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TRAVERSE COMPUTATION ON THE ELLIPSOID AND 

ON THE UNIVERSAL TRANSVERSE MERCATOR 

PROJECTION 

These notes describe in detail the methods and formulae used in reducing traverses of 

measured directions and distances on the Earth's surface to: (i) a set of quasi-measurements 

on the reference ellipsoid and then (ii) a set of derived (plane) directions and (plane) 

distances on the Universal Transverse Mercator projection. 

As an example of the reductions required a traverse between trigonometric stations 

Buninyong, Flinders Peak, Bellarine and Arthur's Seat in Victoria is used.  This traverse 

should be well known to surveyors in Australia as it has been used to demonstrate reduction 

techniques in The Australian Map Grid Technical Manual (NMC 1972), The Australian 

Geodetic Datum Technical Manual (NMC 1985) and the Geocentric Datum of Australia 

Technical Manual (ICSM 2002).  In the latter publication the geodetic and grid coordinates 

are Geocentric Datum of Australia 1994 (GDA94) and Map Grid Australia (MGA94) values 

respectively.  In the earlier publications the coordinates were Australian Geodetic Datum 

1966 (AGD66) and Australian Map Grid (AMG66) values.  Figure 1 shows a diagram of the 

Buninyong-Arthur's Seat traverse with the original AMG66 grid coordinates of the fixed 

stations in the traverse.  The coordinates in brackets are MGA94 and have been derived from 

the AMG66 coordinates using the transformation program GDAit Version 2.2 (18/10/01) and 

data file A66 National (13.09.01).gsb; these transformed values will be used in these notes.  

In The Australian Map Grid Technical Manual (NMC 1972) the original measurements were 

a set of quasi-observations on the ellipsoid, spheroidal distances and (clockwise) spheroidal 

angles, shown below in Table 1.  In these notes we call these quasi-observations geodesic 

distances and geodesic angles. 

 
Station  
 Spheroidal Distance 

Spheroidal angle 

Smeaton   1 
   
Buninyong 2 
 (2-3) 54972.161 m 

1-2-3 119º47´10.06˝ 

Flinders Peak 3 
 (3-4) 27659.183 m 

2-3-4 196º43´49.44˝ 

Berllarine 4 
 (4-5) 37175.169 m 

3-4-5 163º45´32.33˝ 

Arthur's Seat 5 
 

4-5-6 158º34´37.46˝ 

Bass   6 
   

 

Table 1.  Spheroidal distances and angles of the Buninyong-Arthur's Seat traverse 
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 Figure 1.  Buninyong-Arthur's Seat traverse 

Data from: The Australian Map Grid Technical Manual, Special 

Publication 7, National Mapping Council of Australia, 1972. 
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REDUCTION OF TRAVERSE MEASUREMENTS TO THE 

ELLIPSOID 

The traverse measurements to be considered are: 

 1. Horizontal directions measured with a theodolite, 

 2. Vertical circle observations measured with a theodolite, 

 3. Slope distances (or chord distances) derived from measurements made with 

Electronic Distance Measuring (EDM) equipment. 

 

Traverse measurements are made between points on the Earth's terrestrial surface and 

traverse stations  have complimentary points  on the surface of the 

reference ellipsoid; Q is the projection of P via the ellipsoid normal.  The reduction of 

measurements to the ellipsoid means applying a series of corrections to the measurements 

made between points  to obtain a set of quasi-measurements between points  on the 

ellipsoid.  The corrections may be divided into gravimetric and geometric corrections; 

gravimetric corrections applied first, followed by geometric corrections. 

1 2, , , kP P P…

kP

1 2, , , kQ Q Q…

kQ
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Figure 2. Projection of P on the Earth's surface to Q on the ellipsoid and  

on the geoid.  Note that P, Q,  and  do not lie in the same 

vertical plane since the plumbline is a 3D space curve. 

0P

0P 0Q

 

Gravimetric corrections are applied to theodolite observations only.  The rotational axis of a 

theodolite (that is correctly levelled and in adjustment) is coincident with the vertical at P 

and the horizontal plane of the theodolite is tangential to the equipotential surface of the 

Earth's gravity field passing through P.  In general, the vertical and the ellipsoid normal do 
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not coincide and gravimetric corrections are applied to the observations to create a set of 

measurements with respect to the ellipsoid normal and geodetic horizon plane at P.  The 

geodetic horizon plane at P is a plane parallel to the plane tangential to the ellipsoid at Q.  

Gravimetric corrections involve the deflection components  (meridian plane) and η  (prime 

vertical plane) which must be obtained from a geoid model such as AUSGeoid98.  

Gravimetric corrections are generally very small and are often ignored.  In these notes they 

will be computed and applied and the reader may gauge their applicability to other traverse 

reductions. 

ξ

Geometric corrections are applied to both theodolite and distance measurements. 

 

SYMBOLS 

THE GREEK ALPHABET 

Alpha   Iota Ι   Rho Ρ   Α α ι ρ

Beta   Kappa Κ  κ  Sigma Σ   Β β σ

Gamma   Lambda Λ  λ  Tau Τ   Γ γ τ

Delta   Mu Μ   Upsilon ϒ   Δ δ μ υ

Epsilon   Nu Ν   Phi   Ε ε ν Φ φ ϕ

Zeta   Xi Ξ   Chi   Ζ ζ ξ Χ χ

Eta   Omicron Ο  ο  Psi   Η η Ψ ψ

Theta   Pi   Omega Ω   Θ θ ϑ Π π ω

 

α  = azimuth, clockwise from true north 0° to 360° 

,A Gα α  = astronomic azimuth and geodetic azimuth 

12 21,α α  = azimuth from point 1 to point 2 and azimuth from point 2 to point 1 

β  = grid bearing measured clockwise from Grid North,  β α γ= +

γ  = angle of refraction 

γ  = grid convergence, positive East of the central meridian and negative West 

δ  = arc-to-chord correction with sign defined by θ β  δ= +

ε  = deflection of the vertical in direction α  and  cos sinε ξ α η α= +

,s gε ε  = deflections of the vertical at the Earth's surface and the geoid respectively 

η  = deflection of the vertical in the prime vertical plane 

,s gη η  = deflection of the vertical in the prime vertical plane at the earth's surface and 

the geoid 

θ  = plane bearing measured clockwise from Grid North, θ β  δ= +

ν  = radius of curvature in prime vertical plane 

1 2,ν ν  = radius of curvature of ellipsoid in prime vertical plane at points 1 and 2 
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mν  = ( )1 2 2ν ν+  

ξ  = deflection of the vertical in the meridian plane 

,s gξ ξ  = deflections of the vertical in the meridian plane at the Earth's surface and the 

geoid 

ρ  = radius of curvature of ellipsoid in meridian plane 

1 2,ρ ρ  = radius of curvature of ellipsoid in meridian plane at points 1 and 2 

mρ  = ( )1 2 2ρ ρ+  

φ  = geodetic latitude, negative south of the equator 

1 2,φ φ  = latitude at points 1 and 2 respectively 

mφ  = ( )1 2 2φ φ+  

s = geodesic distance (also ellipsoidal or spheroidal distance) 

a, b = major and minor semi-axes of the ellipsoid 
2e  = square of the (first) eccentricity of the ellipsoid = ( )2 2a b a− 2  

2e′  = square of the second eccentricity of the ellipsoid = ( )2 2a b b− 2  

f = flattening of ellipsoid = ( )a b a−  

h = ellipsoid height (height above ellipsoid measured along normal) 

1 2,h h  = ellipsoidal heights at points 1 and 2 respectively 

H = orthometric height (height above geoid measured along plumbline) 

K = Line Scale Factor 

k = coefficient of refraction 

k = Point Scale Factor 

0k  = central meridian scale factor = 0.9996 

L = plane distance 

N = h  = geoid-ellipsoid separation H−

R = ρν  = mean radius of curvature 

Rα  = radius of curvature of a normal section in a given azimuth 
2

mr  =  for 2
0kρν ( )1 2 2mφ φ φ= +  

z  = zenith distance (vertical angle measured from the zenith) 
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REDUCTION FORMULA 

The derivations of the following equations can be found in selected texts and references.  No 

attempt is made here to explain the derivations and the reader is directed to the references 

for derivations and detailed discussion. 

 

GRAVIMETRIC CORRECTIONS TO THEODOLITE 

OBSERVATIONS 

 
sin cos

corrected direction observed direction
tan

s A s A

A
z

ξ α η α⎧ ⎫⎪ ⎪− +⎪= +⎨⎪ ⎪⎪ ⎪⎩ ⎭

⎪⎬  (1) 

 { }corrected zenith distance observed zenith distance cos sins A s Aξ α η α= + +  (2) 

 

In equations (1) and (2) observed direction and zenith distance are measurements made at P 

with a theodolite (that is correctly levelled and in adjustment) whose rotational axis is 

coincident with the vertical at P and the horizontal plane of the theodolite is tangential to 

the equipotential surface of the Earth's gravity field passing through P.  Corrected direction 

and zenith distance are quasi-measurements made at P with a theodolite whose rotational 

axis is coincident with the normal at P and the horizontal plane of the theodolite is the 

geodetic horizon plane at P (the geodetic horizon plane at P is a plane parallel to the plane 

tangential to the ellipsoid at Q). 

 

sξ  and  are deflections of the vertical (meridian and prime vertical respectively) and the 

subscript s indicates that these are deflections at the terrestrial surface at P, see Figure 2 

where .  Deflections can be determined by observations, but are usually 

computed from geoid models such as AUSGeoid98 in which case they are deflections of the 

vertical at the geoid, denoted by  and .  The differences between ,  and ,  are 

due to the gravimetric effects of the terrain between the geoid and the terrestrial surface in 

the vicinity of P.  They are difficult to model but they are usually very small (Featherstone 

& Rüeger 2000).  In these notes the differences are ignored and ,  is 

assumed. 

sη

cos sinε ξ α η α= +

gξ gη sξ

= =

sη

s gξ

gξ

η η= =

gη

ξ ξ s gη

 

Aα  is azimuth and the subscript A indicates that it is astronomic azimuth, i.e., an angle with 

respect to the observer's astronomic meridian (a meridian plane containing the north and 

south poles and the vertical at P).   is azimuth and the subscript G indicates that it is 

geodetic azimuth, i.e., an angle with respect to the observer's geodetic meridian (a meridian 

plane containing the north and south poles and the ellipsoid normal at P).  The difference 

Gα
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between  and  is small and for the purposes of reduction equations Gα Aα

α α=

(1) and (2) it can be 

assumed that . A Gα=

, ,G G hφ λ

 

REFERENCES 

 

Featherstone, W.E. and Rüeger, J.M., 2000.  'The importance of using deflections of the 

vertical for reduction of survey data to a geocentric datum', The Trans Tasman 

Surveyor, Vol. 1, No. 3, pp. 46-61, December 2000.  See also "Erratum" in The 

Australian Surveyor, Vol. 47, No. 1, p.7, June 2002. 

 

Heiskanen, W.A. and Moritz, H., 1967.  Physical Geodesy, W.H. Freeman & Co., London, 

pp. 184-88. 

 

Vanicek, P. and Krakiwsky, E., 1986.  Geodesy: The Concepts, North-Holland, Amsterdam. 

 

RMIT Lecture Notes, Relationship Between Astronomic Coordinates  and Geodetic 

Coordinates , 8 pages. 

, ,A A Hφ λ

 

GEOMETRIC CORRECTIONS TO THEODOLITE OBSERVATIONS 

 

SKEW–NORMAL CORRECTION TO GEODETIC DIRECTIONS ON AN 

ELLIPSOID 

 2 22
12 2co n dir'n = observed normal section dir'n sin 2 cos

2 m

h
e α φ

ρ

⎧ ⎫⎪ ⎪⎪ ⎪+ ⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭
(3) rrect no  sectiormal

where 

  is the ellipsoidal height of station 2 2h

 ( )2 2

( )
( )

e f= f−  is the (first) eccentricity squared and f is the ellipsoid flattening 

 
2

2 21 si

a e−
3 2

1

ne
ρ

φ−
=  is the radius of curvature of the ellipsoid in the meridian plane 

 1 2

2m

ρ ρ
ρ

+
=  

  is the azimuth between points 1 and 2 12α

  is the latitude of point 2 2φ
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In equation (3) the skew-normal correction, the term in braces { } , will be in radians.  The 

conversion from radians to seconds of arc is:  
180

seconds of arc = radians 3600
π

× × . 

The correction given by equation (3) is accurate to at least 0.001" for lines up to 100 km in 

length for targets 1000 m above the ellipsoid. 
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Figure 3.  Skew-normal correction 

 

A plane containing the normal at  (height  above the ellipsoid) and  at height  

intersects the ellipsoid along a normal section curve .  This is the observed normal 

section direction.  But the projection of  onto the ellipsoid (via the normal at ) is the 

point  and the plane containing the normal at  and the point  intersects the ellipsoid 

along the normal section .  This is the correct normal section direction.  The skew-

normal correction is also called the height of target correction.   

1P 1h 2P 2h

1 2QQ ′

2P 2P

2Q 1P 2Q

1 2QQ
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CORRECTION FROM THE NORMAL SECTION DIRECTION TO THE 

GEODESIC DIRECTION 

 
2

2
122geodesic direction = normal section direction sin 2 cos

12 m
m

s
e α φ

ν

⎧ ⎫⎪ ⎪⎪+ −⎨⎪⎪ ⎪⎩ ⎭

2 ⎪⎬⎪
 (4) 

where 

 s is the geodesic distance on the ellipsoidal between points 1 and 2 

 ( )2 2e f f= −  is the (first) eccentricity squared and f is the ellipsoid flattening 

 
( )1 22 21 sin

a

e
ν

φ
=

−
 is the radius of curvature of the ellipsoid in the prime vertical 

plane 

 1 2

2m

ν ν
ν

+
=  

  is the azimuth between points 1 and 2 12α

 1

2m

φ φ
φ

+
= 2  is the mean of latitudes of points 1 and 2 
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Figure 4.  Reciprocal normal sections on the ellipsoid 
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A plane containing the ellipsoid normal at  and the point  (the projection of  on the 

ellipsoid) intersects the surface of the ellipsoid along the normal section curve QQ .  The 

reciprocal normal section curve  (the intersection of the plane containing the normal at 

 and the point  with the ellipsoidal surface) does not in general coincide with the 

normal section curve  although the distances along the two curves are for all practical 

purposes the same.  Hence there is not a unique normal section curve between  and . 

1P 2Q 2P

21

1Q

2 1Q Q

2P 1Q

1 2QQ

2Q

 

A geodesic is a unique curve on the 

surface of an ellipsoid and is the line 

of shortest distance between  and 

.  In general, a geodesic lies 

between the reciprocal normal 

section curves and divides the angle 

between the normal sections in the 

ratio of 1/3 to 2/3. 

1Q

2Q
Q

Q

1

2

geodesic

Q1Q2normal section

Q1Q2normal section

Δ

Δ⎯
3

 Figure 5.  Geodesic curve between normal sections 

 

In equation (4) the correction from the normal section to the geodesic, the term in braces 

, will be in radians.  The conversion from radians to seconds of arc is: { }

 
180

seconds of arc = radians 3600
π

× × . 

 

The correction given by equation (4) is accurate to at least 0.001" for lines up to 150 km in 

length on the ellipsoid.  At 1500 km, the correction is approximately 7" and the formula is 

accurate to about 0.6".  At greater distances the accuracy of the formula deteriorates and 

other methods should be used to determine the correction. 

 

The difference between the length of the geodesic and either of the normal sections seldom 

attains 1 mm at 1500 km and can be ignored for all practical purposes (NMC 1985). 
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DETERMINATION OF ELLIPSOIDAL HEIGHT DIFFERENCES 

FROM VERTICAL CIRCLE THEODOLITE OBSERVATIONS AND 

SLOPE DISTANCES 

To reduce a chord distance (or slope distance) between points  and  on the Earth's 

terrestrial surface to a distance s on the ellipsoid between the projections  and , the 

ellipsoidal heights  and  at  and  must be known.  Ellipsoidal height differences 

 can be determined from vertical circle theodolite observations and measured 

slope distances and ellipsoidal heights of successive points of a traverse determined from a 

known starting height.  Two formulae can be used; one using the chord distance D and the 

other using the geodesic distance s 

1P 2P

1Q 2Q

1h 2h 1P 2P

2h h hΔ = − 1

 

Chord distance (or slope distance) D known 

 ( )
2

2
12 2 1 1 1 1 2cos 1 2 sin

2
D

h h h D z k z i g
Rα

Δ = − = + − + −  (5) 

Geodesic distance s known 

 ( )
2

1
12 2 1 1 2

1

1 1 2
tan 2

h s s
h h h k i g

R z Rα α

⎛ ⎞⎧ ⎫⎪ ⎪⎟⎪ ⎪⎜ ⎟Δ = − = + + − + −⎜ ⎨ ⎬⎟⎜ ⎟⎜ ⎟⎪ ⎪⎝ ⎠⎪ ⎪⎩ ⎭
 (6) 

where 

 D is the chord distance (or slope distance) between points 1 and 2 

  are the ellipsoidal heights of stations 1 and 2 1 2,h h
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  is the ellipsoidal height difference 2h h hΔ = − 1

  is the height of target at point 2 2g

  is the height of instrument at point 1 1i

 k is the coefficient of refraction 

 s is the geodesic distance between points 1 and 2 

  is the zenith distance, measured with respect to the normal at point 1, to point 2 1z

 1 1
2

1 12 1sin cos
Rα

ρ ν
ρ α ν α

=
+ 2

12

 is the radius of curvature at point 1 of the normal section 

in the direction  12α
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Figure 6.  Zenith distance measurements and height differences 

 

In Figure 6,  and  are at ellipsoidal heights  and  above the ellipsoid.  Ellipsoidal 

heights are distances measured along the normal, h  and .  Orthometric 

heights  and  are distances measured along the curved plumbline from the geoid to 

points  and .  In Australia, the Australian Height Datum (AHD) is a gently undulating 

surface approximating Mean Seal Level around the Australian coast and is regarded as a 

reasonable approximation of the geoid across Australia.  Hence AHD values can be accepted 

as orthometric heights for computational purposes.   are geoid-ellipsoid separations 

measured along ellipsoid normals .  They cannot be determined directly but may be 

derived from geoid model such as AUSGeoid98.  The connection between ellipsoidal and 

orthometric heights is given by the equation h H  but from Figure 6 it is clear that 

these quantities are not directly connected since the plumbline is a 3D space curve and 

1P

P

2P 1h 2h

1PQ

1 N

N

1 =

2,N

= +

1 22 2h PQ=

1H

1P
2H

2

0 0Q P
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0, ,  and P Q P Q

cos sε ξ α η= +

0  are not collinear.  Nevertheless, for all practical purposes h H  can be 

regarded as an exact relationship and AHD values can be substituted for H (Featherstone & 

Rüeger 2000). 

N= +

 

In equations (5) and (6), and Figure 6  is the zenith distance, measured with respect to the 

normal at point 1, to the target at point 2, and theodolite vertical circle observations (made 

with respect to the vertical) should first be corrected for gravimetric effects (the value 

) before using in the formulae; see equation 

1z

inα (2). 

 

In Figure 6, the line of sight  is curved or refracted by the Earth's atmosphere and γ  is 

a small angle, known as the angle of refraction, between the curved line of sight and the 

chord D.  By letting 

1 2PP

k ks Rαγ θ= =

21hΔ

 where k is the coefficient of refraction and θ  is the 

angle subtended by an arc length s at the centre of a circular arc of radius .  The effects of 

refraction are allowed for in the development of equations 

Rα

(5) and (6) but the value of k 

cannot be determined with any degree of certainty, since it is known to vary according to the 

time of day, the atmospheric conditions, the length of line and the direction of the line of 

sight.  Using reciprocal verticals, i.e., vertical circle observations observed simultaneously 

from both ends of the line, can eliminate this uncertainty assuming that the coefficient of 

refraction will be the same (or nearly so) at both ends of the line.  This assumption is valid if 

the Earth's atmosphere is stable and evenly heated and from practice it is well known that 

reciprocal verticals will only yield reliable height differences if the observing conditions are 

reasonable and the observations are made between the hours of 11 am and 3 pm.  When 

using equations (5) or (6) a value of k = 0.07 for average conditions is used and height 

differences  and  computed from observations at both ends; the mean result 

assumed free of uncertainty in the value of k.  For a complete treatment of the effects of 

atmospheric refraction on vertical angles the reader is directed to Bomford (1980, pp. 228-

243) 

12hΔ

 

It should be noted that some authors define the coefficient of refraction as a ratio of radii of 

curvature, k Rα σ′ =  where σ  is the radius of curvature of the curved line of sight.  This 

leads to ( )2kγ θ′≈

1 2k−

 or k .  Equations 2k′ = (5) and (6) could contain the term (  rather 

than ( ) . 

)1 k ′−

 

Equations (5) and (6) are not exact relationships and certain practical assumptions are made 

in their development (RMIT 1984).  Similar equations are derived in Rüeger (1990, pp. 108-

114). 

 13 



Geospatial Science  RMIT 

REFERENCES 

Bomford, G., 1980.  Geodesy, 4th edn, Clarendon Press, Oxford 

 

Featherstone, W.E. and Rüeger, J.M., 2000.  'The importance of using deflections of the 

vertical for reduction of survey data to a geocentric datum', The Trans Tasman 

Surveyor, Vol. 1, No. 3, pp. 46-61, December 2000.  See also "Erratum" in The 

Australian Surveyor, Vol. 47, No. 1, p.7, June 2002. 

Rüeger, J.M., 1990.  Electronic Distance Measurement – An Introduction, 3rd edn, Springer-

Verlag, Berlin. 

 

RMIT Lecture Notes, Heights by Vertical Angles, February 1984, 15 pages. 

 

 

REDUCTION OF DISTANCES TO THE ELLIPSOID 

To reduce a chord distance D between points  and  on the Earth's terrestrial surface to 

a distance s on the ellipsoid between the projections  and , the ellipsoidal heights  

and  at  and  are assumed known and .  A circular arc chord distance c 

is computed, on the assumption that a circular arc of radius  is a close approximation of 

the normal section elliptical arc between  and .  The geodesic distance s is regarded as 

equal to the distance along the circular arc. 

1P 2P

1Q

2 −
2Q

1

Rα

1h

2h 1P 2P h h hΔ =

2Q1Q

 
( )

( )( )

22

1 2

D h
c R

R h R hα
α α

− Δ
=

+ +
 (7) 

 12 sin
2
c

s R
Rα

α

−
⎛ ⎞⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

 (8) 

where 

 D is the chord distance (or slope distance) between points 1 and 2 

  are the ellipsoidal heights of stations 1 and 2 1 2,h h

  is the ellipsoidal height difference 2h h hΔ = − 1

 s is arc length of a circular arc of radius R  α

 c is the chord distance of a circular arc of radius R  α

 1 1
2

1 12 1sin cos
Rα

ρ ν
ρ α ν α

=
+ 2

12

 is the radius of curvature at point 1 of the normal section 

in the direction  12α
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Figure 7.  The geometry of the reduction of measured slope distances 

 

Figure 7 shows  and  at ellipsoidal heights  and  above the ellipsoid 

and Δ =  is the ellipsoidal height difference.  The chord distance  is the 

measured slope distance.  The actual distance measured by an EDM is the length of a curved 

electromagnetic wave path called the raw-distance.  Atmospheric corrections are applied and 

a path curvature correction also applied to compensate for the difference between the mean 

atmospheric conditions from observations at both ends of the line and the average 

atmospheric conditions over the length of the line.  The path length = raw-distance + 

atmospheric correction + path curvature correction, is shown on Figure 7 as the curved path 

.  A correction is applied to the curved path length to give the chord distance D.  It is 

assumed, in these notes that all measured slope distances have been reduced to chord 

distances D by the application of suitable corrections. 

1P

1h−
2P 1 1h PQ= 1 22 2h PQ=

2h h

2

1 2D PP=

1PP

 

In Figure 7, the normal section ellipsoidal arc between  and  is closely approximated by 

a circular arc of radius  with a centre at O and the ellipsoidal chord c can be assumed to 

be a chord of a circular arc.  The geodesic distance s is assumed, for all practical purposes, to 

be equal to the arc length of a circular curve of radius R .  This is a reasonable assumption 

since for two points , ,  and , , 

 on the GRS80 ellipsoid 

1Q

α

2Q

2 =−

Rα

=−1 38φ D
1 145λ = D

1 1000 mh = 37φ D
2 146λ = D

1 1000 mh = ( )  the azimuth and 6378160,a f= = 1 298.2 22101572
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geodesic distance are  and .  The geodesic distance 

computed using equations 

12 38 51 01.5705α ′ ′= D ′ 141903.347 ms =

(7) and (8) is 141903.348 m, a difference of 0.001 m. 

 

 

EXAMPLE TRAVERSE REDUCTIONS 

Table 2 shows a set of observations made between the stations Smeaton, Buninyong, Flinders 

Peak, Bellarine, Arthur's Seat and Bass and Figure 8 shows a diagram of the traverse.  

Smeaton, Buninyong, Arthur's Seat and Bass are fixed stations and the coordinates of 

Flinders Peak and Bellarine are required.  No corrections have been applied to the theodolite 

observations that are assumed to be the means of sets of horizontal directions (H) and 

vertical circle observations (V).  The slope distances are assumed to be chord distances 

between observing stations. 

 
Station Heights 

AT TO 
Theodolite 
Observations 

Slope 
distance Inst. Target 

Buninyong  Smeaton  H   0º00´00˝ 
V  90º15´02.92˝  1.650 1.650 

Buninyong Flinders Peak H 119º47´10.10˝ 
V  90º37´42.36˝ 54978.184 1.650 1.585 

      

Flinders Peak Buninyong H   0º00´00˝ 
V  89º47´52.25˝  1.710 1.610 

Flinders Peak Bellarine H 196º43´49.42˝ 
V  90º32´35.99˝ 27661.033 1.710 1.685 

      

Bellarine Flinders Peak H   0º00´00˝ 
V  89º40´12.54˝  1.660 1.760 

Bellarine Arthur's Seat H 163º45´32.30˝ 
V  89º51´41.91˝ 37176.908 1.660 1.590 

      

Arthur's Seat Bellarine H   0º00´00˝ 
V  90º25´24.13˝  1.680 1.775 

Arthur's Seat Bass H 158º34´37.43˝ 
V  90º15´57.84˝  1.680 1.680 

 

Table 2.  Observations of the Buninyong-Arthur's Seat traverse 
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Figure 8.  Buninyong-Arthur's Seat traverse 
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STEP 1 Computation of deflection of the vertical components ξ  and η  and geoid-ellipsoid 

separations (N-values) 

 

To apply gravimetric corrections to the theodolite observations, the deflection components  

and  need to be computed for each traverse station.  This can be done using AUSGeoid98 

available at the Geoscience Australia website (

ξ

η

http://www.ga.gov.au/) following the links 

Geodesy & GPS, then AUSGeoid and finally Compute an N value on-line.  The entry values required 

are latitude and longitude and the computed output is an N-value (geoid-ellipsoid separation 

in metres) and deflections ( ξ  and  in seconds of arc). η

 

The approximate latitudes and longitudes of the traverse stations can be computed using the 

observed directions and slope distances and two Microsoft® Excel spreadsheets available at 

the Geoscience Australia website by following the links to Geodetic Calculations then Calculate 

Bearing Distance from Latitude Longitude.  At this web page two Microsoft Excel spreadsheets are 

available: 

(i) Vincenty.xls will compute the direct case on the ellipsoid (given latitude and longitude of 

point 1 and the azimuth and geodesic distance to point 2, compute latitude and 

longitude of point 2) and the inverse case (given the latitudes and longitudes of points 

1 and 2 compute the azimuth and geodesic distance between them) and 

(ii) Redfearn.xls will convert GDA latitudes and longitudes on the ellipsoid to MGA East 

and North coordinates on a Universal Transverse Mercator (UTM) projection with 

point scale factor k and grid convergence  and vice-versa. γ

 

1.1 Use Redfearn.xls to convert the Map Grid Australia (MGA94) Zone 55 grid coordinates 

of the fixed stations Smeaton, Buninyong, Arthur's Seat and Bass to Geocentric Datum 

of Australia (GDA94) latitudes and longitudes.  The reference ellipsoid of GDA94 is the 

reference ellipsoid of the Geodetic Reference System 1980 (GRS80) 

6378137 m, 1 298.257222101a f= = .  The computed latitudes and longitudes are 

shown in Table 3. 
 
 Station East North Latitude Longitude 
1 Smeaton 232681.899 5867898.055 -37º17´49.7306˝ 143º59´03.1691˝ 
2 Buninyong 228854.041 5828259.033 -37º39´10.1563˝ 143º55´35.3835˝ 
5 Arthur's Seat 320936.378 5752958.485 -38º21´13.1263˝ 144º57´02.5549˝ 
6 Bass 373102.474 5739626.885 -38º28´57.6104˝ 145º32´42.3666˝ 
 

Table 3.  MGA Zone 55 and GDA coordinates of the fixed stations of the traverse. 
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1.2 Use Vincenty.xls to compute the geodesic azimuth and geodesic distance of the lines 

Smeaton-Buninyong and Arthur's Seat-Bass.  One will be the starting azimuth and the 

other can be used as a check on the angular misclose of the traverse. 
 

Line Station Azimuth  α geodesic distance s 
2-1 Buninyong-Smeaton   7º23´13.037˝ 39803.797 
5-6 Arthur's Seat-Bass 105º36´33.043˝ 53848.539 

 

Table 4.  Geodesic azimuths and distances of fixed lines 

 

1.3 Use the fixed azimuth of the line Buninyong-Smeaton (as the starting azimuth) and the 

observed directions and slope distance (Table 2) to obtain approximations of the 

geodesic azimuth and geodesic distance of the traverse line Buninyong-Flinders Peak.  

Use these values ( ) and the GDA coordinates of 

Buninyong in Vincenty.xls (Direct Solution) to compute the GDA coordinates of Flinders 

Peak.  The direct solution in Vincenty.xls will also give the reverse azimuth Flinders 

Peak-Buninyong 3 , which is the starting azimuth for the next traverse 

line Flinders Peak-Bellarine.  This procedure is repeated for each traverse line and 

Table 5 shows the computed results and the angular misclose of the traverse ( 0 ). 

127 10 23.137 , 54978.184 msα ′ ′′≈ ≈D

06 52 03.313′ ′′D

.824′′
 
Observed traverse lines Azimuth Distance Point 
   Buninyong (Fixed) 

-37º39´10.1563˝ lat 
143º55´35.3835˝ long 

Buninyong-Smeaton (Fixed) 
 
Buninyong-Flinders Peak (obs) 

    7º23´13.037˝ 
+ 119º47´10.10˝ 
= 127º10´23.137˝ 

 
 
54978.184 

Flinders Peak (comp) 
-37º57´03.8222˝ 
144º25´29.7304˝ 

Flinders Peak-Buninyong (comp) 
 
Flinders Peak-Bellarine (obs) 

  306º52´03.313˝ 
+ 196º43´49.42˝ 
= 143º35´52.733˝ 

 
 
27661.033 

Bellarine (comp) 
-38º09´05.3661˝ 
144º36´43.9373˝ 

Bellarine-Flinders Peak (comp) 
 
Bellarine-Arthur's Seat (obs) 

  323º28´57.174˝ 
+ 163º45´32.30˝ 
= 127º14´29.474˝ 

 
 
37176.908 

Arthur's Seat (comp) 
-38º21´13.2868˝ 
144º57´02.8792˝ 

Arthur's Seat-Bellarine (comp) 
 
Arthur's Seat-Bass (obs) 

  307º01´54.789˝ 
+ 158º34´37.43˝ 
= 105º36´32.219˝ 

 
 
 

Arthur's Seat (Fixed) 
-38º21´13.1263˝ 
144º57´02.5549˝ 

Arthur's Seat-Bass (Fixed) 
 
Misclose (Fixed-Observed) 

  105º36´33.043˝ 
- 105º36´32.219˝  
=   0º00´00.824˝ 

 
 
 

Misclose (Fixed-comp) 
       -0.1605˝ lat 
       -0.3243˝ long 

 

Table 5.  Fixed and approximate GDA coordinates of traverse stations. 

 

1.4 The geoid-ellipsoid separations (N-values) and deflection components  and η  are 

computed using AUSGeoid98 available at the Geoscience Australia website 

(

ξ

http://www.ga.gov.au/) following the links Geodesy & GPS, then AUSGeoid and finally 

Compute an N value on-line.  The entry values required are latitude and longitude (see 

Table 5) and the computed values are shown in Table 6. 
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 Station Latitude Longitude N ξ  η  
1 Smeaton -37º17´50˝ 143º59´03˝ 5.705 m +0.076˝ -6.554˝ 
2 Buninyong -37º39´10˝ 143º55´35˝ 4.869 m -5.982˝ -3.817˝ 
3 Flinders Peak -37º57´04˝ 144º25´30˝ 3.748 m -9.878˝ -1.606˝ 
4 Bellarine -38º09´05˝ 144º36´44˝ 2.979 m -8.029˝ -2.453˝ 
5 Arthur's Seat -38º21´13˝ 144º57´03˝ 3.095 m -2.557˝ -9.242˝ 
6 Bass -38º28´58˝ 145º32´42˝ 3.904 m -5.169˝ -4.428˝ 

 

Table 6.  Geoid-ellipsoid separations N and deflection components  and . ξ η

 

 The output from AUSGeoid98 rounds the latitudes and longitudes to the nearest second 

of arc and ξ  and η  are components of the deflection of the vertical at the geoid. 

 

STEP 2 Computation of gravimetric corrections to theodolite observations 

 

Using equations (1) and (2), the azimuths of the traverse lines from Table 5, the deflection 

components  and  from Table 6 and the theodolite observations from Table 2, corrections 

to the theodolite observations are computed and shown in Table 7.  The corrected theodolite 

observations (H is horizontal direction and V is zenith distance) are quasi-measurements 

made with a theodolite at P whose rotational axis is coincident with the normal at P and the 

horizontal plane of the theodolite is the geodetic horizon plane at P (the geodetic horizon 

plane at P is a plane parallel to the plane tangential to the ellipsoid at Q). 

ξ η

 

Line Azimuth α  Theodolite 
observations corr'ns 

Theodolite 
observations 

corrected to the 
normal 

Buninyong- 
Smeaton    7º23´13.037˝ H   0º00´00˝ 

V  90º15´02.92˝ 
-0.020˝ 
-6.423˝ 

H   0º00´00˝ 
V  90º14´56.497˝ 

Buninyong- 
Flinders Peak 127º10´23.137˝ H 119º47´10.10˝ 

V  90º37´42.36˝ 
-0.027˝ 
+0.573˝ 

H 119º47´10.093˝ 
V  90º37´42.933˝ 

     
Flinders Peak- 
Buninyong 306º52´03.313˝ H   0º00´00˝ 

V  89º47´52.25˝ 
-0.024˝ 
-4.642˝ 

H   0º00´00˝ 
V  89º47´47.608˝ 

Flinders Peak- 
Bellarine 143º35´52.733˝ H 196º43´49.42˝ 

V  90º32´35.99˝ 
-0.043˝ 
+6.997˝ 

H 196º43´49.401˝ 
V  90º32´42.987˝ 

     
Bellarine- 
Flinders Peak 323º28´57.174˝ H   0º00´00˝ 

V  89º40´12.54˝ 
-0.016˝ 
-4.993˝ 

H   0º00´00˝ 
V  89º40´07.547˝ 

Bellarine- 
Arthur's Seat 127º14´29.474˝ H 163º45´32.30˝ 

V  89º51´41.91˝ 
+0.012˝ 
+2.906˝ 

H 163º45´32.328˝ 
V  89º51´44.816˝ 

     
Arthur's Seat- 
Bellarine 307º01´54.789˝ H   0º00´00˝ 

V  90º25´24.13˝ 
-0.026˝ 
+5.838˝ 

H   0º00´00˝ 
V  90º25´29.968˝ 

Arthur's Seat- 
Bass 105º36´33.043˝ H 158º34´37.43˝ 

V  90º15´57.84˝ 
+0.000˝ 
-8.213˝ 

H 158º34´37.456˝ 
V  90º15´49.627˝ 

 

 Table 7. Theodolite observations, corrected to ellipsoid 

normals, for the Buninyong-Arthur's Seat 

traverse. 

 

 

 20 



Geospatial Science  RMIT 

STEP 3 Computation of ellipsoidal heights h and AHD heights by vertical angles 

 

3.1 Ellipsoidal height differences  between traverse stations are computed using 

equation 

hΔ

α

ρ

(5) with zenith distances (corrected to the normal) from Table 7and slope 

distances D from Table 2.  R , the radii of curvature in the azimuths of the traverse 

lines, are required and to compute these values, the radii of curvature  and  (meridian 

and the prime vertical respectively) are required.  These can be computed using 

Redfearn.xls with the approximate latitudes and longitudes of the traverse stations from 

Table 6 that are sufficiently accurate to give the radii to the nearest metre.  Table 8 

shows the radii of curvature  and . 

ν

ν
 

 Station Latitude Longitude ρ  ν  
1 Smeaton -37º17´50˝ 143º59´03˝ 6358870 6385990 
2 Buninyong -37º39´10˝ 143º55´35˝ 6359254 6386119 
3 Flinders Peak -37º57´04˝ 144º25´30˝ 6359577 6386227 
4 Bellarine -38º09´05˝ 144º36´44˝ 6359794 6386299 
5 Arthur's Seat -38º21´13˝ 144º57´03˝ 6360014 6386373 
6 Bass -38º28´58˝ 145º32´42˝ 6360154 6386420 

 

Table 8.  Radii of curvature of the ellipsoid (nearest metre). 

 

3.2 Using the values for  and  from Table 8 and the azimuths of the traverse lines from 

Table 5, rounded to the nearest second of arc, the radii of curvature in the azimuths of 

the traverse lines are computed from 

ρ ν

 2sin cos
Rα

ρν
ρ α ν

=
+ 2 α

 (9) 

 Note that the value of  is different at the ends of the same line. Rα

 

Line Azimuth  Rα  

Buninyong-Flinders Peak 127º10´23˝ 6376285 
Flinders Peak-Buninyong 306º52´03˝ 6376608 
Flinders Peak-Bellarine 143º35´53˝ 6368937 
Bellarine-Flinders Peak 323º28´57˝ 6369154 
Bellarine-Arthur's Seat 127º14´30˝ 6376566 
Arthur's Seat-Bellarine 307º01´55˝ 6376788 

 

Table 9.  Radii of curvature of the ellipsoid in azimuths of traverse lines (nearest metre) 
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3.3 The ellipsoidal height differences , computed using equation hΔ (5) with  as 

the coefficient of refraction, are shown in Table 10 with mean results for each traverse 

line. 

0.07k =

 

Heights 
Line 

Zenith 

distance z 

Slope 
distance 

D 
Rα  

Inst. Target 

Height 
difference 

hΔ  

Buninyong- 
Flinders Peak 90º37´42.933˝ 54978.184 6376285 1.650 1.585 -399.277 

Flinders Peak- 
Buninyong 89º47´47.608˝  6376608 1.710 1.610 +399.136 

     Mean -399.207 
Flinders Peak- 
Bellarine 90º32´42.987˝ 27661.033 6368937 1.710 1.685 -211.563 

Bellarine- 
Flinders Peak 89º40´07.547˝  6369154 1.660 1.760 +211.467 

     Mean -211.515 
Bellarine- 
Arthur's Seat 89º51´44.816˝ 37176.908 6376566 1.660 1.590 +182.523 

Arthur's Seat- 
Bellarine 90º25´29.968˝  6376788 1.680 1.775 -182.658 

     Mean +182.590 
 

 Table 10. Computed ellipsoidal height differences and mean 

height differences for the Buninyong-Arthur's Seat 

traverse. 

 

3.4 Ellipsoidal heights of the traverse stations are computed by adding the mean height 

differences From Table 10 to the starting value at Buninyong: 

 744.986 4.869 749.855h H N= + = + =
 

 Station 
Fixed 

AHD Height 
H 

N 
Ellipsoidal 

Height 
h 

Computed 
AHD Height 

H 
1 Smeaton 676.8 5.705   682.505  
2 Buninyong 744.986 4.869   749.855  

3 Flinders Peak  
3.748 

  749.855 
- 399.207 
= 350.648 346.900 

4 Bellarine  
2.979 

  350.648 
- 211.515 
= 139.133 136.154 

5 Arthur's Seat 318.626 
3.095 

  139.133 
+ 182.590 
= 321.723 318.628 

6 Bass 263.8 3.904   267.704  
 

Table 11.  Ellipsoidal and AHD heights for the Buninyong-Arthur's Seat traverse. 

 

 Note that the height misclose, the difference between the Fixed and Computed AHD 

Heights at Arthur's Seat, is not representative of height closures obtained from 

verticals. 
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STEP 4 Computation of geodesic distances 

 

The geodesic distances s are computed by first computing ellipsoidal chord distances c using 

equation (7) and then using the chord distances c in equation (8).  Table 12 shows the 

ellipsoidal chord distances c and the geodesic distances s. 
 

Line 
Slope 

distances 
D 

Height 
diff. 

 
Rα  

Ellipsoidal 
heights 

1 2,h h  

chord 
distance 

c 

geodesic 
distance 

s 
Buninyong- 
Flinders Peak 54978.184 -399.207 6376285 749.855 

350.648 54971.991 54972.161 

      
Flinders Peak- 
Bellarine 27661.033 -211.515 6368937 350.648 

139.133 27659.161 27659.183 

      
Bellarine- 
Arthur's Seat 37176.908 +182.590 6376566 139.133 

321.723 37175.116 37175.169 

 

 Table 12. Computed geodesic distances for the Buninyong-Arthur's Seat 

traverse. 
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STEP 5 Skew-normal corrections 

 

The skew-normal corrections to the observed theodolite directions are computed using 

equation (3) with the ellipsoidal heights  of the stations from Table 11 (rounded to the 

nearest metre), the mean radius of curvature 
2h

( )1 2 2mρ ρ ρ= +  from Table 8 (rounded to the 

nearest metre), approximate azimuths from Table 5 and latitudes  from Table 6 (nearest 

second of arc).  The skew-normal corrections are shown in Table 13. 
2φ

 

Line 2h  mρ  Azimuth  
(Table 5) 

Latitude  
(Table 6) corr'n 

1 Buninyong- 
2 Smeaton  683 6359062   7º23´13.037˝ -37º17´50˝ +0.012˝ 

1 Buninyong- 
2 Flinders Peak 351 6359416 127º10´23.137˝ -37º57´04˝ -0.023˝ 

      
1 Flinders Peak- 
2 Buninyong 750 6359416 306º52´03.313˝ -37º39´10˝ -0.049˝ 

1 Flinders Peak- 
2 Bellarine 139 6359686 143º35´52.733˝ -38º09´05˝ -0.009˝ 

      
1 Bellarine- 
2 Flinders Peak 351 6359686 323º28´57.174˝ -37º57´04˝ -0.023˝ 

1 Bellarine- 
2 Arthur's Seat 322 6359904 127º14´29.474˝ -38º21´13˝ -0.021˝ 

      
1 Arthur's Seat- 
2 Bellarine 139 6359904 307º01´54.789˝ -38º09´05˝ -0.009˝ 

1 Arthur's Seat- 
2 Bass 268 6360084 105º36´33.043˝ -38º28´58˝ -0.009˝ 

 

 Table 13. Skew-normal corrections to theodolite directions for the 

Buninyong-Arthur's Seat traverse. 
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STEP 6 Correction from the normal section to the geodesic 

 

The corrections from the observed normal section directions to the geodesic directions are 

computed using equation (4) with the geodesic distances s from Tables 4 and 12, the mean 

radius of curvature ( )1 2 2mν ν ν= +  from Table 8 (rounded to the nearest metre), 

approximate azimuths from Table 5 and mean latitudes ( )1 2 2mφ φ φ= +  from Table 6 

(nearest second of arc).  The corrections from the observed normal section directions to the 

geodesic directions are shown in Table 14. 
 

Line s mν  Azimuth  12

(Table 5) 
α Latitude 

 mφ
(Table 6) 

corr'n 

1 Buninyong- 
2 Smeaton  38903.797 6386055   7º23´13.037˝ -37º28´30˝ -0.001˝ 

1 Buninyong- 
2 Flinders Peak 54972.161 6386173 127º10´23.137˝ -37º48´07˝ +0.005˝ 

      
1 Flinders Peak- 
2 Buninyong 54972.161 6386173 306º52´03.313˝ -37º48´07˝ +0.005˝ 

1 Flinders Peak- 
2 Bellarine 27659.183 6386263 143º35´52.733˝ -38º03´05˝ +0.001˝ 

      
1 Bellarine- 
2 Flinders Peak 27659.183 6386263 323º28´57.174˝ -38º03´05˝ +0.001˝ 

1 Bellarine- 
2 Arthur's Seat 37175.169 6386336 127º14´29.474˝ -38º15´09˝ +0.002˝ 

      
1 Arthur's Seat- 
2 Bellarine 37175.169 6386336 307º01´54.789˝ -38º15´09˝ +0.002˝ 

1 Arthur's Seat- 
2 Bass 53849.539 6386396 105º36´33.043˝ -38º25´06˝ +0.003˝ 

 

 Table 14. Corrections from normal section directions to geodesic directions. 
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STEP 7 Calculation of geodesic directions 

 

The directions of the geodesics on the ellipsoid (geodesic directions) are obtained by adding 

the skew-normal corrections (Table 13) and the corrections from the normal section to the 

geodesic (Table 14) to the theodolite directions corrected to the normal (Table 7).  Table 15 

shows the geodesic directions reduced to 0 0  on the backsight. 0 00′ ′D ′

 

corrections 
Line 

Theodolite 
directions 
corrected to 
the normal 

skew-
normal geodesic 

Geodesic 
directions 

Buninyong- 
Smeaton    0º00´00˝ +0.012˝ -0.001˝   0º00´00˝ 

Buninyong- 
Flinders Peak 119º47´10.093˝ -0.023˝ +0.005˝ 119º47´10.064˝ 

     
Flinders Peak- 
Buninyong   0º00´00˝ -0.049˝ +0.005˝   0º00´00˝ 

Flinders Peak- 
Bellarine 196º43´49.401˝ -0.009˝ +0.001˝ 196º43´49.437˝ 

     
Bellarine- 
Flinders Peak   0º00´00˝ -0.023˝ +0.001˝   0º00´00˝ 

Bellarine- 
Arthur's Seat 163º45´32.328˝ -0.021˝ +0.002˝ 163º45´32.331˝ 

     
Arthur's Seat- 
Bellarine   0º00´00˝ -0.009˝ +0.002˝   0º00´00˝ 

Arthur's Seat- 
Bass 158º34´37.456˝ -0.009˝ +0.003˝ 158º34´37.457˝ 

 

 Table 15. Geodesic directions, for the Buninyong-Arthur's Seat 

traverse. 

 

STEP 8 Traverse observations reduced to the ellipsoid 
 

Table 16 shows the set of measurements on the ellipsoid that are used to compute the Map 

Grid Australia (MGA94) coordinates of the traverse stations Flinders Peak and Bellarine. 
 

Station  
 Geodesic Distance 

Geodesic angle 

Smeaton   1 
   
Buninyong 2 
 (2-3) 54972.161 m 

1-2-3 119º47´10.06˝ 

Flinders Peak 3 
 (3-4) 27659.183 m 

2-3-4 196º43´49.44˝ 

Berllarine 4 
 (4-5) 37175.169 m 

3-4-5 163º45´32.33˝ 

Arthur's Seat 5 
 

4-5-6 158º34´37.46˝ 

Bass   6 
   

 

Table 16.  Geodesic distances and angles of the Buninyong-Arthur's Seat traverse 
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COMMENTARY ON THE REDUCTION OF OBSERVATIONS TO 

THE ELLIPSOID 

The reduction of traverse observations to the ellipsoid set out on the previous pages may be 

regarded as exact for all practical purposes for traverse lines up to 55 km in length.  For 

shorter traverse lines certain corrections may be ignored without any practical loss of 

accuracy, e.g., inspection of Tables 7 and 15 show that corrections to observed horizontal 

directions (gravimetric, skew-normal and geodesic) do not exceed 0.03" for the Buninyong-

Arthur's Seat traverse.  It would be a safe to ignore these corrections for traverse lines less 

than 10 km in length and assume that observed traverse directions are, for practical 

purposes, directions of geodesics on the ellipsoid. 

 

Gravimetric corrections to vertical circle observations are often ignored in practice.  This is 

justified for the following reasons: 

(i) The vertical circle observations are only used to determine ellipsoidal heights for 

distance reduction, if gravimetric corrections to directions are ignored, and the equation 

used for computing height differences contains an unknown quantity k, the coefficient of 

refraction. 

(ii) To allow for the error in k by assuming a representative value, say , only a 

mean height difference from reciprocal vertical circle observations is regarded as correct. 

0.07k =

(iii) If the geoid slope with respect to the ellipsoid is fairly constant along a particular 

traverse line then the corrections for the deflection of the vertical will be of opposite 

sign but approximately equal in magnitude and their effects will cancel in the 

calculation of the mean height difference. 
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COMPUTATION OF MAP GRID AUSTRALIA (MGA94) 

COORDINATES 

Map Grid Australia (MGA94) coordinates are coordinates related to a grid superimposed 

over a Universal Transverse Mercator (UTM) projection of latitudes and longitudes related 

to the Geocentric Datum of Australia (GDA94).  The 94 in MGA94 and GDA94 refer to the 

date of the particular realization of the GDA coordinate set (latitudes and longitudes).  The 

GDA is defined by the size and shape of the reference ellipsoid, the ellipsoid of the Geodetic 

Reference System 1980 (GRS80) – semi-major axis a = 6378137 m, flattening f = 

1/298.257222101 – and the coordinates of the eight reference stations in the Australian 

Fiducial Network (AFN).  The coordinates of the AFN stations were derived from a global 

adjustment of geodetic observations and are related to the International Terrestrial Reference 

Frame of 1992 (ITRF92) at the epoch 1994.0; this effectively fixes the reference ellipsoid at 

the centre of mass of the Earth with an axis coincident with the Earth's rotational axis as at 

1994.  The national geodetic data set, consisting of distances, directions and GPS 

observations between stations in the Australian national geodetic network, was adjusted to 

fit with the AFN yielding the GDA94 coordinate set. 

 

The UTM projection is a Transverse Mercator (TM) projection of the ellipsoid with defined 

zone widths and numbering, a central meridian scale factor  and a true origin of 

coordinates in a zone at the intersection of the equator and the central meridian.  MGA94 

coordinates are related to a false origin 10,000,000 m south and 500,000 m west of the true 

origin of a UTM zone. 

0 0.9996k =

 

GDA94 latitudes and longitudes and MGA94 East and North coordinates are related by 

Redfearn's formulae, published by J.C.B Redfearn of the Hydrographic Department of the 

British Admiralty in the Empire Survey Review (now Survey Review) in 1948 (Redfearn 

1948).  Redfearn noted in his five-page paper that: "…formulae of the projection itself have 

been given by various writers, from Gauss, Schreiber and Jordan to Hristow, Tardi, Lee, 

Hotine and others – not, it is to be regretted, with complete agreement in all cases."  

Redfearn's formulae, accurate anywhere within zones of 10°–12° extent in longitude, removed 

this "disagreement" between previous published formulae and are regarded as the definitive 

TM formulae.  Redfearn provided no method of derivation but mentioned techniques 

demonstrated by Lee and Hotine in previous issues of the Empire Survey Review.  In 1952, 

the American mathematician Paul D. Thomas published a detailed derivation of the TM 

formulae in Conformal Projections in Geodesy and Cartography, Special Publication No. 251 
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of the Coast and Geodetic Survey, U.S. Department of Commerce (Thomas 1952); Thomas' 

work can be regarded as the definitive derivation of the TM formulae. 

 

The conversion between GDA94 and MGA94 coordinates and the computation of azimuths 

and geodesic distances on the ellipsoid can be achieved using the Microsoft Excel 

spreadsheets Redfearn.xls and Vincenty.xls available on the Geoscience Australia website 

(http://www.ga.gov.au) by following the links to Geodetic Calculations then Calculate Bearing 

Distance from Latitude Longitude.  At this web page two Microsoft Excel spreadsheets are 

available: 

(i) Vincenty.xls will compute the direct case on the ellipsoid (given latitude and longitude of 

point 1 and the azimuth and geodesic distance to point 2, compute latitude and 

longitude of point 2) and the inverse case (given the latitudes and longitudes of points 

1 and 2 compute the azimuth and geodesic distance between them) and 

(ii) Redfearn.xls will convert GDA94 latitudes and longitudes on the ellipsoid to MGA94 

East and North coordinates on a Universal Transverse Mercator (UTM) projection with 

point scale factor k and grid convergence  and vice-versa. γ
 

These two spreadsheets make the computation of traverses a relatively simple matter. 

There are two methods of computing the MGA94 coordinates of Flinders Peak and Bellarine 

in the Buninyong-Arthur's Seat traverse.  The first method, Traverse Computation on the 

Ellipsoid is a simple direct method, but until recently, has not been practical due to the lack 

of computational resources.  This is no longer the case as any reasonable computer capable of 

running the Excel spreadsheets Redfearn.xls and Vincenty.xls is adequate (ICSM 2002).  The 

second method, Traverse Computation on the UTM Map Plane (NMC 1972, NMC 1985) is a 

more time consuming indirect method involving iteration.  The second method of traverse 

computation has been, up until now, the only method available to the general practitioner 

lacking adequate computer resources.  Featherstone and Kirby (2002) give an outline of the 

two methods demonstrating that they give numerically equivalent results (1-3 mm agreement 

in grid coordinates) and that the second method of computing MGA94 traverse coordinates 

takes about three times longer than the first method.  
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TRAVERSE COMPUTATION ON THE ELLIPSOID 

This method is direct and simple.  Using the reduced traverse observations (geodesic 

distances and geodesic angles) and coordinates of the fixed stations Smeaton, Buninyong, 

Arthur's Seat and Bass, the latitudes and longitudes of the traverse stations are computed 

using the Excel spreadsheet Vincenty.xls and then converting the latitudes and longitudes to 

MGA94 East and North coordinates using Redfearn.xls. 

 

The reduced traverse observations are shown in Table 17 
 

Station  
 Geodesic Distance 

Geodesic angle 

Smeaton   1 
   
Buninyong 2 
 (2-3) 54972.161 m 

1-2-3 119º47´10.06˝ 

Flinders Peak 3 
 (3-4) 27659.183 m 

2-3-4 196º43´49.44˝ 

Berllarine 4 
 (4-5) 37175.169 m 

3-4-5 163º45´32.33˝ 

Arthur's Seat 5 
 

4-5-6 158º34´37.46˝ 

Bass   6 
   

 

Table 17.  Geodesic distances and angles of the Buninyong-Arthur's Seat traverse 

 

The traverse diagram is shown in Figure 8 with MGA94 coordinates of the fixed stations in 

the traverse.  It is required to compute the MGA94 coordinates of Flinders Peak and 

Bellarine. 

 

STEP 1 Computation of GDA94 coordinates of traverse 

 

1.1 Use Redfearn.xls to convert the MGA94 Zone 55 grid coordinates of the fixed stations 

Smeaton, Buninyong, Arthur's Seat and Bass to GDA94 latitudes and longitudes.  The 

reference ellipsoid of GDA94 is the reference ellipsoid of the Geodetic Reference System 

1980 (GRS80) 6378137 m, 1 298.257222101a f= = .  The computed latitudes and 

longitudes are shown in Table 18. 

 
 
 Station East North Latitude Longitude 
1 Smeaton 232681.899 5867898.055 -37º17´49.7306˝ 143º59´03.1691˝ 
2 Buninyong 228854.041 5828259.033 -37º39´10.1563˝ 143º55´35.3835˝ 
5 Arthur's Seat 320936.378 5752958.485 -38º21´13.1263˝ 144º57´02.5549˝ 
6 Bass 373102.474 5739626.885 -38º28´57.6104˝ 145º32´42.3666˝ 
 

Table 18.  MGA94 Zone 55 and GDA94 coordinates of the fixed stations of the traverse. 
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1.2 Use Vincenty.xls to compute the geodesic azimuth and geodesic distance of the lines 

Smeaton-Buninyong and Arthur's Seat-Bass.  One will be the starting azimuth and the 

other can be used as a check on the angular misclose of the traverse. 
 

Line Station Azimuth  α geodesic distance s 
2-1 Buninyong-Smeaton   7º23´13.037˝ 39803.797 
5-6 Arthur's Seat-Bass 105º36´33.043˝ 53848.539 

 

Table 19.  Geodesic azimuths and distances of fixed lines 

 

1.3 Use the fixed azimuth of the line Buninyong-Smeaton (as the starting azimuth) and the 

reduced geodesic distances and angles (Table 17) to obtain the geodesic azimuth and 

geodesic distance of the traverse line Buninyong-Flinders Peak.  Use these values 

(  and ) and the GDA94 coordinates of Buninyong 

in Vincenty.xls (Direct Solution) to compute the GDA94 coordinates of Flinders Peak.  The 

direct solution in Vincenty.xls will also give the reverse azimuth Flinders Peak-Buninyong 

, which is the starting azimuth for the next traverse line Flinders Peak-

Bellarine.  This procedure is repeated for each traverse line and Table 20 shows the 

computed results and the angular misclose of the traverse ( 0 ). 

127 10 23.097α ′ ′= D

306 52 03.394′ ′′D

′ 54972.161 ms =

.598′′
 
Observed traverse lines Azimuth Distance Point 
   Buninyong (Fixed) 

-37º39´10.1563˝ lat 
143º55´35.3835˝ long 

Buninyong-Smeaton (Fixed) 
 
Buninyong-Flinders Peak (obs) 

    7º23´13.037˝ 
+ 119º47´10.06˝ 
= 127º10´23.097˝ 

 
 
54972.161 

Flinders Peak (comp) 
-37º57´03.7047˝ 
144º25´29.5333˝ 

Flinders Peak-Buninyong (comp) 
 
Flinders Peak-Bellarine (obs) 

  306º52´03.394˝ 
+ 196º43´49.44˝ 
= 143º35´52.834˝ 

 
 
27659.183 

Bellarine (comp) 
-38º09´05.2006˝ 
144º36´43.6943˝ 

Bellarine-Flinders Peak (comp) 
 
Bellarine-Arthur's Seat (obs) 

  323º28´57.303˝ 
+ 163º45´32.33˝ 
= 127º14´29.633˝ 

 
 
37175.169 

Arthur's Seat (comp) 
-38º21´13.0881˝ 
144º57´02.5776˝ 

Arthur's Seat-Bellarine (comp) 
 
Arthur's Seat-Bass (obs) 

  307º01´54.985˝ 
+ 158º34´37.46˝ 
= 105º36´32.445˝ 

 
 
 

Arthur's Seat (Fixed) 
-38º21´13.1263˝ 
144º57´02.5549˝ 

Arthur's Seat-Bass (Fixed) 
 
Misclose (Fixed-Observed) 

  105º36´33.043˝ 
- 105º36´32.445˝  
=   0º00´00.598˝ 

 
 
 

Misclose (Fixed-comp) 
       +0.0382˝ lat 
       -0.0227˝ long 

 

Table 20.  Fixed and computed GDA coordinates of traverse stations. 
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STEP 2 Computation of MGA94 coordinates 

 

Use Redfearn.xls to convert GDA94 coordinates (latitudes and longitudes) to MGA94 

coordinates (East and North).  The results are shown in Table 21. 
 

MGA94 coordinates GDA94 coordinates Station 
East North Latitude Longitude 

Smeaton (Fixed) 232681.899 5867898.055 -37º17´49.7306˝ 143º59´03.1691˝
Buninyong (Fixed) 228854.041 5828259.033 -37º39´10.1563˝ 143º55´35.3835˝
Flinders Peak (comp) 272741.501 5796490.264 -37º57´03.7047˝ 144º25´29.5333˝
Bellarine (comp) 290769.424 5774687.462 -38º09´05.2006˝ 144º36´43.6943˝
Arthur's Seat (comp) 320936.903 5752959.676 -38º21´13.0881˝ 144º57´02.5776˝
Arthur's Seat (Fixed) 320936.378 5752958.485 -38º21´13.1263˝ 144º57´02.5549˝
Bass (Fixed) 373102.474 5739626.885 -38º28´57.6104˝ 145º32´42.3666˝
 

Table 21.  MGA94 Zone 55 and GDA94 coordinates of the traverse. 

 

The linear misclose of the traverse 

 ( ) ( )2 2linear misclose E N= Δ + Δ  

is computed by obtaining  and  are coordinate differences (Fixed – computed) at 

Arthur's Seat: 

EΔ

525

NΔ

0.  mEΔ =− , 1.191 m−NΔ =  and linear misclose = 1.302 m.  The 

length of the traverse is 119,806.513 m and the accuracy (length/misclose) is approximately 

1:92,000.  This misclose is quite different from the original traverse computations published 

in The Australian Map Grid Technical Manual, 0.018 mΔ =−E , 0.020 mNΔ =−  (NMC 

1972) and the differences are due to the fact that in these notes, the coordinates of the fixed 

stations are obtained by a transformation of the original AMG66 coordinates to GDA94 

using GDAit.  This transformation is not a uniform translation of coordinates; hence the 

original traverse misclosures are not linearly connected to the misclosures shown here. 
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TRAVERSE COMPUTATION ON THE UNIVERSAL 

TRANSVERSE MERCATOR (UTM) PROJECTION 

The Transverse Mercator (TM) projection is a conformal projection, i.e., the scale factor at a 

point is the same in every direction, which means that shape is preserved, although this 

useful property only applies to differentially small regions of the Earth's surface.  Meridians 

and parallels of the ellipsoid are projected as an orthogonal network of curves, excepting the 

equator and a central meridian, which are projected as straight lines intersecting at right 

angles.  The intersection of the equator and the central meridian is known as the true origin 

of coordinates and the scale factor along the central meridian is constant. 
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 Figure 9. Transverse Mercator projection of part of the ellipsoid. 

  Central meridian , graticule interval 15º 0 105λ = D

 

The TM projection is very useful for mapping regions of the Earth with large extents of 

latitude, but for areas away from the central meridian, distortions increase rapidly.  To limit 

the effects of distortion, TM projections are usually restricted to small zones of longitude 

about a central meridian .  The Universal Transverse Mercator (UTM) projection is a TM 

projection of the ellipsoid with defined zone widths of 6º of longitude (3º either side of the 

central meridian), a zone numbering system (60 zones of 6º width, with zone 1 having a 

central meridian 177º W and zone 60 having a central meridian of 177º E), a central 

0λ
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meridian scale factor  and a true origin of coordinates for each zone at the 

intersection of the equator and the central meridian.  To make coordinates positive 

quantities, each zone has an origin of East and North coordinates (known as the false origin) 

located 500,000 m west along the equator from the true origin for the northern hemisphere, 

and 500,000 m west and 10,000,000 m south of the true origin for the southern hemisphere. 

0 0.9996k =

 

Figure 10 shows a schematic 

diagram of a UTM zone of the 

Earth.  In the southern 

hemisphere the point P will 

have negative coordinates E',N' 

related to the true origin at the 

intersection of the central 

meridian and the equator.  P 

has positive E,N coordinates 

related to the false origin 

500,000 m west and 

10,000,000 m south of the true 

origin.  True origin and false 

origin coordinates in the 

southern hemisphere are related 

by 
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 Figure 10 Schematic diagram of a UTM zone 

showing false origins for the 

northern and southern hemispheres 
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Figure 11 shows two points  and  on 

a UTM projection with grid coordinates 

 and .  The geodesic s 

between  and  on the ellipsoid is 

projected as a curved line concave to the 

central meridian and shown on the 

diagram as the projected geodesic.   

1P 2P

1 1,E N 2,E N

2P
2

)

1P

The plane distance L is the straight line 

on the projection and  

( ) (2

2 1 2 1L E E N N= − + − 2
 (11) 

 

 

 Figure 11.  The projected geodesic 

 

The Line Scale Factor K is defined as the ratio of plane distance to geodesic distance 

 
L

K
s

=  (12) 

and the Line Scale Factor can be computed from 

 
2 2 2 2

1 1 2 2 1 1 2 2
0 21 1

6 36m m

E E E E E E E E
K k

r r

⎡ ⎤⎧ ⎫′ ′ ′ ′ ′ ′ ′ ′⎪ ⎪+ + + +⎪⎢ ⎥= + +⎨⎢ ⎥⎪⎢ ⎥⎪ ⎪⎩ ⎭⎣ ⎦
2

⎪⎬⎪

k )

 (13) 

where r  and ,  are computed for 2 2
0m ρν= ρ ν ( 1 2 2mφ φ .  Equation φ= + (13) is given in 

various technical manuals (NMC 1972, NMC 1985 and ICSM 2002) and is regarded as 

accurate to 0.1 ppm over any 100 km line in a UTM zone.  Bomford (1962) compared this 

formula with others over a known test line and recommended its use.  For most practical 

purposes, the term in braces { } in equation (13) is omitted as its effect is negligible.  For a 

line 100 km in length running north and south on a zone boundary the error in neglecting 

this term is about 0.25 ppm (NMC 1985). 

 

In Figure 11, Grid North (GN) is parallel to the direction of the central meridian and True 

North (TN) is the direction of the meridian.  The angle between True North and Grid North 

is the grid convergence .  The clockwise angle from Grid North to the tangent to the 

projected geodesic at P  is the grid bearing  and the azimuth α  is the clockwise angle from 

True North to the tangent to the projected geodesic.  Grid bearing and Azimuth are related 

by 

γ

1 β

  (14) β α γ= +
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By convention, in Australia, the grid convergence is a negative quantity west of the central 

meridian and a positive quantity east of the central meridian. 

 

In Figure 11, the plane bearing  is the clockwise angle from Grid North to the straight line 

joining  and .  The plane bearing is computed from plane trigonometry as 

θ

1P 2P

 1 2 1

2 1

tan
E E
N N

θ −
⎛ ⎞− ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠

 (15) 

The small angle between the tangent to the projected geodesic at  and the straight line 

joining  and  is the arc-to-chord correction  and is given by 
1P

1P 2P 12δ

 
( )( ) ( )22 1 2 1 2 1

12 2

2 2
1

6 2m m

N N E E E E

r r
δ

⎧ ⎫⎪ ⎪′ ′ ′ ′− + +⎪⎪= − −⎨⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭
27

⎪⎪⎬

k )

 (16) 

where  and ,  are computed for 2 2
0mr ρν= ρ ν ( 1 2 2mφ φ φ= + .  Equation (16) is given in 

various technical manuals (NMC 1972, NMC 1985 and ICSM 2002) and is regarded as 

accurate to about 0.02" over any 100 km line in a UTM zone.  Bomford (1962) compared this 

formula with others over a known test line and recommended its use.  For most practical 

purposes, the term in braces { } in equation (16) is omitted as its effect is negligible.  For a 

line 100 km in length running north and south on a zone boundary the error in neglecting 

this term is about 0.08" (NMC 1985). 

 

The arc-to-chord correction at , for the line  to , is designated as  and will be of 

opposite sign to  and slightly different in magnitude.  The arc-to-chord correction, grid 

bearing and plane bearing are related by 

2P 2P 1P 21δ

12δ

  (17) θ β δ= +

The grid convergence (given by Redfearn's equations) and the arc-to-chord corrections have a 

sign convention when used in Australia, given by the relationships in equations (14) and (17).  

Often the sign of these quantities can be ignored and the correct relationships determined 

from a simple diagram. 
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EXAMPLE TRAVERSE COMPUTATIONS ON THE UTM 

PROJECTION PLANE 

 

Using the reduced traverse observations (geodesic distances and geodesic angles) and 

coordinates of the fixed stations Smeaton, Buninyong, Arthur's Seat and Bass, the MGA94 

East and North coordinates of the traverse stations are computed using the Excel 

spreadsheet Redfearn.xls and equations (10) to (17) in a defined sequence.  The method of 

computation is iterative and each leg of the traverse is computed before proceeding to the 

next leg.  A diagram for each traverse leg is essential. 

 

The reduced traverse observations are shown in Table 22 
 

Station  
 Geodesic Distance 

Geodesic angle 

Smeaton   1 
   
Buninyong 2 
 (2-3) 54972.161 m 

1-2-3 119º47´10.06˝ 

Flinders Peak 3 
 (3-4) 27659.183 m 

2-3-4 196º43´49.44˝ 

Berllarine 4 
 (4-5) 37175.169 m 

3-4-5 163º45´32.33˝ 

Arthur's Seat 5 
 

4-5-6 158º34´37.46˝ 

Bass   6 
   

 

Table 22.  Geodesic distances and angles of the Buninyong-Arthur's Seat traverse 

 

The traverse diagram is shown in Figure 8 with MGA94 coordinates of the fixed stations in 

the traverse.  It is required to compute the MGA94 coordinates of Flinders Peak and 

Bellarine. 
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LINE 1  Buninyong-Flinders Peak 

 

.

. SMEATON 232 681.899
5867 898.055

E
N

BUNINYONG228 854.041
5828 259.033

E
N

273 741.501
5796 490.265

E
N

FLINDERS PEAK

β
=

5°
′

″

 
 

 
 

12
17

39.88

θ =
5°

′

″

 
 

 
 

12
17

19.21

θ
=

5°
30

′
″

 
 

 
 5

6.
99

L 
 54992.169

=

s 
 54972.161

=K 
 1.000 363 973

=

β
°

′
″

 =
 5

 30
 29.82

119  47  10.06° ′ ″

δ ″ = 20.67

δ ″ = 27.17

computed

1

2

3
 

 

 

Figure 12  Traverse lines Buninyong–Smeaton and Buninyong–Flinders Peak. 

 

Figure 12 shows the traverse lines Buninyong–Smeaton and Buninyong–Flinders Peak with 

computed values of relevant plane bearings ( )θ , arc-to-chord corrections ( )δ , grid bearings 

, geodesic distance (( )β )s , line scale factor ( , plane distance (  and computed 

coordinates (  of Flinders Peak.  The quantities on the diagram are computed in the 

following sequence. 

)K )L

),E N
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STEP 1 Compute the plane bearing of the back-sight line Buninyong-Smeaton 

 

Using the MGA94 coordinates from the traverse diagram (Figure 8) and equation (15) the 

plane bearing θ  of the line Buninyong-Smeaton is shown in Table 23 
 

Station 1 MGA94 
coordinates Station 2 MGA94 

coordinates 
Plane Bearing 

2-1 

Buninyong  228854.041 E 
5828259.033 N Smeaton  232681.899 E 

5867898.055 N   5º30´56.99˝ 

 

Table 23.  Plane bearing of the line Buninyong–Smeaton. 

 

 

STEP 2 Compute the arc-to-chord correction  of the back-sight line Smeaton–

Buninyong. 

δ

 

The arc-to-chord correction is computed using equation (16).  This equation requires the 

mean radius 0mr k ρν=  where  and  are computed for ρ ν ( )1 2 2mφ φ φ= + . 

 

2.1 Use the Excel spreadsheet Redfearn.xls to convert MGA94 E,N coordinates of the 

instrument station Buninyong, and back-sight station Smeaton, to GDA94 latitudes 

and longitudes.  The grid convergence γ  and the Point Scale Factor k should also be 

noted.  The grid convergence is not used in these calculations but is computed from 

Redfearn's formulae.  The Point Scale Factor k of the instrument station is used as a 

first approximation of the Line Scale Factor for the line Buninyong–Flinders Peak.  The 

computed values are shown in Table 24. 
 

Station MGA94 
coordinates 

GDA94 
coordinates 

Grid 
convergence  γ

Point Scale 

Factor k 

Buninyong  228854.041 E 
5828259.033 N 

-37º39´10.1563˝ 
143º55´35.3835˝ -1º52´43.22˝ 1.000505669

Smeaton  232681.899 E 
5867898.055 N 

-37º17´49.7306˝ 
143º59´03.1691˝   

 

 Table 24. MGA Zone 55 and GDA coordinates, grid convergence  

and Point Scale Factor k of Buninyong and Smeaton. 

γ

 

 40 



Geospatial Science  RMIT 

2.2 Calculate the mean latitude  of the line Buninyong–Smeaton and use Redfearn.xls to 

compute  and .  Then compute 

mr

ρ ν 0mr k ρν= .  Table 25 shows the computed values 

with  rounded to the nearest metre. mr
 

Radii of curvature 
Line (1-2) Mean latitude ρ  ν  

Mean radius 

0mr k ρν=  

1 Buninyong- 
2 Smeaton -37º28´29.9434˝ 6359061.793 6386054.391 6369995 

 

Table 25.  Mean radius  of the line Buninyong–Smeaton. mr

 

 

2.3 Calculate the arc-to-chord correction at Buninyong for the line Buninyong–Smeaton 

using equation (16).  Table 26 shows the computed value 
 

Station 1 MGA94 
coordinates Station 2 MGA94 

coordinates mr  
arc-to-chord 
correction 

1-2 

Buninyong  228854.041 E 
5828259.033 N Smeaton  232681.899 E 

5867898.055 N 6369995 27.17˝ 

 

Table 26.  Arc-to-chord correction at Buninyong for the line Buninyong–Smeaton. 

 

 

STEP 3 Compute the grid bearing  of the back-sight line Buninyong–Smeaton. β

 

The grid bearing of the line Buninyong–Smeaton is given by equation (17) using values in 

Tables 23 and 26. 

  5 30 56.99 27.17 5 30 29.82β θ δ ′ ′′ ′′ ′= − = − =D D ′′

′′

 

 

STEP 4 Compute the grid bearing  of the forward-sight line Buninyong–Flinders Peak. β

 

The grid bearing of the forward-sight is equal to the grid bearing of the back-sight plus the 

geodesic angle at the instrument point from Table 22. 

  5 30 29.82 119 47 10.06 125 17 39.88β ′ ′′ ′ ′′ ′= + =D D D
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STEP 5 Compute the MGA94 E,N coordinates of Flinders Peak. 

 

This step requires an iterative approach. 

The first iteration is made as follows: 

(1a) The grid bearing of the line Buninyong–Flinders Peak is assumed to be the plane 

bearing . θ

(1b) The geodesic distance s of the line Buninyong–Flinders Peak, multiplied by the Point 

Scale Factor k at Buninyong, is assumed to be the plane distance L. 

(1c) Using these approximations for  and L and plane trigonometry, approximate 

coordinates of Flinders Peak are computed. 

θ

 

The second iteration is made as follows: 

(2a) Convert the approximate grid coordinates of Flinders Peak to latitudes and longitudes 

using Redfearn.xls, calculate the mean latitude and the mean radius  for the line 

Buninyong–Flinders Peak as per steps 2.1 and 2.2 above. 
mr

(2b) Compute the arc-to-chord correction δ  at Buninyong and the Line Scale Factor K for 

the line Buninyong–Flinders Peak using equations (16) and (13). 

(2c) Compute new values for the plane bearing  and plane distance  

then use plane trigonometry to compute new approximations of the coordinates of 

Flinders Peak. 

θ β δ= + L K s= ×

 

The third iteration is made as follows: 

(3a) Compute the arc-to-chord correction δ  at Buninyong and the Line Scale Factor L for 

the line Buninyong–Flinders Peak using equations (16) and (13).  The mean radius  

computed in the second iteration can be used since its value, rounded to the nearest 

metre, will not change.  It is likely that the Line Scale Factor will remain unchanged. 

mr

(3b) Compute new values for the plane bearing  and plane distance  

then use plane trigonometry to compute new approximations of the coordinates of 

Flinders Peak. 

θ β δ= + L K s= ×

 

The changes between the second and third iterations will generally be less than 1-2 mm. 

The results of the iterative process are set out below. 
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5.1 First Iteration 

 
 

Station 1 Plane Bearing 
1-2 

Plane Distance 
L K s= ×  

Station 2 

Buninyong 
 228854.041 E 
5828259.033 N 

125º17´39.88˝ 
s = 54972.161 
K = 1.000505669 
L = 54999.959 

Flinders Peak 
 273744.675 E 
5796481.266 N 

 

Table 27.  First approximation of MGA94 coordinates of Flinders Peak. 

 

5.2 Second Iteration 

 
 

Station MGA94 
coordinates 

GDA94 
coordinates 

Flinders Peak  273744.675 E 
5796481.266 N 

-37º57´03.9992˝ 
144º25´29.6531˝ 

 

Table 28.  Approximate MGA94 and GDA94 coordinates of Flinders Peak. 
 
 

Radii of curvature 
Line (1-2) Mean latitude ρ  ν  

Mean radius 

0mr k ρν=  

1 Buninyong 
2 Flinders Peak -37º48´07.0778˝ 6359415.132 6386172.668 6370231 

 

Table 29.  Approximate mean radius  of the line Buninyong–Flinders Peak. mr
 
 

arc-to-chordStation 1 MGA94 
coordinates Station 2 MGA94 

coordinates mr  
L.S.F 

-20.68˝ Buninyong  228854.041 E 
5828259.033 N Flinders Peak  273744.675 E 

5796481.266 N 6370231 
1.000363963 

 

 Table 30. First approximations of arc-to-chord correction and Line 

Scale Factor for the line Buninyong–Flinders Peak. 
 
 

Station 1 Plane Bearing 
1-2 

Plane Distance 
L K s= ×  

Station 2 

Buninyong 
 228854.041 E 
5828259.033 N 

125º17´19.20˝ 
s = 54972.161 
K = 1.000363963 
L = 54992.169 

Flinders Peak 
 273741.502 E 
5796490.267 N 

 

Table 31.  Second approximation of MGA94 coordinates of Flinders Peak. 
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5.3 Third Iteration 
 

arc-to-chordStation 1 MGA94 
coordinates Station 2 MGA94 

coordinates mr  
L.S.F 

-20.67˝ Buninyong  228854.041 E 
5828259.033 N Flinders Peak  273741.502 E 

5796490.267 N 6370231 
1.000363973 

 

 Table 32. Second approximations of arc-to-chord correction and Line 

Scale Factor for the line Buninyong–Flinders Peak. 
 
 

Station 1 Plane Bearing 
1-2 

Plane Distance 
L K s= ×  

Station 2 

Buninyong 
 228854.041 E 
5828259.033 N 

125º17´19.21˝ 
s = 54972.161 
K = 1.000363973 
L = 54992.169 

Flinders Peak 
 273741.501 E 
5796490.265 N 

 

Table 33.  Third approximation of MGA94 coordinates of Flinders Peak. 

 

The MGA94 E,N coordinates of Flinders Peak from the third iteration (Table 33) can be 

regarded as "exact" since there has been only 1-2 mm changes between the second and third 

iterations.  Figure 12 shows a schematic view of the traverse showing final quantities. 

Inspection of the results, after the iterative process, shows that there is mm agreement 

between this method, Traverse Computation on the UTM Map Plane, and the previously 

demonstrated method Traverse Computation on the Ellipsoid (see Table 21), but the 

computational workload is very much greater. 
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LINE 2  Flinders Peak–Bellarine 

 

 

 
.

BELLARINE

BUNINYONG 228 854.041
5828 259.033

E
N

273 741.501

290 769.427

5796 490.265

5774 687.464

E

E

N

N

FLINDERS PEAK

196  43  49.44° ′ ″

δ ″ = 19.48

δ ″ = 12.22

computed
4

2

3
β

°
′

″

 =
 142

 00
 49.17

θ

°
′

″

 = 305  17  19.21
θ

°
′

″

 =
 142

 00
 36.95

L =
 27664.280

K
 =

 1.000 184 278

s =
 27659.183

β
° ′

″

 = 305  16  59.73

 
 

 

Figure 13  Traverse lines Flinders Peak–Buninyong and Flinders Peak–Bellarine. 

 

Figure 13 shows the traverse lines Flinders Peak–Buninyong and Flinders Peak–Bellarine 

with computed values of relevant plane bearings ( )θ , arc-to-chord corrections ( )δ , grid 

bearings ( )β , geodesic distance ( )s , line scale factor ( , plane distance (  and computed 

coordinates (  of Bellarine.  The quantities on the diagram are computed in the same 

sequence as set out for LINE 1 Buninyong–Flinders Peak and the abbreviated steps and 

results are as follows. 

)K )L

),E N
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STEP 1 Compute the plane bearing of the back-sight line Flinders Peak–Buninyong 

 
 

Station 1 MGA94 
coordinates Station 2 MGA94 

coordinates 
Plane Bearing 

1-2 

Flinders Peak  273741.501 E 
5796490.265 N Buninyong  228854.041 E 

5828259.033 N 305º17´19.21˝ 

 

Table 34.  Plane bearing of the line Flinders Peak–Buninyong. 

 

 

STEP 2 Compute the arc-to-chord correction  of the back-sight line Flinders Peak–

Buninyong. 

δ

 

2.1 Convert MGA94 E,N coordinates of the instrument station Flinders Peak, and back-

sight station Buninyong, to GDA94 latitudes and longitudes.  The Point Scale Factor k 

of the instrument station is used as a first approximation of the Line Scale Factor for 

the line Flinders Peak–Bellarine. 
 

Station MGA94 
coordinates 

GDA94 
coordinates 

Grid 
convergence  γ

Point Scale 

Factor k 
Flinders 
Peak 

 273741.501 E 
5796490.265 N 

-37º57´03.7047˝ 
144º25´29.5333˝ -1º35´03.64˝ 1.000230557

Buninyong  228854.041 E 
5828259.033 N 

-37º39´10.1563˝ 
143º55´35.3835˝   

 

 Table 35. MGA Zone 55 and GDA coordinates, grid convergence  

and Point Scale Factor k of Flinders Peak. 

γ

 

2.2 Calculate the mean latitude  of the line Flinders Peak–Buninyong. mr
 

Radii of curvature 
Line (1-2) Mean latitude ρ  ν  

Mean radius 

0mr k ρν=  

1 Flinders Peak 
2 Buninyong -37º48´06.9305˝ 6359415.088 6386172.654 6370231 

 

Table 36.  Mean radius  of the line Flinders Peak–Buninyong. mr

 

Alternatively, use the value of the mean radius  computed previously for the line 

Buninyong–Flinders Peak (see Table 36). 
mr

 

 

 46 



Geospatial Science  RMIT 

2.3 Calculate the arc-to-chord correction at Flinders Peak for the line Flinders Peak–

Buninyong. 
 

Station 1 MGA94 
coordinates Station 2 MGA94 

coordinates mr  
arc-to-chord 
correction 

1-2 
Flinders 
Peak 

 273741.501 E 
5796490.265 N Buninyong  228854.041 E 

5828259.033 N 6370231 19.48˝ 

 

Table 37.  Arc-to-chord correction at Flinders Peak for the line Flinders Peak–Buninyong. 

 

 

STEP 3 Compute the grid bearing  of the back-sight line Flinders Peak–Buninyong. β

 

  305 17 19.21 19.48 305 16 59.73β θ δ ′ ′′ ′′ ′= − = − =D D ′′

′′

 

 

STEP 4 Compute the grid bearing  of the forward-sight line Flinders Peak–Bellarine. β

 

  305 16 59.73 196 43 49.44 142 00 49.17β ′ ′′ ′ ′′ ′= + =D D D

 

 

STEP 5 Compute the MGA94 E,N coordinates of Bellarine. 

 

This step requires iteration. 

 

5.1 First Iteration Compute approximate coordinates of Bellarine assuming the plane 

bearing θ  is the grid bearing β  and line scale factor K is the point 

scale factor k 

 
 

Station 1 Plane Bearing 
1-2 

Plane Distance 
L K s= ×  

Station 2 

Flinders Peak 
 273741.501 E 
5796490.265 N 

142º00´49.17˝ 
s = 27659.183 
K = 1.000230557 
L = 27665.560 

Bellarine 
 290768.923 E 
5774685.447 N 

 

Table 38.  First approximation of MGA94 coordinates of Bellarine. 
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5.2 Second Iteration Use the first approximation of MGA94 coordinates of Bellarine, 

convert to GDA94 coordinates and compute .  Then compute arc-

to-chord correction 
mr

δ , Line Scale Factor K and "new" coordinates of 

Bellarine 

 
 

Station MGA94 
coordinates 

GDA94 
coordinates 

Bellarine  290768.923 E 
5774685.447 N 

-38º09´05.2655˝ 
144º36´43.6716˝ 

 

Table 39.  Approximate MGA94 and GDA94 coordinates of Bellarine. 
 
 

Radii of curvature 
Line (1-2) Mean latitude ρ  ν  

Mean radius 

0mr k ρν=  

1 Flinders Peak 
2 Bellarine -38º03´04.4851˝ 6359685.227 6386263.077 6370411 

 

Table 40.  Approximate mean radius  of the line Flinders Peak–Bellarine. mr
 
 

arc-to-chordStation 1 MGA94 
coordinates Station 2 MGA94 

coordinates mr  
L.S.F 

-12.22˝ Flinders Peak  273741.501 E 
5796490.265 N Bellarine  290768.923 E 

5774685.447 N 6370501 
1.000184279 

 

 Table 41. First approximations of arc-to-chord correction and Line 

Scale Factor for the line Flinders Peak–Bellarine. 
 
 

Station 1 Plane Bearing 
1-2 

Plane Distance 
L K s= ×  

Station 2 

Flinders Peak 
 273741.501 E 
5796490.265 N 

142º00´36.95˝ 
s = 27659.183 
K = 1.000184279 
L = 27664.280 

Bellarine 
 273769.427 E 
5774687.464 N 

 

Table 42.  Second approximation of MGA94 coordinates of Bellarine. 
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5.3 Third Iteration Repeat the procedure of the Second Iteration using the same value 

for  mr
 

arc-to-chordStation 1 MGA94 
coordinates Station 2 MGA94 

coordinates mr  
L.S.F 

-12.22˝ Flinders Peak  273741.501 E 
5796490.265 N Bellarine  290769.427 E 

5774687.464 N 6370411 
1.000184278 

 

 Table 43. Second approximations of arc-to-chord correction and Line 

Scale Factor for the line Flinders Peak–Bellarine. 
 
 

Station 1 Plane Bearing 
3-4 

Plane Distance 
L K s= ×  

Station 2 

Flinders Peak 
 273741.501 E 
5796490.265 N 

142º00´36.95˝ 
s = 27659.183 
K = 1.000184278 
L = 27664.280 

Bellarine 
 290769.427 E 
5774687.464 N 

 

Table 44.  Third approximation of MGA94 coordinates of Bellarine. 

 

The MGA94 E,N coordinates of Bellarine from the third iteration (Table 44) can be regarded 

as "exact" since there has been no changes between the second and third iterations.  Figure 

13 shows a schematic view of the traverse showing final quantities. 

Inspection of the results, after the iterative process, shows that there is mm agreement 

between this method, Traverse Computation on the UTM Map Plane, and the previously 

demonstrated method Traverse Computation on the Ellipsoid (see Table 21). 
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LINE 3  Bellarine–Arthur's Seat 
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Figure 14  Traverse lines Bellarine–Flinders Peak and Bellarine–Arthur's Seat. 

 

Figure 14 shows the traverse lines Bellarine–Flinders and Bellarine–Arthur's Seat with 

computed values of relevant plane bearings ( )θ , arc-to-chord corrections ( )δ , grid bearings 

, geodesic distance (( )β )s , line scale factor ( , plane distance (  and computed 

coordinates (

)K )L

),E N  of Arthur's Seat.  The quantities on the diagram are computed in the 

same sequence as set out for LINE 1 Buninyong–Flinders Peak and the abbreviated steps and 

results are as follows. 
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STEP 1 Compute the plane bearing of the back-sight line Bellarine–Flinders Peak 

 
 

Station 1 MGA94 
coordinates Station 2 MGA94 

coordinates 
Plane Bearing 

1-2 

Bellarine  290769.427 E 
5774687.464 N Flinders Peak  273741.501 E 

5796490.265 N 322º00´36.95˝ 

 

Table 45.  Plane bearing of the line Bellarine–Flinders Peak. 

 

 

STEP 2 Compute the arc-to-chord correction  of the back-sight line Bellarine–Flinders 

Peak. 

δ

 

2.1 Convert MGA94 E,N coordinates of the instrument station Bellarine, and back-sight 

station Flinders Peak, to GDA94 latitudes and longitudes.  The Point Scale Factor k of 

the instrument station is used as a first approximation of the Line Scale Factor for the 

line Bellarine–Arthur's Seat. 
 

Station MGA94 
coordinates 

GDA94 
coordinates 

Grid 
convergence  γ

Point Scale 

Factor k 

Bellarine  290769.427 E 
5774687.464 N 

-38º09´05.2005˝ 
144º36´43.6944˝ -1º28´32.23˝ 1.000139186

Flinders 
Peak 

 273741.501 E 
5796490.265 N 

-37º57´03.7047˝ 
144º25´29.5333˝   

 

 Table 46. MGA Zone 55 and GDA coordinates, grid convergence  

and Point Scale Factor k of Bellarine. 

γ

 

2.2 Calculate the mean latitude  of the line Bellarine–Flinders Peak. mr
 

Radii of curvature 
Line (1-2) Mean latitude ρ  ν  

Mean radius 

0mr k ρν=  

1 Bellarine 
2 Flinders Peak -38º03´04.4526˝ 6359685.217 6386263.074 6370411 

 

Table 47.  Mean radius  of the line Bellarine–Flinders Peak. mr

 

Alternatively, use the value of the mean radius  computed previously for the line Flinders 

Peak–Bellarine (see Table 40). 
mr
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2.3 Calculate the arc-to-chord correction at Bellarine for the line Bellarine–Flinders Peak. 
 

Station 1 MGA94 
coordinates Station 2 MGA94 

coordinates mr  
arc-to-chord 
correction 

1-2 

Bellarine  290769.427 E 
5774687.464 N 

Flinders 
Peak 

 273741.501 E 
5796490.265 N 6370411 11.90˝ 

 

Table 48.  Arc-to-chord correction at Bellarine for the line Bellarine–Flinders Peak. 

 

 

STEP 3 Compute the grid bearing  of the back-sight line Bellarine–Flinders Peak. β

 

  322 00 36.95 11.90 322 00 25.06β θ δ ′ ′′ ′′ ′= − = − =D D ′′

′

 

 

STEP 4 Compute the grid bearing  of the forward-sight line Bellarine–Arthur's Seat. β

 

  322 00 25.06 163 45 32.33 125 45 57.39β ′ ′′ ′ ′′ ′ ′= + =D D D

 

 

STEP 5 Compute the MGA94 E,N coordinates of Arthur's Seat. 

 

This step requires iteration. 

 

5.1 First Iteration Compute approximate coordinates of Arthur's Seat assuming the 

plane bearing θ  is the grid bearing β  and line scale factor K is the 

point scale factor k 

 
 

Station 1 Plane Bearing 
1-2 

Plane Distance 
L K s= ×  

Station 2 

Bellarine 
 290768.923 E 
5774685.447 N 

125º45´57.39˝ 
s = 37175.169 
K = 1.000139186 
L = 37180.343 

Arthur's Seat 
 320937.981 E 
5752956.466 N 

 

Table 49.  First approximation of MGA94 coordinates of Arthur's Seat. 
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5.2 Second Iteration Use the first approximation of MGA94 coordinates of Arthur's Seat, 

convert to GDA94 coordinates and compute .  Then compute arc-

to-chord correction 
mr

δ , Line Scale Factor K and "new" coordinates of 

Arthur's Seat 

 
 

Station MGA94 
coordinates 

GDA94 
coordinates 

Arthur's Seat  320937.981 E 
5752956.466 N 

-38º21´13.1930˝ 
144º57´02.6191˝ 

 

Table 50.  Approximate MGA94 and GDA94 coordinates of Arthur's Seat. 
 
 

Radii of curvature 
Line (1-2) Mean latitude ρ  ν  

Mean radius 

0mr k ρν=  

1 Bellarine 
2 Arthur's Seat -38º15´09.1968˝ 6359903.785 6386336.234 6370557 

 

Table 51.  Approximate mean radius  of the line Bellarine–Arthur's Seat. mr
 
 

arc-to-chordStation 1 MGA94 
coordinates Station 2 MGA94 

coordinates mr  
L.S.F 

-11.00˝ Bellarine  290769.427 E 
5774687.464 N Arthur's Seat  320937.981 E 

5752956.466 N 6370557 
1.000065164 

 

 Table 52. First approximations of arc-to-chord correction and Line 

Scale Factor for the line Bellarine–Arthur's Seat. 
 
 

Station 1 Plane Bearing 
1-2 

Plane Distance 
L K s= ×  

Station 2 

Bellarine 
 290769.427 E 
5774687.464 N 

125º45´46.39˝ 
s = 37175.169 
K = 1.000065164 
L = 37177.591 

Arthur's Seat 
 320936.907 E 
5752959.684 N 

 

Table 53.  Second approximation of MGA94 coordinates of Arthur's Seat. 
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 54 

5.3 Third Iteration Repeat the procedure of the Second Iteration using the same value 

for  mr
 

arc-to-chordStation 1 MGA94 
coordinates Station 2 MGA94 

coordinates mr  
L.S.F 

-10.99˝ Bellarine  290769.427 E 
5774687.464 N Arthur's Seat  320936.907 E 

5752959.684 N 6370557 
1.000065167 

 

 Table 54. Second approximations of arc-to-chord correction and Line 

Scale Factor for the line Bellarine–Arthur's Seat. 
 
 

Station 1 Plane Bearing 
1-2 

Plane Distance 
L K s= ×  

Station 2 

Bellarine 
 290769.427 E 
5774687.464 N 

125º45´46.40˝ 
s = 37175.169 
K = 1.000065167 
L = 37177.592 

Arthur's Seat 
 320936.906 E 
5752959.681 N 

 

Table 55.  Third approximation of MGA94 coordinates of Arthur's Seat. 

 

The MGA94 E,N coordinates of Arthur's Seat from the third iteration (Table 55) can be 

regarded as "exact" since there has only mm changes between the second and third iterations.  

Figure 14 shows a schematic view of the traverse showing final quantities. 

Inspection of the results, after the iterative process, shows that there is mm agreement 

between this method, Traverse Computation on the UTM Map Plane, and the previously 

demonstrated method Traverse Computation on the Ellipsoid (see Table 21). 
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