, ,

2 2
2 2

2 2
, ,, ,

,

1

2!

a b a b

a b a ba b a b

f f
f a b x a y b

x y

f f f f
x a y b x a y b

x yx y

φ
∂ ∂

= + − + −
∂ ∂
  ∂ ∂ ∂ ∂  + − + − + − − +  ∂ ∂∂ ∂   

�

 (98) 

where ( ),f a b  is the function φ  evaluated at x a=  and y b= , and 
2

2
, , ,

, ,
a b a b a b

f f f

x y x

∂ ∂ ∂

∂ ∂ ∂
 etc are partial 

derivatives of the function φ  evaluated at x a=  and y b= . 

Extending to n random variables, we may write a Taylor series approximation of the function ( )f x  as a 

matrix equation 

 ( ) ( ) ( )
0

0 0  higher order terms
f

f f
∂

= + − +
∂ x

x x x x
x

 (99) 

where ( )0f x  is the function evaluated at the approximate values 0x  and 
0

f∂
∂ xx

 are the partial derivatives 

evaluated at approximations 0x . 

Replacing ( )f x  in (96) by its Taylor series approximation, ignoring higher order terms, gives 

 ( ) ( ) ( )
0

0 0f
f f

∂
= = + −

∂ x

y x x x x
x

 (100) 

Then, using the rules for expectations 
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  ∂ = + −  ∂  

  ∂ = + −  ∂  
∂

= + −
∂
∂

= + −
∂
∂

= + −
∂

x

x

x

x

x

m y

x x x
x

x x x
x

x x x
x

x x x
x

x m x
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And 

 

( ) ( ) ( ) ( )

( )

( )

0 0

0

0 0 0 0
y x

x

yx x

f f
f f

f

   ∂ ∂   − = + − − + −   ∂ ∂   
∂

=
∂

=

x x

x

y m x x x x m x
x x

x m
x

J x m

−−−−

−−−−

 (101) 

yxJ  is the (m,n) Jacobian matrix of partial derivatives, noting that y and x are (m,1) and (n,1) vectors 

respectively 

 

1 1 1 2 1

2 1 2 2 2

1 2

n

n
yx

m m m n

y x y x y x

y x y x y x

y x y x y x

 ∂ ∂ ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂ ∂ ∂ =  
 
 ∂ ∂ ∂ ∂ ∂ ∂  

J

�

�

� �

�

 (102) 

Using (92), the variance-covariance matrix yyV  is given by 

 

( )( ){ }
( )( ) ( )( ){ }
( )( ){ }
( )( ){ }

T

yy y y

T

yx x yx x

T T
yx x x yx

T T
yx x x yx

T
yx xx yx

E

E

E

E

= − −

= − −

= − −

= − −

=

V y m y m

J x m J x m

J x m x m J

J x m x m J

J V J

 

Thus, in a similar manner to above, we may express the Law of Propagation of Variances for non-linear 

functions of random variables as 

 If ( )f=y x  and y and x are random variables non-linearly related then 

 T
yy yx xx yx=V J V J  (103) 
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The Special Law of Propagation of Variances 

The Law of Propagation of Variances is often expressed as an algebraic equation.  For example, if z is a 

function of two random variables x and y, i.e., ( ),z f x y=  then the variance of z is 

 

2 2

2 2 2 2z x y xy

z z z z

x y x y
σ σ σ σ

   ∂ ∂ ∂ ∂  =  +  +       ∂ ∂ ∂ ∂
 (104) 

Equation (104) can be derived from the general matrix equation (103) in the following manner.  Let 

( ),z f x y=  be written as ( )f=y x  where z =  y , a (1,1) matrix and 
x

y

 
 =  
  

x  is a (2,1) vector.  The 

variance-covariance matrix of the random vector x is 
2

2

x xy
xx

xy y

σ σ

σ σ

 
 =  
  

V , the Jacobian yx

z z

x y

 ∂ ∂ =
 ∂ ∂ 

J  and 

the variance-covariance matrix yyV  which contains the single element 2
zσ  is given by 

 
2

2
2

x xy
yy z

xy y

z

z z x

x y z

y

σ σ
σ

σ σ

 ∂     ∂ ∂ ∂     = =       ∂ ∂ ∂     
 ∂ 

V  

Expanding this equation gives (104). 

In the case where the random variables in x are independent, i.e., their covariances are zero; we have the 

Special Law of Propagation of Variances.  For the case of ( ),z f x y=  where the random variables x and y 

are independent, the Special Law of Propagation of Variances is written as 

 If ( ),z f x y=  and x and y are independent random variables then 

 

2 2

2 2 2
z x y

z z

x y
σ σ σ

   ∂ ∂  =  +        ∂ ∂
 (105) 
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APPENDIX B: MATLAB function logistic.m 

 

http://www.cs.cmu.edu/~ggordon/IRLS-example/logistic.m 
 
 
% function x = logistic(a, y, w, ridge, param) 
% 
% Logistic regression.  Design matrix A, targets Y, optional instance 
% weights W, optional ridge term RIDGE, optional parameters object PARAM. 
% 
% W is a vector with length equal to the number of training examples; RIDGE 
% can be either a vector with length equal to the number of regressors, or 
% a scalar (the latter being synonymous to a vector with all entries the 
% same). 
% 
% PARAM has fields PARAM.MAXITER (an iteration limit), PARAM.VERBOSE 
% (whether to print diagnostic information), PARAM.EPSILON (used to test 
% convergence), and PARAM.MAXPRINT (how many regression coefficients to 
% print if VERBOSE==1). 
% 
% Model is  
% 
%   E(Y) = 1 ./ (1+exp(-A*X)) 
% 
% Outputs are regression coefficients X. 
% 
% Copyright 2007 Geoffrey J. Gordon 
% 
% This program is free software: you can redistribute it and/or modify 
% it under the terms of the GNU General Public License as published by 
% the Free Software Foundation, either version 3 of the License, or (at  
% your option) any later version.  
% 
% This program is distributed in the hope that it will be useful, but  
% WITHOUT ANY WARRANTY; without even the implied warranty of  
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU  
% General Public License for more details. 
% 
% You should have received a copy of the GNU General Public License 
% along with this program.  If not, see <http://www.gnu.org/licenses/>. 
 
function x = logistic(a, y, w, ridge, param) 
 
% process parameters 
 
[n, m] = size(a); 
 
if ((nargin < 3) || (isempty(w))) 
  w = ones(n, 1); 
end 
 
if ((nargin < 4) || (isempty(ridge))) 
  ridge = 1e-5; 
end 
 
if (nargin < 5) 
  param = []; 
end 
 
if (length(ridge) == 1) 
    ridgemat = speye(m) * ridge; 
elseif (length(ridge(:)) == m) 
    ridgemat = spdiags(ridge(:), 0, m, m); 
else 
    error('ridge weight vector should be length 1 or %d', m); 
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end 
 
if (~isfield(param, 'maxiter')) 
  param.maxiter = 200; 
end 
 
if (~isfield(param, 'verbose')) 
  param.verbose = 0; 
end 
 
if (~isfield(param, 'epsilon')) 
  param.epsilon = 1e-10; 
end 
 
if (~isfield(param, 'maxprint')) 
  param.maxprint = 5; 
end 
 
% do the regression 
 
x = zeros(m,1); 
oldexpy = -ones(size(y)); 
for iter = 1:param.maxiter 
 
  adjy = a * x; 
  expy = 1 ./ (1 + exp(-adjy)); 
  deriv = expy .* (1-expy);  
  wadjy = w .* (deriv .* adjy + (y-expy)); 
  weights = spdiags(deriv .* w, 0, n, n); 
 
  x = inv(a' * weights * a + ridgemat) * a' * wadjy; 
 
  if (param.verbose) 
    len = min(param.maxprint, length(x)); 
    fprintf('%3d: [',iter); 
    fprintf(' %g', x(1:len)); 
    if (len < length(x)) 
      fprintf(' ... '); 
    end 
    fprintf(' ]\n'); 
  end 
 
  if (sum(abs(expy-oldexpy)) < n*param.epsilon) 
    if (param.verbose) 
      fprintf('Converged.\n'); 
    end 
    return; 
  end 
   
  oldexpy = expy; 
 
end 
 
warning('logistic:notconverged', 'Failed to converge'); 
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Useage Example 

http://www.cs.cmu.edu/~ggordon/IRLS-example/logistic-ex.txt 

 
 
>> a = randn(500,5); 
>> x = 2*randn(5,1); 
>> y = (rand(500,1) < 1./(1+exp(-a*x))); 
>> xhat = logistic(a, y, [], [], struct('verbose', 1)) 
  1: [ -0.842889 -0.959492 0.843404 0.198022 0.199493 ] 
  2: [ -1.55055 -1.75901 1.57622 0.360507 0.398254 ] 
  3: [ -2.35678 -2.71685 2.4373 0.545032 0.62605 ] 
  4: [ -3.20879 -3.74533 3.35828 0.740927 0.854976 ] 
  5: [ -3.86696 -4.54162 4.0753 0.899695 1.02575 ] 
  6: [ -4.12265 -4.85136 4.35625 0.964904 1.09126 ] 
  7: [ -4.14969 -4.88416 4.38617 0.972078 1.09818 ] 
  8: [ -4.14995 -4.88447 4.38646 0.972149 1.09825 ] 
  9: [ -4.14995 -4.88447 4.38646 0.972149 1.09825 ] 
 10: [ -4.14995 -4.88447 4.38646 0.972149 1.09825 ] 
 11: [ -4.14995 -4.88447 4.38646 0.972149 1.09825 ] 
Converged. 
 
xhat = 
 
   -4.1499 
   -4.8845 
    4.3865 
    0.9721 
    1.0982 
 
>> x 
 
x = 
 
   -3.9412 
   -4.0619 
    3.6705 
    1.1123 
    0.9645 
 
 
 
 

 

 


