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ABSTRACT 
 
This paper presents the general outline for a least squares adjustment of a traverse network by Variation of 
Coordinates.  The standard methods set out lend themselves to computer solution and thetechnique is 
adaptable to Resections and Intersections, Triangulation and Trilateration schemes and combinations 
thereof.  A method of constraining bearings, distances and angles in the traverse network is outlined and 
necessary matrix equations developed for solution.  Equations are also developed which enable precisions of 
adjusted bearings and distances to be estimated. 
 
 
INTRODUCTION 
 
A traverse is the basic element of many surveys.  Good survey practice demands that traverses be closed so 
that miscloses may be used to assess the precision of the traverse measurements.  If the misclose is within 
acceptable limits, it is usual for the surveyor to adjust the measurements so as to eliminate the misclose.  This 
is sound practice as the traverse is now mathematically correct and hence all figures derived from this 
traverse should also be mathematically correct. 
 
Shepherd (1968, pp.317-347), lists some of the traverse adjustments that may be used: 
 

Bowditch, Transit (Wilson's method), Smirnoff, Crandall, Scale Factor axis method, and the xy 
(Ormsby) method. 

 
The common virtue of these adjustment methods is their mathematical simplicity. Unfortunately these 
techniques are non-rigorous and often based on assumptions that are not valid for todays survey equipment 
or techniques.  Traverse measurements derived from these adjustments may suffer accordingly. 
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The method of least squares is a rigorous technique that can be applied to the adjustment of single traverses 
as well as networks of connected traverses to yield the most likely values of the survey measurements.  Leahy 
(1974) has an excellent summary of the theoretical basis and development of the least squares technique. 
 
This paper will attempt to outline the basic principles of least squares as applied to the adjustment of traverse 
networks. 
 
A worked example of a traverse adjustment is provided in Appendix B as a means of understanding the 
principles and methods used. 
 
 
WHAT IS A LEAST SQUARES TRAVERSE ADJUSTMENT? 
 
A traverse is a combination of two basic survey measurements, distances and directions, which are indirect 
measurements of the coordinates of traverse points.  Assuming that mistakes and systematic errors are 
eliminated, traverse directions and distances are affected by small random errors which manifest themselves 
as miscloses in closed traverses.  A residual has the same magnitude as an error but opposite sign and since 
distances and directions are indirect measurements of coordinates, it could be said that the residuals are 
functions of the coordinates of the traverse points. 
 
A least squares traverse adjustment is the determination of a set of traverse coordinates which makes the sum 
of the squares of the residuals a minimum. 
 
This set of coordinates will be the most likely and the underlined section above is often referred to as the 
Least Squares Principle. 
 
 
HOW IS THE LEAST SQUARES PRINCIPLE APPLIED? 
 
The diagram below shows the bearing and distance between traverse points 
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Figure 1. 
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where 
 
  traverse points (P P P P Pi k1 2 3, , , , Pi  is the instrument point), 
 α α α αi i i ik1 2 3, , ,  observed directions from Pi , 
  observed distances from P , l l l li i i ik1 2 3, , , i

 E N E Ni i k k, , ,  coordinates of points P  and P  respectively, i k

 φ ik  and sik  bearing and distance of line P  to P , i k

  orientation constant. Zi

 
Referring to Figure 1, Observation Equations for the direction and distance of the line line P  to P , are; i k

 α φik ik i ik
k i

k i
v Z E E

N N
+ + = =

−
−

RST
UVW

−tan 1  (1) 

 l v s E E N Nik ik ik k i k i+ = = − + −b g b2 g2  (2) 

where  is the residual. vik

 
In equations (1) and (2) the observed directions and distances are expressed as non-linear functions of the 
coordinates E Ni i  and , E Nk k, .  Mikhail and Gracie (1981, pp.266-272), show how these equations can be 
expressed as linearized approximations using Taylor's Theorem as; 

 α φik ik i ik ik i ik i ik k ik kv Z a N b E a N b E+ + = ′ − − + +∆ ∆ ∆ ∆  

 l v s c N d E c N d Eik ik ik ik i ik i ik k ik k+ = ′ − − + +∆ ∆ ∆ ∆  

These equations can be re-arranged as residual equations for directions and distances respectively, 

 v a N b E a N b Eik ik i ik i ik k ik k ik= − f− + + −∆ ∆ ∆ ∆  (3) 

 v c N d E c N d Eik ik i ik i ik k ik k ik= − f− + + −∆ ∆ ∆ ∆  (4) 

where 
 
 ∆N  and ∆E  are small corrections to approximate coordinates ′E  and ′N  such that E E E= ′ + ∆  and 

N N N= ′ + ∆ . 
 ∆Z  is a small correction to the approximate orientation constant ′Z  such that Z Z Z= ′ + ∆ . 

 a
sik

ik

ik

= −
′

′
sinφ

  and  b
sik

ik

ik

=
′

′
cosφ

  are direction coefficients. 

 cik ik= ′cosφ   and  dik ik= ′sinφ   are distance coefficients. 

 ′φ  and ′s  are the computed bearing and distance using the approximate coordinates. 

  takes the general form: fik f = observed -  computed  

 in equation (3) f Zik ik i ik= + ′ − ′α φb g  

 in equation (4) f l sik ik ik= − ′  
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Inspection of equations (3) and (4) shows that a residual for each measurement can be expressed as a linear 
function of the unknown corrections to approximate coordinates of the end points of the traverse line.  In the 
case of direction measurements, an unknown correction to the approximate orientation constant at the 
instrument point is also included.  The "f-term" is a function of the measurement and the approximate 
coordinates. 
 
Equations of the form of (3) and (4) can be written for each observed direction and distance and in a closed 
traverse or traverse network there will be more equations than unknowns.  These residual equations can be 
represented in matrix form as; 

 v Bx f= −  (5) 

where 
 
 u number of unknowns, 
 n number of equations, 
  is an n by 1 vector of residuals, v n,1a f
  is an n by u coefficient matrix containing various combinations of direction and 

 distance coefficients, 

B n u,a f

  is a u by 1 vector of unknown corrections to the approximate coordinates and  orientation 

constants, 

x u,1a f

 f is an n by 1 vector of numeric terms derived from the measurements and computed 

 values of bearings and distances. 

f n,1a

 
The residual equations given in matrix form by equation (5) are partitioned in the following manner; 

 
v
v

B B
B B

x
x

f
f

1

2

11 12

21 22

1

2

1

2

L
NM
O
QP =
L
NM

O
QP
L
NM
O
QP −
L
NM
O
QP  (6) 

where the elements 
 
  are the residuals associated with the directions and distances respectively v1 and 2v

x
f

  are the corrections to the approximate coordinates and orientations respectively x1 and 2

  are the numerical terms associated with directions and distances respectively f1 and 2

  is a sub-matrix of direction coefficients a and b of the corrections to the approximate 
coordinates 

B11

  is a sub-matrix of coefficients of the corrections to the approximate orientation constants B12

  is a sub-matrix of distance coefficients c and d of the corrections to the approximate 
coordinates 

B21

  is a sub-matrix of zeroes B22

 
Associated with every set of measurements is a square matrix Σmm  of order n and known as the variance 
matrix.  The diagonal elements of Σ  contain variances of measurements whilst the off diagonal elements 
contain covariances between measurements.  The variance of a measurement is its standard deviation squared 
and hence a measure of precision, whilst the covariance is a measure of the dependence between two 
measurements.  If two measurements are independent then their covariance will be zero. 

mm
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In any least squares adjustment it is assumed that apriori estimates of the variances and covariances are 
available and the variance matrix Σ  is estimated by Q  mm mm

 
In many least squares adjustments the measurements are independent and hence the apriori variance matrix 

 will be diagonal and its inverse is commonly known as the weight matrix WQ Q= −1 whose diagonal 
elements are the weights of the particular measurements. 
 
The sum of the squares of the residuals can be represented in matrix form as: 

v Wv Bx f W Bx fT T
= − − =b g b g ϕ  

where v  is the transpose of v .  Mikhail and Gracie (1981, pp.68-73), show how calculus is used to minimize T

ϕ  and obtain a set of normal equations of the form; 

  (7a) B WB x B WfTd i = T

or 

 Nx t=  (7b) 

The solutions of the normal equations are; 

 x N t= −1  (8) 

where 
 
  is a u by u matrix of coefficients of the normal equations (7b), N( , )u u

  is a u by 1 column vector of numeric terms. t( , )u 1

 
and the vector x  contains the corrections to the approximate coordinates and orientation constants which 
makes the sum of the squares of the residuals a minimum.  This technique of traverse adjustment is known as 
Variation of Coordinates and is essentially an iterative process of solving for corrections to approximate values 
which is terminated when the corrections reach some predetermined value. 
 
 
CONSTRAINTS 
 
The least squares technique set out above requires at least two points in the traverse network to have fixed 
coordinate values before a solution for the corrections to the approximate coordinates of the other points can 
be determined.  This is illustrated by pinning the network diagram to the wall through two traverse points.  
Remove one pin and the network will rotate around the other thereby making the coordinates of the other 
traverse points indeterminate.  This constraining of the network can also be achieved by holding one point 
fixed and the bearing of a traverse line fixed. 
 
As well as these minimal constraints it is also possible to have additional fixed points and constrained 
bearings in the network as well as distances and angles constrained to certain fixed values. 
 
Constraining bearings, distances and angles in a traverse network to specified values means the following 
equations must be satisfied. 
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where φ θ, s and  are constrained or fixed traverse bearings, distances and angles respectively and the 
subscripts L and R refer to the left and right traverse stations defining an angle at the instrument point. 
 
Using the techniques outlined previously leads to the following constraint equations for bearings, distances and 
angles respectively. 

 − + + − − =tan tanφ φik i i ik k k ikN E N E g∆ ∆ ∆ ∆ 0  (9) 

 − − + + − =c N d E c N d E gik i ik i ik k ik k ik∆ ∆ ∆ ∆ 0  (10) 

 − − − − + + − − − =a a N b b E a N b E a N b E giR iL i iR iL i iR R iR R iL L iL L iLRb g b g∆ ∆ ∆ ∆ ∆ ∆ 0  (11) 

where 

 g E E N Nik k i k i ik= ′ − ′ − ′ − ′b g b g tanθ  in equation (9) 

 g s sik ik ik= − ′  in equation (10) 

 gik iLR iR iL= − ′ − ′θ θ θb g in equation (11) 

These constraint equations can be expressed in matrix form as; 

 Cx g 0− =  (12) 

where 
 
 c number of constraint equations, 
 u number of unknowns, 
 f is a c by u coefficient matrix, C c u,a
  is a u by 1 vector of unknown corrections to the approximate coordinates and  orientation 

constants, 

x u,1a f

 g c,1a f  is a c by 1 vector of elements derived from the constrained values of bearings, distances 

and angles and the approximate traverse coordinates. 
 
Mikhail (1976, pp.214-33), shows how the least squares principle can be applied (using constrained minima 
by Lagrange multipliers) to the combined constraint and residual equations (5) and (12) to give the solution 
for the vector of unknowns x, and the Lagrange multipliers k as a partitioned matrix equation of the form; 

 
x
k

N C
C 0

t
g

L
NM
O
QP =

−L
NM

O
QP

−L
NM
O
QP

−T 1

 (13) 

where 
 

the vector to the left of the equal sign contains (u+c)elements, the first u elements are the corrections 
to the approximate coordinates and orientation constants and the remaining c elements are Lagrange 
multipliers, 
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the partitioned square matrix to the right of the equal sign is of order (u+c) whose upper left sub-
matrix of order u by u contains the coefficients of the normal equations multiplied by -1, the lower left 
sub-matrix of order c by u contains the coefficients of the constraint equations, upper right sub-matrix 
of order u by c is the transpose of the lower left sub-matrix, and the lower right sub-matrix of order c by 
c contains zeros, 

 
the vector to the right of the equal sign contains (u+c) elements, the first u elements are the numeric 
terms multiplied by -1 and the remaining c elements are the numerical terms of the constraint 
equations. 

 
Equation (13) may be written as; 

 
x
k

t
g

L
NM
O
QP =
L
NM
O
QP
−L
NM
O
QP

α β
β γ

T

 (14) 

where the partitioned matrix to the right of the equal sign is the inverse of the matrix in equation (13). 
 
Constraint equations add flexibility to the adjustment process. If desired, any lines in the traverse network 
can be constrained to particular values of bearings and distances. The two extreme cases being; 
 
 (a) when all traverse bearings are fixed, in which case only the traverse distances will be adjusted and 
 
 (b) when all traverse distances are fixed, in which case only the traverse bearings will be adjusted. 
 
It may also be desirable to maintain certain angles in the traverse network as they were "set out" in the field, 
such as an angle of 180° at a traverse point on line between two other points, or perhaps an angle of 90° 
between two traverse lines at a particular point. 
 
These constraints can be accommodated in the adjustment by combining the particular constraint equations 
with the normal equations and solving equation (13). 
 
 
PRECISION ESTIMATION 
 
Traverse adjustment by the method of Least Squares allows precision estimation of the adjusted coordinates 
of traverse points as well as derived bearings and distances. 
 
The variance matrix of the traverse measurements Q  is a necessary apriori estimate of the "true" 
measurement variance matrix Σ .  Mikhail (1976, pp.285-88) shows that the relationship between the true 
variance matrix and the apriori estimates is: 

mm

mm

 Σmm mm= σ 0
2 Q  (15) 

where σ 0
2  is the variance factor. 

 
The variance factor is defined as "the sum of the squares of the residuals divided by the degrees of freedom" 
and can be computed from; 

 σ 0
2 = =

−v W v f W f x tT T T

r r
 (16) 

where r n u c= − +  is the degrees of freedom. 
 
The degrees of freedom in a least squares traverse adjustment is a combination of the number of redundant 
measurements and the constraints in the network and when this figure reaches a statistically significant level 
then the expected value of the variance factor is unity if the apriori estimates of the measurement variances 
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are correct.  The difference between unity and the variance factor is often used as a measure of confidence in 
the adjustment results but is dependent upon a sound knowledge of the apriori measurement variances as 
well as the degrees of freedom in the network. 
 
Mikhail (1976, pp.77-81, 159-61, 229-30) shows that the Law of Propagation of Variances applied to the 
least squares adjustment gives the variance matrix of the adjusted quantities as: 

 Σxx = −σ 0
2 N 1  (17) 

when there are no constraints in the network and 

 Σxx = −σ α0
2  (18) 

when there are constraints in the network (α  is obtained from (14)). 
 
The variance matrix Σ  contains the variances and covariances of the "adjusted quantities".  The diagonal 
elements will be the variances of coordinates or orientation constants in the same sequence as the elements 
of the vector x.  The off-diagonal elements of 

xx

Σxx  are the covariances between particular coordinates and/or 
orientation constants.  The variance matrix Σxx  may be partitioned in the following manner; 

 Σ
Σ Σ
Σ Σxx =
L
NM

O
QP

11 12

21 22

 (19) 

where 
 
  is a symmetric sub-matrix containing the variances and covariances of the adjusted 

coordinates 
Σ11

  is a symmetric sub-matrix containing the variances and covariances of the adjusted 
orientation constants 

Σ22

  is a sub-matrix containing the covariances between coordinates and orientation constants Σ12

  Σ Σ21 12= T

 
 
PRECISION OF ADJUSTED TRAVERSE COORDINATES 
 
An upper-triangular portion of the symmetric variance sub-matrix Σ11 is shown below 
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where 
 
 σ σ σ σN E N Ei i k k

2 2 2 2, , ,  are the variances of the adjusted coordinates at points Pi  and Pk  

 
and 
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σ σ σ
σ σ

σ

N E N N N E

E N E E

N E

i i i k i k

i k i k

k k

 are the covariances 

 
The standard deviation of an adjusted coordinate is simply the square root of the appropriate variance. 
 
 
PRECISION OF COMPUTED TRAVERSE BEARINGS AND DISTANCES 
 
Bearings and distances computed from the adjusted coordinates of the traverse network are non-linear 
functions of the coordinates and can be represented in a linearized matrix form as; 

 
φ
s

B
B

x
L
NM
O
QP =
L
NM
O
QP

11

21
1  (20) 

where 

 φ  are the computed bearings 
  are the computed distances s
  are defined in equation (6) B B x11 21, and 1

 
[Note that there are the same number of computed bearings and distances as there are observed directions 
and distances respectively and in the same order as equation (6)]. 
 
Applying the Law of Propagation of Variances gives; 

 
σ
σ

φ
2

2
11

21
11

11

21s

TL
NM
O
QP
=
L
NM
O
QP
L
NM
O
QP

B
B

B
B

Σ  (21) 

where 
 
 σ σφ

2 and 2
s  are the variances of the adjusted bearings and distances respectively. 

 
The matrix equation (21) gives the following formulae for the variance of an adjusted bearing and distance 
as; 

  (21a) 
σ σ σ σ σ σ σ

σ σ σ σ

φ ik i k i k i k i k

i i k k i k k i

a b

a b

i k N N N N i k E E E E

i k i k N E N E N E N E

2 2 2 2 2 2 22 2

2

= + − + + −

+ + − −

d i d
d i

i

i

and 

  (21b) 
σ σ σ σ σ σ σ

σ σ σ σ

s i k N N N N i k E E E E

i k i k N E N E N E N E

ik i k i k i k i k

i i k k i k k i

c d

c d

2 2 2 2 2 2 22 2

2

= + − + + −

+ + − −

d i d
d i

 
and the standard deviations of the adjusted bearings and distances are the square roots of the variances. 
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ERROR ELLIPSES 
 
Error ellipses are a graphical representation of the precision of the adjusted coordinates of a traverse point 
with respect to the fixed points in the network.  They can be used to gauge the "strengths and 
weaknesses" in a network.  Circular ellipses indicate a strong position fix and elongated ellipses indicate a 
weak position fix. 
 
Mikhail (1976, pp.30-31), gives the equations for the lengths of the semi-axes of the error ellipse as; 

 a N E N E N E
2 2 2 2 2 2 21

2
2= + + − +

F
HG

I
KJσ σ σ σ σd i d i  (22a) 

 b N E N E N E
2 2 2 2 2 2 21

2
2= + − − +

F
HG

I
KJσ σ σ σ σd i d i  (22b) 

 
and the angle θ  between north and the major axis of the error ellipse as; 

 tan 2
2
2θ 2

σ
σ σ

=
−
N E

N E
 (23) 

 
The correct quadrant of 2θ  is determined from the signs of the numerator and denominator in equation 
(23). 
 
It is interesting to note that precision estimation can take place before any measurements are taken. A scale 
diagram of the network is sufficient to determine approximate bearings and distances from which 
the coefficient matrix B may be deduced.  Solving the system in the manner set out will enable the variance 
matrix Σ  to be "estimated" and error ellipse parameters calculated.  The strength of the network can then 
be assessed and additional measurements taken if desired. 

xx

 
An important point to bear in mind when assessing precision is the number of constraints in the network.  
Holding one point fixed and constraining one bearing to a particular value are the minimum 
constraints that can be placed on a network using this method of solution and will yield a particular number 
for the sum of the squares of the residuals v W .  Applying additional constraints will cause vT

v WvT  to increase with a commensurate increase in the variances and covariances in Σ  and an apparent 
loss of precision in the adjusted coordinates.  Constraints should be carefully chosen so as not to distort the 
network or concentrate residuals at particular traverse lines. 

xx

 
 
CONCLUSION 
 
Least Squares is an adjustment technique founded on well accepted principles of measurements and their 
errors and is regarded as superior to all other methods of adjustment. 
 
The Least Squares method of adjustment, Variation of Coordinates, outlined above is a systematic method of 
determining the most likely values of traverse coordinates when the number of measurements exceeds the 
number of unknowns, as happens in all closed traverses.  The technique is adaptable to many surveying 
applications such as Resections and Intersections, Triangulation and Trilateration schemes as well as 
combinations of these and lends itself to computer solution. 
 
The inclusion of constraints in the form of bearings, distances and angles adds a degree of flexibility to this 
well proven adjustment process. 
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