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ABSTRACT

The Global Positioning System (GPS), a US
Department of Defense satellite positioning system,
has become a widely used measuring tool in practical
surveying applications, especially in the provision of
coordinate control for construction projects, small
scale mapping and cadastral survey coordination. To
use GPS effectively, the surveyor must be familiar
with the relationships between (i) local and
geocentric datums, (i) geodetic, Australian Map
Grid (AMG) and three dimensional Cartesian
coordinates and (iii) heights referred to the ellipsoid,
the geoid and the Australian Height Datum (AHD).

These relationships, often complex, are usually
expressed mathematically. The surveyor, therefore,
must also be an applled mathematician - certainly by
practice, if not by training. The aim of this paper is
to provide an explanation of some of the
mathematical theory associated with the reference
surfaces and relationships mentioned above with
particular attention to the geoid and GPS heighting.

INTRODUCTION

GPS has had (and will continue to have) the most
far-reaching effects on the practice of surveying,
arguably exceeding the combined effects of
Electronic Distance Measurement (EDM) and the
pocket calculator. In the space of a decade GPS
receivers have reduced in size from two-man
luggable boxes (not including heavy duty batteries
and antennae) to small combined units mounted on
plumbing rods. There have also been proportionate
reductions in the cost of equipment and associated
computer software.

With GPS, surveyors now have a tool which can
serve as well in plane surveying apphcatlons (such as
positioning of cadastral pegs) as in geodetlc
operations (such as national or state mapping
control). In fact, GPS could be regarded as the
universal surveying instrument, but its attraction

comes at a cost: it forces upon the wise user a need
to understand some of the basic concepts of geodesy.
This word is associated with an historical division of
surveying into two main branches: geodetic surveying,
usually the domain of government mapping
authorities and plane swrveying, usually that of
private surveying concerns.

In Australia, the emergence of GPS has coincided
with the reduction of large government and semi-
government survey organisations. In some cases
they have disappeared altogether! This downsizing
(a wonderful euphemism) has allowed private
surveying firms the opportunity of involvement in
projects formerly outside their province. These
expanded business opportunities often require the
surveyor to embrace the relatively new GPS
technology and so there are economic, as well as
professional imperatives for an understanding of the
geodetic concepts implicit in the use of GPS.

This paper gives some historical information
regarding the discovery of the Earth's "true" shape
and the connection between this shape and gravity.
A definition of the geoid is provided, together with
explanations of Mean Sea Level (MSL) and the
AHD, thus providing a connection between these
height reference surfaces. The paper also shows how
a geocentric ellipsoid can be used as a reference
surface for both position and gravity; it describes
gravity anomalies and their use in the determination
of the geoid-ellipsoid separation - a vital
requirement in GPS heighting. An attempt is made
to present an overall perspective of some complex
geodetic relationships and to be informative rather
than definitive. References are provided to give the
interested reader an opportunity for further study.

REFERENCE SURFACES

Surveying, in any form, requires the adoption of
reference surfaces to which points surveyed on the
irregular surface of the Earth may be related. These
surfaces are used as a basis for the computation of



bearings and distances between points, and areas of
figures, as well as datums for heights.

In plane surveying, the extent of the survey is usually
small in comparison with the Earth and the reference
surface (as the name implies) is a plane, usually a
local horizontal plane, and linear measurements on
the Earth's surface are reduced to equivalent
measurements on such a plane by the application of
simple slope corrections. Angular measurements in
the field (using a theodolite) are regarded as
measurements between points on this plane. All
cadastral surveying in Australia employs these
simple principles of plane surveying.

In geodetic surveying, surveys are usually of such an
extent that the Earth can no longer be considered a
plane or even a sphere. Instead, an ellipsoid (an
ellipse rotated about its minor axis) is adopted as an
approximation of the size and shape of the Earth. In
geodetic surveys, linear and angular measurements
between points on the terrestrial surface are reduced
to equivalent distances and angles between
complementary points on the ellipsoid. Geodesy is
the science of determining the size and shape of the
Earth and the location of points thereon.

Surveying often involves the determination of
heights of points; such heights are related to datums,
which in this sense are in fact reference surfaces for
heights. Height datums may be as simple as
arbitrary datums, where heights of points in small
survey areas are related to fixed points (benchmarks)
with arbitrarily assigned heights, or as complex as
national height datums, such as the AHD, where
heights are related to an approximation of MSL
around the coastline of Australia.

The determination of heights is closely allied to
engineering works concerned with the control and
flow of water. Water obeys the laws of physics and
flows "downhill' from one equipotential surface o
another - in fact, a "free" body of water will form its
own equipotential surface. This natural occurrence
is the reason why an equipotential surface is the
most sensible datum for heights. It also provides
the reason why most countries adopt some form of
MSL as the datum for heights, since all waters of the
Earth discharge to the oceans.

The geoid is a particular equipotential surface closely
approximating the oceanic MSL. As such, the geoid
can be regarded as a global reference surface for
heights; much work in geodesy is therefore directed
at determining the shape and location of the geoid.
The geoid is not a tangible, physical surface - you
can't dig it up or measure to it directly - and it is
thus similar to the ellipsoid in being a purely
mathematical conception. But, since it approximates

MSL, the geoid does have an easily visualised
companion. In Australia, the AHD, which is a
practical attempt at estimating MSL around the
coastline of Australia, is regarded as a working
approximation of the geoid. More about this later -
but first, some historical background on the shape of
the Earth and the nature of gravity.

NEWTON, GRAVITY AND THE SHAPE OF THE EARTH

Equipotential surfaces, such as the geoid, are gently
undulating surfaces related directly to the Earth's
gravity field and so an understanding of them must
begin with some words on Sir Isaac Newton (1642-
1727), his discovery of the nature of gravity and his
theory on the shape of the Earth.

The Earth can be regarded as a viscous fluid body, of
varying density, rotating about its axis in space and
slightly "squashed" at the poles due to the combined
effects of gravitational and centrifugal forces. This
revolutionary proposition was first put forward by
Newton in his Philosophiae naturalis principia
mathematica (The Mathematical Principles of Natural
Philosophy) published in 1687. In the Principia,
Newton - the Lucasian Professor of mathematics at
Trinity College, Cambridge - set down his famous
statement:
"That the forces by which the primary planets are
continually drawn off their rectilinear motions,
and retained in their proper orbits, tend to the
sun; and are inversely as the squares of the
distances of the places of those planets from the
sun's centre." (Fauvel & Gray 1987, p.397)
We now refer to this as Newton's Universal Law of
Gravitation, often stated as: masses attract each
other with a force inversely proportional to the
square of the distance between them.

In the Principia, Newton also stated his three laws
of uniform motion; gave mathematical proof of
Kepler's laws of planetary motion (which Kepler
deduced from observation) and described his use of
fluctions (or infinitesimal changes) in determining
tangents to curves - thus inventing calculus!
Newton's remarkable work in the fields of gravity
and the calculus was done in a two-year period from
1665-66, when he was staying at his birthplace in
Lincolnshire to escape from the plague then
infesting Cambridge. It remained unpublished for
twenty years until his friend, Edmund Halley (1656-
1742), enquired of him about the possible shapes of
orbits of comets. When he informed Halley that he
had solved this problem some years before, (using
his theory of gravitation) and that the orbits were
elliptical, periodic and thus predictable, Halley
insisted that Newton publish his work. With the
publication of the Principia, Newton's place in



history was assured. He remained at Cambridge
until 1696 when he accepted the positions of firstly
Warden, and later, Master of the Royal Mint. In
1705 he was knighted by Queen Anne and he died in
1727. His passing, as Voltaire suggested, was the
occasion for national mourning, and the poet
Alexander Pope penned his Epitaph:

"NATURE, and Nature's Laws lay hid in Night.
God said, Let Newton be! and all was Light."
(Fauvel & Gray 1987, p.415)

Newton's reasoning on the shape of the Earth can be
explained as follows. The Earth can be regarded as
consisting of an infinite number of small masses.
For a body at rest on the surface of the Earth, the
gravitational force on the body is the resultant of all
the forces of attraction between the body and the
infinite number of masses making up the Earth.
This resultant force acts along a line directed
towards the centre of the Earth, but due to the
varying mass density of the Earth and local
attractions  (perhaps caused by mountainous
regions) gravitational forces acting on bodies at a
number of points on the Earth's surface are not
always directed towards the same "earth centre". As
the Earth is rotating at a constant angular velocity, a
body on its surface is also subjected to a centrifugal
force — the same force acting on your clothes in the
spin dryer. This centrifugal force, proportional to
the perpendicular distance of the body from the
Earth's spin axis and directed outwards along this
line, is a maximum at the equator, decreasing to zero
at the poles. Both gravitational and centrifugal
forces act on a body at rest on the Earth's surface
and the resultant force is known as the gravity force,
or simply, gravity. [Gravity is a vector having both
direction (the direction of gravity) and magnitude
(the value of gravity)]. At the equator, the
gravitational and centrifugal forces act in opposite
directions, whilst at the poles, only the gravitational
force has an effect. This means that gravity is
greater at the poles than at the equator, and since the
Earth is a deformable fluid body, it must be,
therefore, slightly flattened at the poles.

This practical effect of Newton's law of gravitation
was confirmed by the measurements of two survey
expeditions organised by the French Academy of
Sciences between the years 1735-43. Newton's
propositions were opposed by the French, led by the
Royal Astronomer, Jean Dominique Cassini and his
son Jacques, who had analysed the length of a
meridian arc measured near Paris and deduced that
the Earth was prolate (flattened at the equator)
rather than oblate (flattened at the poles) as
predicted by Newton's theory. To settle the dispute
between the English and French "camps", a survey

expedition was sent to Peru! in 1735 to measure an
arc of a meridian near the equator by the method of
baselines and triangulation. In 1736-37 another
expedition, under the leadership of P.L. Maupertuis
(1698-1759), went to Lapland (northern Sweden) to
measure a meridian arc near the pole. [The
expeditions also included the scientists A.C. Clairaut
(1713-1765) and P. Bouguer (1698-1758), both suill
honoured in geodesy for their theorems on gravity].
The triangulation measurements, combined with
careful astronomic observations of latitude,
confirmed that the distance on the surface of the
Earth subtended by a degree of latitude was indeed
longer near the pole than at the equator. This was a
triumph for Newton's theory, as well as for
Maupertuis himself, who henceforth was known as
the grand aplatissener ("great flattener"), becoming
president of the Berlin Academy of Science and
basking for many years in the sun of his fame at the
court of Frederick the Great. Alas, Maupertuis'
glory was short lived; in 1750 he set down a general
principle unifying the laws of the universe and
combined it with a proof of the existence of God!
His theory caused great controversy which reached a
climax when Voltaire lampooned the unhappy
president in the Diatribe du doctenr Akakia, médecin
du pape (1752). Neither the King's support nor
Euler's defence could bring succour to Maupertuis'
sunken spirits, and the deflated mathematician died
not long afterwards in Basel in the home of the
Bernoullis (Struik 1987, p.127).

THE GRAVITY FIELD AND EQUIPOTENTIAL SURFACES

The Earth's gravity field is a vector field, meaning
that there is a triplet of numbers assigned to every
point. These numbers represent the x,y,z Cartesian
components of the gravity vector at the point. In
geodesy, however, it is much more convenient to
work with a scalar field where a single-valued
function is assigned to every point. This scalar field
is known as the gravity potential W and the
derivatives of the scalar function W(x,y,z) are the
components of the gravity vector at that point. In
the same way as gravity is the vector sum of the
Earth's gravitational force of attraction and the
centrifugal force, the Earth's gravity potential W is
the scalar (or algebraic) sum of its gravitational
potential W, and its centrifugal potential W,_:

W=W,+W, (1)

! This was the Spanish Viceroyalty of Peru, much larger
than the present Peru. Headquarters of the expedition
were at Quito, now in Ecuador.



(The gravitational potential and the centrifugal
potential are often called respectively the potential
due to mass attraction and the rotational potential.)

An equipotential surface of the Earth is a surface
upon which the gravity potential is constant, or

W(x,y,z)= constant. )

Movement along such a surface involves no change
in potential and thus no "work" (in the conventional
static sense) is done. Therefore, this movement
cannot go with, or against, the direction of the force
field (the gravity field) and the consequence of this
is that the direction of gravity must be everywhere
perpendicular to an equipotential surface.

Equipotential surfaces are often called level surfaces
and the perpendicular is known as the vertical or the
plumb line.  The local tangent plane to an
equipotential surface at a point is a horizontal plane -
as defined by a carefully levelled theodolite at that
point — and the vertical plane of the same carefully
levelled theodolite is tangential to the vertical (or
plumb line) at that point. This means that angular
measurements made with a theodolite are directly
related to the gravity vector at the point of
observation, as are spirit level observations of height
differences.  Heights so related to particular
equipotential surfaces (such as the geoid) are known
as orthometric heights.

Equipotential surfaces cover the Earth like the layers
of an onion; they do not cross each other nor are
they parallel to each other, except as a first
approximation. They are continuous (ie, they do
not have any breaks), they have no sharp edges and
are convex everywhere with smoothly varying radii
of curvature. A sectional view of equipotential
surfaces surrounding the Earth would show them as
oblate curves spaced closer together at the poles
than at the equator with verticals as curved lines
intersecting each surface at right angles. This is a
consequence of gravity being stronger at the poles
and corresponds to the definite relationships
between equipotential surfaces and gravity, viz. (i)
the direction of gravity and the equipotential surface
are mutually perpendicular, and (ii) the spacing of
the surfaces is directly related to the magnitude of
gravity. It should be noted that equipotential
surfaces are curved in every direction and with
respect to each other, hence the verticals (or plumb
lines) to these surfaces are space curves having both
curvature (bend) and torsion (twist).

THE GEOID AND MEAN SEA LEVEL

Carl Friedrich Gauss? (1777-1855) was the first to
propose that an equipotential surface corresponding
to mean sea level be considered as the mathematical
surface of the Earth. The term geoid was first used
in 1873 by J.B. Listing (1808-82) who defined it as
being "the equipotential surface of the Earth's gravity
field which would coincide with the ocean surface if the
latter were undisturbed and affected only by the Earth's
gravity field" (NGS 1986). This definition is now
regarded as deficient since it assumes that the
oceanic surface specified is an equipotential surface -
more about this below. A commonly accepted
"modern" definition of the geoid is "the equipotential
surface of the Earth's gravity field which best fits, in the

least squares sense, mean sea level' (NGS 1986).

MSL is an empirical determination based on long
term measurements of tidal heights recorded by tide
gauges. A knowledge of the reasons why the sea
level rises and falls, and of other factors affecting
MSL, is important in understanding the differences
between it and the geoid.

Tidal forces acting on the Earth are due to the
gravitational attractions of the Moon, the Sun and
the planets (in order of decreasing effect) combined
with centrifugal forces. For example, the mass of
the Moon exerts an attractive force on the Earth,
and centrifugal forces are created by the Earth-
Moon couple rotating about a common centre of
gravity where the rotation rate is approximately
2m/28 radians/day and the centre of gravity of the
couple is 4720 km from the Earth's centre. Tidal
forces (which are in addition to gravity as defined
earlier) cause the equipotential surfaces of the Earth
to be deformed into prolate shapes bulging in the
directions of the Earth-Moon and Earth-Sun axes.
Water will constantly adjust its level to coincide with
an equipotential surface responding to a tidal force;
this is easily seen in the case of the rise and fall of
sea level (ocean tides), but tidal forces also cause very
small movements of land masses (solid Earth tides)
as well as periodic changes in the "depth" of the
Earth's atmosphere. In this paper, unless indicated
otherwise, "tides" refer to ocean tides, and those
other (and much smaller) tides will be ignored.

2 Gauss is regarded as the prince of mathematicians and
according to Melluish (1931, p.40) ".. seems to have left
no branch of mathematics unadorned by his researches".
In his Theoria motus corporum coelestium (1809), Gauss
used his theory of least squares to calculate the orbit of the
minor planet Ceres from a small number of observations
and predicted its future position in the heavens. As the
director of the astonomical observatory at Géttingen from
1807 until his death in 1855, Gauss was actively interested
in geodesy and published seminal works on potential
theory and conformal mapping (Struik 1987, p.143).



A number of tidal cycles must be taken into account
in any determination of MSL. Doodson and
Warburg (1941, p.39) list the following "short
cycles:

(a) lunar/solar semidiurnal and diurnal cycles of
12 and 24 hours due to the Earth's rotation
about its axis;

(b) lunar monthly cycles varying between 27.2
and 29.5 days due to the Moon's rotation
about the Earth;

(c) solar annual cycles due to the Earth's
rotation about the Sun;

and three "long" cycles of:

(i) 18.03 years, known as the Saros, in which
solar and lunar eclipses repeat themselves;

(i) 18.61 years, the period of revolution of the
Moon's nodes?; and

(iif) 19.00 years, the Metonic* period of lunar
phases.

These luni-solar tidal cycles (the planets being
regarded as having a negligible effect) give rise to
different high and low water means, depending on
the period of observation. Any "accurate" MSL
should be derived from at least twelve months of
tide gauge readings and, if possible, a nineteen year
period of observation.

Tides are not the only factors affecting the
determination of MSL. Bomford (1980, p.249) lists
others as:

e the location of tide gauges (estuarine and bay
versus ocean);

e the prevailing wind (offshore or onshore);

e uniform changes in sea level due to an
increase or decrease in polar ice (eustatic
changes);

e changes in the barometric pressure and
density of the Earth's atmosphere; and

e changes in temperature, salinity and currents.

The question as to whether MSL is an equipotential
surface is often posed, and Bomford (1980, p.250)
notes that if the free surface of a uniform liquid at
rest closely approximates an equipotential surface
then, MSL fails to meet these conditions in several
respects:

3 The nodes are the intersections on the celestial sphere of
the Moon's orbital plane and the ecliptic - the plane of the
Earth's orbit around the Sun.

*'The cycle discovered by the Athenian astronomer Meton
in which the Moon returns (nearly) to the same apparent
position with respect to the Sun, so that new and full
moons occur at the same dates in the corresponding year
of each cycle. (SOED, 1993)

(1) its surface is overlain by air, whose pressure
varies — it is, therefore, not quite a "free"
surface;

(i) the wind applies a horizontal force to the
surface;

(ii1) the density of the water varies, principally
with its temperature and salinity;

(iv) the sources of water — rain, rivers, and
melting ice — do not coincide with the areas
where water is lost by evaporation;

(v) these inequalities cause ocean currents
which act towards the restoration of
equilibrium, but with a time lag.

The result is that MSL departs from an equipotential
surface by amounts which are more or less constant
with time. It is therefore, at best, only an
approximation of the geoid (Bomford, loc. cit.).

As a final comment, it is worthwhile noting that
MSL for a region is determined from tide gauges
located around relatively shallow coastlines and does
not include tidal measurements of the open ocean.
This lack of open ocean tidal information (Done
1984, sec.3.1, p.29; Doodson & Warburg 1941,
sec.12.2, p.100) adds a further reason why no
regional MSL can be a truely coincidental part of the
"global" geoid.

THE AUSTRALIAN HEIGHT DATUM

Prior to 1972, there was a multitude of levelling
datums in operation across Australia, each adopted
by government and regional instrumentalities to suit
their own particular purposes. For example, in
Melbourne, there was the Board of Works datum,
the Tramways datum, the Harbour Trust datum and
the Dandenong Valley Authority datum (to name
just a few), a similar plurality being evident in other
states of the Commonwealth. To unify the various
datums, the Division of National Mapping (now
AUSLIG - Australian Surveying and Land
Information Group) undertook a massive campaign
of levelling across Australia. This program, which
commenced in 1945, culminated in 1971 with the
simultaneous least squares adjustment of 97,320 km
of primary levelling connected to thirty tide gauges
around the Australian coastline. MSL for 1966-68
was assigned a value of zero at the tide gauges and
the Australian Height Datum (AHD) is that surface
which passes through MSL at the tide gauges and
through points with zero AHD height vertically
below the other basic junction points in the levelling

network (Roelse et al. 1971, pp.1 & 48; NMC 1986,
p.60).



ELLIPSOIDS AND SPHEROIDS

As Newton predicted, and as the French proved by
measurement, the Earth has a slightly flattened
spherical shape, with a polar diameter less than an
equatorial diameter in the ratio of 299:300
(approximately).  Such shapes are known as
spheroids; the SOED (1993) defines a spheroid as:
"A body resembling or approximating to a sphere in
shape; esp. one formed by the revolution of an ellipse
about one of its axes." This special case of a spheroid
is known as an ellipsoid of revolution and it may be
prolate (rotated about its major axis) or oblate
(rotated about its minor axis). In geodesy, an oblate
ellipsoid of revolution - simply known as the
ellipsoid — is used as the mathematical approximation
of the Earth's shape and its minor axis is parallel to
(or coincident with) the Earth's axis of revolution.
In Australia, and indeed in most geodesy texts, the
terms ellipsoid and spheroid are taken to be
synonymous.

The size and shape of an ellipsoid can be defined by
one of three geometric relationships:
(i) specifying @ and b, the lengths of the major
and minor semi-axes respectively; or

(1) specifying a and f, where f is the flattening

a—b
where f = ; or
a
s . . 2 . « .
(i) specifying a and e”, where e is the eccentricity
22
, a =b
where e =——5—.
e,
a

Figure 1 shows the relationships between Cartesian
coordinates x,y,z and geodetic coordinates ¢, A,h of a
point P related to an ellipsoid whose semi-major axis
is OF = a and semi-minor axis is ON = b. The
geodetic coordinates are defined as follows:

(1) ellipsoidal height 4 is the distance from the
ellipsoid to the point P, measured along the
normal to the ellipsoid passing through P
and intersecting the minor axis at H;

(1) geodetic longitude A is the angle, measured
in the plane of the equator, between the
meridian plane of Greenwich, and the
meridian plane containing P; and

(1) Geodetic latitude ¢ is the angle, measured
in the meridian plane, between the

ellipsoidal equator and the normal passing
through P.
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Figure 1

The Cartesian coordinates (x,y,z) of P($,A,h) on an

ellipsoid of semi-major axis 4 and flattening f may be
calculated by the following formulae:

x=(V+h) cos$ cos A (3.1

y=(V+h)cosp sinA (3.2)

z=(v(1-¢’ )+h) sing (3.3)
where

v=HP =

a

VI- e’ sin’ )

V (nu) is the radius of curvature of the ellipsoid in
the prime vertical plane (see below)

¢ =f(2-f)
b=a(l-f)
OH =vé’ sing

The inverse computation of (¢$,A,h) given (x,y,z)
can be made using the following:

x
cos A=— (4.1)
r
z+ve’ sing
tan = ————— (4.2)
r
.
b=

-V (4.3)



Note: In equation (4.2), functions of the latitude
appear on both sides of the equation, thus
requiring an iterative solution for ¢. A first
approximation for ¢ may be obtained from
rtan=z.

The ellipsoid is a surface of varying curvature and
planes intersecting the ellipsoid create elliptical
curves of intersection having changing radii of
curvature, ~rather than the constant radii
characteristic of circular curves. Intersecting planes
containing the normal to the ellipsoid create special
curves of intersection known as normal section
curves, and at any point on an ellipsoid there are an
infinite number of possible normal section curves of
intersection. Two normal section curves are of
interest in geodesy: (i) the meridian curve, which
has the least radius of curvature p (rho), and (i)
the prime vertical curve, which has the greatest
radius of curvature ¥ (nu). Every curved surface
has these principal  curvatures® in  mutually
perpendicular directions known as the principal
directions (Lauf 1983, p.19). (Two special cases are a
sphere which has principal curvatures which are
constant and equal, and a cylinder which has one
principal curvature finite and constant and the other
infinite.)

. . . 2 .
For a latitude ¢ on an ellipsoid 4, e” the equations
for the principal radii of curvature are

,/(I—ez sin’ ¢)3 .
S — (5.2)

(1-¢’ sin’ §)

The radius of curvature of a normal section curve
having an azimuth & (alpha) is

pv
R, = .2 2
(psin” &+ vcos” &)

(5.3)

and a mean radius of curvature is

R, =pv (5-4)

These equations for the radii of curvature p, ¥, R,
and R coupled with the geometric relationships

5 Gauss, in 1803, published his theorems on curvatures of
surfaces in Disquisitiones generales circa superficies curvas,
roughly translated as "A general discourse on curved
surfaces", in which he provided the foundation for the
branch of mathematics now known as the differential
geometry of curved surfaces (Struik 1987, p.143).

linking a, b, f and e’ are the fundamental formulae
required for any calculations of distances and
directions between points on an ellipsoid (NMC
1986, p.16).

THE GEOCENTRIC EQUIPOTENTIAL ELLIPSOID

As noted above, among the mathematicians who
went with Maupertuis to Lapland to measure the
meridian arc was Alexis Claude Clairaut (1713-65).
Clairaut had already published a mathematical paper
on the theory of space curves; on his return from
Lapland he published his Théorie de la figure de la
terre® in 1743. This became the standard work on
the equilibrium of fluids and the attraction of
ellipsoids of revolution (Struik 1987, p.128). It
contained one of the most striking formulas of
physical geodesy:—

f+f= —;-m )
where

_b . _
f= “ f = e~V and
a }/E

2 .
w’a  centrifugal force at equator
m~ =

Y gravity at equator

fis the geometric flattening of the ellipsoid, £ is an
analogous quantity known as the gravity flattening,
¥g and ¥, are the values of gravity at the equator

and pole respectively and @ is the Earth's angular
velocity.

Clairaut's  equation, although containing an
approximation for the constant m, showed that the
geometric flattening f can be derived from f* and m,
which are purely dynamical quantities obtained by
gravity measurements; in other words, the flattening
of the Earth can be obtained from gravity
measurements (Heiskanen & Moritz 1967, p.75).

Clairaut's work, with subsequent refinements by
mathematicians and geodesists of the 18th, 19th and
20th centuries, forms the basis of the theory of the
geocentric equipotential ellipsoid. This theory can be
used to show that an homogeneous ellipsoid,
concentric with and having the same mass as the
Earth, and rotating with the same angular velocity
about the Earth's axis, will generate a theoretical
gravity field known as the normal gravity field.

6 Theory of the figure of the Earth.



The surface of this ellipsoid (also called the normal
ellipsoid) is an equipotential surface of the normal
gravity field and the magnitude and direction of
normal gravity can be computed on or above the
normal ellipsoid. Hence, a geocentric equipotential
ellipsoid can be used as a reference surface for both
position and gravity.

Since the early 1900's, the parameters of many "best
fit" ellipsoids have been determined from
observations of the various effects of the Earth's
gravity field. These observations have included:

(i) direct measurements of gravity and the
determination of gravity anomalies;

(ii) astro-geodetic differences between observed
astronomic and computed geodetic values of
latitude, longitude and azimuth at selected
stations  in  trigonometric  networks
(astronomic  values are related to
equipotential surfaces of the Earth's gravity
field); and

(iii) measurements to satellites whose orbital
characteristics are directly related to the
Earth's gravitational attraction.

In 1924, the International Union of Geodesy and
Geophysics (IUGG) adopted an ellipsoid as the best
representation of the size and shape of the Earth.
This ellipsoid, known as the International Ellipsoid
of 1924 was considered at the time, to be the best fit
of the geoid, on a global basis. The geometric
parameters of the ellipsoid were determined by the
American geodesist Hayford in 1909 from astro-
geodetic data in the United States.

Since that time there have been several revisions of
parameters and the currently accepted ellipsoid is
defined by the Geodetic Reference System 1980
(GRS80), adopted at the XVII General Assembly of
the JTUGG in Canberra, December 1979 (BG, 1988).
The GRS80 is based on the theory of a geocentric
equipotential ellipsoid defined by the following four

parameters:

e equatorial radius of the Earth
a=6378137m

e geocentric gravitational constant of the Earth
(including the atmosphere)
GM =3986005x10°m’s™
e dynamical form factor of the Earth (excluding
the permanent tidal deformation)
J,=108263x10°
e angular velocity of the Earth
w=7292115x10"" rad s”!

The gravitational constant GM is the product of the
Newtonian gravitational constant G and the total
mass of the Earth M. The dynamical form factor J,

is a function of the Earth's moments of inertia (polar
and equatorial), the radius 2 and the mass M. It is
also linked to the dynamical constant m in Clairaut's
equation (6).

All geometric constants of the GRS80 ellipsoid (the
normal ellipsoid) can be computed from the four
defining parameters. In addition, physical constants,
such as the gravitational potential of the ellipsoid
(normal potential) and the magnitude of gravity on
the ellipsoid (normal gravity) can also be computed.
Hence the GRS80 ellipsoid is a convenient reference
surface for gravity as well as position. Formulae,
definitions, parameters, constants and other
information related to the GRS80 are given in The
Geodesist's Handbook 1988 (BG, 1988).

The development of equipotential geocentric
ellipsoids is a continuing process; densification of
gravity data (especially over the oceans) and
refinements of the values of GM and J, from
satellite orbital data will allow improvement of the
ellipsoidal model so that GRS80 be superseded in its

turn.

GRAVITY ANOMALIES AND THE GEOID-ELLIPSOID
SEPARATION N

Absolute values of gravity can be determined by
either pendulum or free-fall devices which require
precise timing of the observed motions of bodies
which are then converted into gravity values by
using appropriate equations of motion.  The
instrumentation required is large and cumbersome
and is only used to establish reference stations at a
limited number of locations around the world. The
establishment of these global gravity networks has
been coordinated by the ITUGG and the current
network is known as the Intemational Gravity
Standardisation  Network 1971 [IGSN  1971]
(Vanicek & Krakiwsky 1986, p.535). Densification
of the gravity network is achieved by using portable
devices, called gravimeters, which measure gravity
differences between points. New points in the
network are connected to base stations via
measurement loops and the gravity differences are
corrected for instrumental errors, any "misclosures”
in the gravity loops being removed by adjustment.
This technique should be familiar to surveyors, since
it is based on the same practical principles used to
densify levelling networks such as the AHD.
Australia is covered by a network of gravity stations
and gravity measurements are continually being
made for various geophysical research purposes -
particularly mining, where gravity anomalies may
indicate the locations of ore bodies beneath the
Earth's surface. The word anomaly is generally taken
to mean any variation from a "normal state"; in



geodesy (and geophysics), a gravity anomaly Ag 1s
defined as the difference between the "observed"
value of gravity g and the value of normal gravity ¥

(gamma):
Ag=g-v- )

Since gravity is usually measured at points on the
Earth's surface, its value will be "affected" by
elevation (since gravity decreases as elevation
increases), and also by the surrounding topography.
The topographic effect on gravity measurements
(and theodolite measurements, which are related to
equipotential surfaces of the Earth's gravity field)
was discovered by Bouguer during the expedition to
Peru in 1735, when he determined that the mass of
the Andes was affecting theodolite observations.
Corrections for elevation and/or topography will
yield several different gravity anomalies, each one
suitable for specific purposes. In geodesy, when
gravity observations are used to determine the size
and shape of the geoid, it is usual for the
observations to be corrected only for height above
sea level. The corrected observations, less the values
of normal gravity (see equation 7) give free-air
gravity anomalies, which are regarded as the
differences between gravity "observed" on the geoid
and normal gravity. The term free-air signifies that
the correction is determined by assuming that the
point of observation is suspended in "free-air" above

the geoid.

[It is interesting to note that the application of free-
air corrections has the effect of "moving" the mass of
the Earth (between the observation points and the
geoid) inside the geoid, thus affecting the total mass
distribution of the Earth, which in turn causes a
slight change in the shape of the geoid to a
(practically) parallel surface known as a co-geoid.
This 1s a "Catch-22" situation, since gravity
anomalies are used to determine the shape of the
geoid. In this paper, the theoretical difference
between geoid and co-geoid will be ignored.]

Free-air gravity anomalies are used to determine the
geoid-ellipsoid separation N (see the following section
for an explanation), often computed at regular grid
intervals over regions of interest and known as a
geoid model. N is the link between ellipsoidal height b
(measured along the normal) and orthometric height
H (measured along the vertical from the geoid to P).
This relationship is shown in Figure 2 and given by
the equation

h=H+N (8.1)
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Figure 2
(The vertical is a curved line intersecting all
equipotential surfaces at right angles)

The diagram is hugely exaggerated and, in reality, N
varies quite slowly, for example, approximately 60m
from Melbourne to Cairns (Kearsley & Govind
1991, Fig.2, p.33), which is roughly equivalent to 3
cm per km.

In practice, surveyors obtain ellipsoidal height
differences between points 45 from an adjustment
of their GPS measurements and AN values from
geoid models such as AUSGEOID93” (Steed &
Holtznagel 1994, p.22). These can be converted to
orthometric height differences AH by

AH=Ah-AN. (8.2)

Therefore, if one point in the survey has a known
AHD level value, other AHD values can be obtained
by adding and subtracting appropriate values of
AH. This presupposes that the surface of the AHD
is approximately parallel to the geoid in the area of
interest. Steed and Holtznagel (1994, pp.22-27)
have compared AHD levels obtained by GPS and
traditional spirit levelling techniques and concluded
that GPS heighting is capable of producing results
within third-order spirit levelling limits, provided
that suitable N values are used.

GEOPOTENTIAL MODELS AND GEOID MODELS

Analogous to the Earth's gravity potential W, which
is the sum of its gravitational and rotational
potentials, (see equation 1) the equipotential

7 A grid of computed N values over Australia, produced by
AUSLIG, which can be interpolated to give values at
desired locations.

S~ "\ EQUIPOTENTIAL



potentials, (see equation 1) the equipotential
ellipsoid (GRS80) has a normal gravity potential U,
the sum of its own gravitational and rotational
potentials:
U=U +U. )
2 ¢

Subtracting U from W (noting that the two
rotational potentials are the same) gives the
disturbing potential T:

T=W,-U,. (10)

The gravitational potential W, can be computed from

a spherical harmonic expansion (Torge 1980, pp.28-
31):
oMl &(a) & 1
Wg = -—L1+Z(~) Z{an(t)(C;" cosmA +S;" sinml)}J
r n=2 ~T m=0
(11.1)
where

7 is the radial distance from the geocentre;

t=siny and y is the geocentric latitude;

A is longitude;

n and m are integers known as the degree and
order respectively;

C” and S are geopotential coefficients (of

n

nth degree and mth order); and

P (t) are associated Legendre functions.

Equation (11.1) is known as a geopotential model and
coefficients C”" and S* up to degree and order 360
(approximately 130,000 terms) have been
determined from an empirical analysis of gravity and
satellite altimetry data. The current data set,
compiled by Dr Richard H. Rapp of the Ohio State
University, is designated OSU91A. An improved
set of coefficients, using the latest data, is expected
to be available in 1997; four preliminary models are
currently being tested by an International
Association of Geodesy (IAG) working group led
by Dr Michael Sideris of the University of Calgary.

Normal gravitational potential U, can be computed

from another spherical harmonic

expansion
(Heiskanen & Moritz 1976, p.73):
GM[ & |(a) -l
o] oo
r '_ n=2 (N J

where # 1s even, and
J,, are normal potential coefficients derived
from the dynamical form factor J,.

10

Whilst equations (11.1) and (11.2) look formidable,
they are simply gigantic summations grist to the
computer's mill — and T (equation 10) can be
computed with relative ease. Combining T with vy
(normal gravity) in Bruns' formula® gives the geoid-
spheroid separation N:

T
=, (12)
¥

Gravity anomalies A g are linked to the disturbing

potential by the differential equation (Heiskanen &
Moritz 1967, p.89):

oT 2
—-=T

_ar r

Ag= (13)

This equation was solved by Stokes? who gave:

=£HAgS(\v) do (14.1)
In

and from Bruns' formula (N=T/G, where G is a
mean value of gravity over the Earth):

N= L_UAg Sty ) do (14.2)
In G

where

R is the mean radius of the spherical Earth;

G is the mean value of gravity over the Earth;

S(y) is known as Stokes' function and y is
the angular distance between points;

do is an element of solid angle; and

H is an integration over the full solid angle.

]

Equations (14.1) and (14.2) both known as Stokes'
integral, (Heiskanen & Moritz 1967, pp.84-94) show
how the disturbing potential 7" and the geoid-
ellipsoid separation N are related to gravity
anomalies A g. The equations may be interpreted in
the following manner:

8 This formula, together with other famous equations of
physical geodesy, was given by Ernst Heinrich Bruns
(1848-1919) in Die Figur der Erde, Berlin, 1878.

? Sir George Gabriel Stokes (1819-1903), Lucasian
professor of mathematics, Cambridge and the foremost
British authority of his time on the principles of geodesy.
In his study of 1849 he generalized the theory relating the
Earth's shape to the strength of gravity (obtaining
Clairaut's equation as a particular result) and published his
famous equation linking the geoid-ellipsoid separation to
gravity anomalies.



number of points Q, covering the Earth's
surface. Gravity anomalies are known at all
points Q,, as are the spherical distances y,
from P. The sum of the product Ag S(y ) for
all @, multplied by R/4m gives the
disturbing potential 7; division by G gives the
geoid-ellipsoid separation N.

In theory, solutions for N using Stokes' integral
require gravity data covering the entire Earth; this of
course is not available (nor is it ever likely to be) and
in practice only gravity anomalies over a relatively
small region of the Earth are used. Stokes' integral
solutions may be improved by using "reduced"
gravity anomalies; obtained by subtracting a
theoretical anomaly, derived from a geopotential
model!®, from the "observed" anomaly. These
reduced anomalies are then used to compute a small
value N’ that can be added to N computed from the
geopotential model. This technique, which should
give more "accurate" values for N, was used to
produce the geoid model AUSGEOID93 (Kearsley
& Govind 1991; Steed & Holtznagel 1994), a grid of

computed N values covering Australia.

SUMMARY

Surveyors are constantly making measurements
related to the Earth's gravity field: they have been
for centuries, theodolite and spirit levelling
observations being the most obvious. Unul very
recently however, the inter-relation between
surveying gravity  (or
equipotential surfaces) has largely been ignored by
the profession, mainly because the bulk of surveying
work has been "plane" surveying over relatively small
areas using traditional methods, such that the
connection can be conveniently ignored. The small
minority concerned with geodetic surveying, in
which the connection cannot be ignored, was just
that — a very small minority — but GPS is changing all
that. Nowadays, the surveyor must be familiar with
the idea of the ellipsoid and geoid, the differences
between them and the relationships between these
surfaces and the AHD. Even if surveyors aren't
using GPS in their daily operations, the community,
who rightly regard surveyors as experts in
measurement, does expect them to have a sound
theoretical as well as technical knowledge of GPS

measurements  and

10 It is possible to "create" a set of spherical harmonic
coefficients of T by subtracting normal potential
coefficients from corresponding geopotential coefficients
(see equations 11.1 & 11.2) This spherical harmonic
model of T can then be numerically differentiated with
respect to r and equation (13) used to compute a gravity
anomaly related to the geoid defined by the geopotential
model.

and how it can be used to their advantage (as
clients). Understanding relevant new technology is a
necessary part of the professional activity of a
modern surveyor.

The connections between gravity and the geoid, and
gravity and the equipotential ellipsoid (GRS80) are
important. Both reference surfaces, the geoid for
height, the ellipsoid for position and gravity, are
equipotential surfaces: the former, an equipotential
surface of the Earth, the latter, an equipotential
surface of the normal (model) earth. Both are
determined from analyses of the Earth's gravity field.
This paper has provided an explanation of gravity,
and how the famous Newtonian Universal Law of
Gravitation led to a better understanding of the
Earth's shape, together with Clairaut's discovery of
the link between the Earth's geometric flattening f
and its gravity flattening f*. These explanations
have been given some historical "treatment" to show
the clear connection between surveying (geodesy)
and the great mathematicians and scientists of the
17th and 18th centuries, although only a few have
been mentioned in the text. A knowledge of the rich
history of surveying, however small, is useful in
understanding these complex topics.

The inter-relationship between the geoid, Mean Sea
Level (MSL) and the Australian Height Datum
(AHD) is often confusing. There is no physical
connection between the three surfaces — although it
could be argued that the AHD is connected to the
particular MSL of 1966-68 defined by thirty tide
gauges around Australia — but the following practical
links exist:

(i) the geoid is the particular equipotential
surface of the Earth's gravity field which
best fits, in the least squares sense, MSL;

(i) MSL is an empirical determination based on
long term measurements of tidal heights;
the "accuracy" of its estimation is dependent
on the period of observation and the
location of tide gauges. It is not an
equipotential surface — at best, MSL is only
an approximation of the geoid; and

(i) the AHD 1s a ‘'practical' surface
approximating MSL around the coastline of
Australia.

Hence, for many applications, the AHD is regarded
as a reasonable determination of the geoid over
Australia, which explains the often-seen words "..
AHD heights are orthometric heights ..." This of
course is not correct — the statement should include
the word "approximate".

Estimation of orthometric heights from GPS
measurements requires a knowledge of the value of
the geoid-ellipsoid separation N. This value cannot
be determined exactly, but instead, must be



interpolated from pre-prepared geoid models, or
computed from geopotential models. In either case,
surveyors will be using models based largely on
gravity anomalies.  This paper has provided
information on the nature of gravity anomalies and
has attempted to shed some light on geopotential
models and integration techniques used to determine
N. These complex numerical procedures are really
applied mathematics and any explanation of the
processes (apart from the superficial) will necessarily
involve the quotation of formulae. In this paper,
they are provided as an adjunct to the explanation
and are not intended to cloud the issues in
mathematical mystique!

Finally, two questions and answers:

1. Ts an orthometric height H (GPS ellipsoidal
height / less the geoid-ellipsoid separation N) a
reasonable estimation of AHD height?

This can only be answered by comparative field
checks. GPS heighting surveys should, where
possible, include "old" points of known AHD
height so that some degree of confidence can be
assigned to the estimation of AHD height at
"new" points. This is good survey practice.
Recent studies (Steed & Holtznagel 1994)
indicate that GPS heighting is capable of
producing results within third-order spirit
levelling limits provided that suitable N values
are used.

2. What has the geoid got to do with me?

The geoid is the sensible reference surface for
heights derived from GPS measurements and
geopotential/geoid models. In the future, when
GPS heighting has become as commonplace as
spirit levelling, surveyors will have quite a lot to
do with the geoid.
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