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ABSTRACT 
 
The highest recorded speed reached by any craft under sail is 46.52 knots (86 km/h).  This record was 
set at Shallow Inlet Victoria in 1993 by Simon McKeon and Tim Daddo sailing the yacht Yellow 
Pages Endeavour; a triplanar wing sail yacht, designed and constructed in Australia.  In 2002, they 
will attempt to raise the record above 50 knots with a new yacht, Macquarie Innovation, an improved 
version of Yellow Pages Endeavour.  To determine the speed the Macquarie team has developed their 
own low-tech approach using a digital video recorder aboard the yacht and sighting posts at fixed 
distances on shore.  With the latest development of GPS technology, speed and distance travelled can 
be measured in an efficient and precise manner and this paper compares both techniques on simulated 
runs of the yacht before a recent record attempt. 
 
 
INTRODUCTION 
 
World Sailing Speed Records are awarded by the World Sailing Speed Record Council (WSSRC 
2002), an affiliated body of the International Sailing Federation (ISAF 2002).  Eligible records are 
average velocities over a 500-metre course by a yacht whose only method of propulsion is the natural 
action of the wind on the sail.  A record will only be ratified if the attempt has been monitored by a 
commissioner appointed by the ISAF/WSSRC.  The course may be defined by floats on the water or 
by transit posts on shore and a timed run is the difference between start and finish times recorded to 
the nearest one hundredth of a second.  Speed, distance divided by time, is calculated to the nearest 
one hundredth of a knot with allowance made for the resolved component of any tidal stream and/or 
current flow on the course.  A course is deemed unsuitable if the tidal flow and/or current exceed one 
knot. 
 
World Sailing Speed Records (WSSRC 2002) are established in sail area divisions: 
 10 Sq. m Class: up to and including 10 m2

 A Class: from 10 m2 up to and inc. 150 square feet (13.94 m2) 
 B Class: from 150 square feet up to and inc. 235 square feet (21.83 m2) 
 C Class: from 235 square feet up to and inc. 300 square feet (27.87 m2) 
 D Class: over 300 square feet 
 
The fastest of these class records also becomes the outright World Sailing Speed Record. 
 
In 1993 at Shallow Inlet, Simon McKeon and Tim Daddo, sailing the triplanar wing sail yacht Yellow 
Pages Endeavor, captured the B, C and D Class World Sailing Speed Records on the way to recording 
the highest speed ever attained by any craft under sail of 46.52 knots.  They achieved these multiple 
records by adjusting the area of the wing sail between runs.  Yellow Pages Endeavour was designed 
and constructed by Lindsay Cunningham and raced by a group of volunteers.  In March this year, the 
group, now known as the Macquarie World Speed Sailing Team attempted to raise their own record 
above 50 knots with a new yacht Macquarie Innovation.  This yacht, an improvement on Yellow Pages 
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Endeavour, is a solid wing sail attached by aerofoil sections to three small pontoons, one of which 
contains the skipper and crew.  In the right wind and sea conditions, with the skipper steering and the 
crew trimming the wing sail, the crew pod lifts clear of the water and the yacht rises slightly, planing 
on the pontoons.  Small hydrofoils under the pontoons assist the hull planing and offer side force 
resistance as well as steering since control from the front pontoon. 
 
Both Macquarie Innovation and Yellow Pages Endeavour are developments of the speed potential 
exhibited by C Class catamarans, the yachts that contest the Little America's Cup – a challenge cup, 
like the America's Cup, where a sailing club challenges the cup holder (another sailing club) to a series 
of match races.  McCrae Yacht Club on Port Phillip Bay, Victoria won the cup in 1985 with Victoria-
150 and defended it successfully until 1996.  Victoria-150, designed and built by Lindsay 
Cunningham, was the first C Class to effectively use a multi-slotted aerofoil wing section as a sail.  
Lindsay built several other yachts for the defence of the Little America's Cup and recognised the speed 
potential of the wing sail.  This lead to the development of both Yellow Pages Endeavour and 
Macquarie Innovation as speed record yachts. 
 
Timing of the record attempt by the Macquarie team employed a clever low-tech solution developed 
by the team in previous attempts and now embodied in the ISAF/WSSRC rules.  It uses a video 
camera mounted in the crew pod and aimed to capture images of the transit posts onshore.  The 
camera is capable of recording images at 25 frames per second.  The transit posts, placed 8 metres 
apart in pairs, define start and finish lines of the 500-metre course.  As the yacht passes the start line 
the video camera records an image of two starting posts in transit and some time later, crossing the 
finish line, records another image of the finish posts in transit. 
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Figure 1.  Schematic plan of transits posts defining the course 
 
 

Video image frame  
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Figure 2.  Diagrammatic view of the transit posts in video 
image frames m and n at the start and finish lines. 
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After a run on the course, the video is reviewed frame by frame, noting the frame numbers m and n 
showing the start and finish transits(see Figure 2).  Subtracting frame numbers and multiplying by the 
frame rate gives the elapsed time, which divided into the distance yields the average speed. 
 
This timing technique, video camera and transit posts, presents some difficulties and restrictions for 
competing teams. 
 

(1) The positioning of the transit posts is critical; not only must they produce parallel transit lines 
but these lines must be at least 500 metres apart and approximately perpendicular to the path 
of the yacht.  This requirement necessitates a survey to mark the positions of the posts and a 
plan endorsed by a surveyor to satisfy the ISAF/WSSRC commissioner. 

(2) The yacht is restricted to sailing close to the shore (and transit posts) so that video images of 
transits are clear and distinct. 

(3) Since the yacht must travel relatively close to the transit posts and at great speed, there is some 
danger to the crew if the yacht became uncontrollable and collided with the transit posts. 

(4) The direction of the shore (and hence the course) limits the allowable wind direction since a 
yacht's maximum potential speed is restricted to a narrow range of wind angles from the 
direction of travel. 

(5) The video camera must be calibrated to ensure an accurate frame rate. 
(6) Reviewing the video images is a time consuming process and is subject to human error (errors 

in visually interpreting the actual transit). 
 
Recognising these restrictions, the Macquarie team approached the Department of Geospatial Science, 
RMIT, with a proposal to investigate the use of on-board GPS as a more flexible means of determining 
sailing velocity and distance.  GPS has the following attractions and possible advantages over the 
present method. 

 
(1) GPS is a proven robust positioning technology, well documented in the surveying and 

geodetic literature (Parkinson & Spilker 1996).  When used in kinematic differential mode, 
GPS is capable of determining positions at centimetre level precision at precise and regular 
time intervals as small as 0.1 sec (Herbet et al 1997, and Ryan et al 1997). 

(2) Kinematic Differential GPS positioning removes the restriction of marked courses.  Positions 
can be determined at time intervals, say 0.1 sect∆ = , independent of the yacht's sailing 
direction.  Differences in position divided by time differences, yield velocity.  In addition, 
simple velocity plots can be used to determine which section of a yacht's speed record attempt 
should be used to determine average velocity. 

 
This paper presents an analysis of both methods (GPS and video) of determining sailing velocity.  
Simulations of GPS position recording and video recording were made during a recent record attempt 
by mounting a GPS receiver and the video camera on the Macquarie team's powerboat and making 
three runs along the marked course.  Comparing the GPS-derived velocity with the video-derived 
velocity is a useful means of benchmarking GPS velocity against an approved ISAF/WSSRC 
technique.  In addition, a Kalman filter is used to assess the precision of kinematic GPS positions and 
verify a simple method of determining approximations to instantaneous velocity from kinematic GPS. 
 
This paper also provides an analysis of the survey made to position the timing transit posts at Shallow 
Inlet and the accuracy of sailing course distances defined by transit posts. 
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THE SHALLOW INLET COURSES 
 
Shallow Inlet is a narrow curving body of water following the Bass Strait coastline of Waratah Bay 
near Wilsons Promontory, Victoria, Australia.  The small coastal township of Sandy Point is situated 
nearby.  The sailing courses on the inlet are located at a place where there is only a narrow strip of low 
sand dune separating the inlet from Bass Strait and the prevailing south-westerlies blow unimpeded 
across the courses.  The beach is quite steep and the shore line curves in a south-east direction for 
approximately 2 kilometres.  The steep beach means that relatively deep water close to shore is 
protected from the wind blowing off Bass Strait; smooth water for optimum sailing conditions. 
 

..
... .. .. .. ... ... ... ... ... ... .. .. .. .. ..

SHALLOW

INLET

A1

A2

A3

A4

A5
B1

B2
B3

B4
B5

C1

St
ar

t B
1

Fini
sh 

A1

Sta
rt

A1 

St
ar

t C
1

Fi
ni

sh
 B

1

Fi
ni

sh
 C

1

So
uth

 W
est

Wind

♦

♦

Z
♦

Y

X

PATH

OF

YACHT

C2 C3 C4 C5 D1

100 m 

 
 
 

Figure 3.  Schematic plan of sailing courses at Shallow Inlet showing the path of the 
yacht, front and rear transit posts (•) and survey control marks (♦) 

 
Figure 3 shows a schematic diagram of the sailing courses at Shallow Inlet.  Eleven (11) separate 
courses, each slightly in excess of 500 metres, were set out on the shoreline; designated A1 to A5, B1 
to B5 and C1.  Each course has a pair of transit posts at the start and finish and individual courses were 
separated by approximately 100 metres.  Each course is designated by its starting transit line; course 
A1 starts at A1 and finishes at B1, course A2 starts at A2 and finishes at B2 etc.  The last course C1 
starts at C1 and finishes at D1.  Hence, the A-courses start at A-marks and finish at B-marks, the B-
courses start at B-marks and finish at C-marks and the single C-course starts at C1 and finishes at D1.  
The middle group of courses have three transit posts at the start and finish, one in front and two at the 
rear.  The front post and one of the rear posts defined a finish line of one course and the front post and 
the other rear post defined the start of another.  The combined courses extended for approximately 1.5 
km along the shoreline with courses having varying magnetic bearings, the first course A1 130° 25', 
the middle course B1 111° 36' and the last course C1 having a bearing of 86° 27'. 
 
Two surveys of the sailing courses were made; the initial set-out survey using a Leica TC805 Total 
Station and MC5 data collector and a subsequent survey using Trimble GPS equipment in Rapid Static 
differential mode.  The second survey was used as a means of assessing the precision of the original 
survey. 
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COURSE DESIGN AND TOTAL STATION SURVEY 
 
Three control marks (♦) X, Y and Z (see Figure 2) were established at approximately 500 metre 
intervals along the shore with mark X about 250 metres south-east of the start of course A1.  A Total 
Station survey, using the data collector to record the measurements was performed connecting the 
control points X, Y and Z to the approximate locations of start and finish posts.  Arbitrary coordinates 
of 2000.0 E and 3000.0 N were assigned to Z and the datum for bearings was magnetic north.  The 
survey information was downloaded into LISCAD Surveying and Engineering Software (© Listech 
Pty Ltd) and the courses 'designed'.  The course design process was as follows: 

• Using the approximate start and finish locations of a particular course, the course bearing is 
computed. 

• Fixing the coordinates of the start (front) transit post adopting the course bearing and a 
distance of 500.3 metres (more about this later), the coordinates of the finish (front) transit 
post are computed and stored. 

• With the front start and finish transit posts fixed (and the bearing and distance between them 
known) the positions of the rear transit posts are fixed by perpendicular bearings and offset 
distances of 8 metres. 

• With the position of transit posts computed and stored, the positions of reference points, 1 
metre along transit lines were also computed and stored (see Figure 4).  The reference points, 
44 in total, were the points actually marked on the ground. 

 
A Table of the designed Sailing Course bearings and distances is shown below.  See Figure 3 for a 
schematic diagram of the courses. 
 

Course Bearing (Magnetic) Distance (metres) 
A1 130° 25' 500.27 
A2 127° 18' 500.30 
A3 123° 28' 500.30 
A4 119° 46' 500.30 
A5 116° 12' 500.30 
B1 111° 36' 500.30 
B2 106° 34' 500.30 
B3 102° 25' 500.30 
B4 096° 58' 500.30 
B5 091° 41' 500.30 
C1 086° 27' 500.30 

 
Table 1.  Sailing Course Bearings and Distances 

 
After designing the courses, the coordinates of 38 transit posts, 44 reference points and the three 
control points X, Y and Z were uploaded into the data collector.  The reference points (see Figure 3) for 
each start and end line were then marked in the field with 600 mm long, 50 mm square wooden pegs 
driven slightly below ground level. 
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Figure 4.  Schematic diagram of transit posts and reference pegs for 
the start and end lines for Course A1 and the start line of Course B1 

 
After placing the reference pegs, members of the Macquarie team then positioned the transit posts 
using string lines and offset distances for position and a levelling staff bubble to ensure the posts were 
vertical. 
 
 
ACCURACY OF THE COURSE DISTANCES 
 
At Shallow Inlet, the high and low tidal range is approximately 1.5 metres.  At high tide, the water's 
edge reaches the transit posts and at low tide, the water's edge is approximately 20-30 metres from the 
front transit posts.  Attempts on the speed record are restricted to short periods of approximately one 
hour either side of high or low water thus ensuring that the tidal stream is below the allowable 1 knot 
under the ISAF/WRSSC rules.  At high water, the yacht sails within 20-30 metres of the transit posts 
and at low water within 30-50 metres; 50 metres being the probable maximum distance between the 
yacht and the transit posts. 
 
Marking the transit post reference pegs was done by radiation from the three control points X, Y and Z 
and no radiation distance exceeded 250 metres.  It was estimated that the reference pegs could be 
placed within ±0.01 metres of their designed location; a reasonable assumption given the maker's 
specifications of the Leica TC805 Total Station, ±(0.003 + 2 ppm) for distances and ±3" for horizontal 
direction.  (This estimated precision was confirmed by the Rapid Static GPS survey performed two 
weeks after the initial survey.  Comparisons between the two surveys are detailed in a following 
section.) 
 
Assuming no error in positioning the posts from the reference pegs and the posts being exactly 8 
metres apart, the following assumptions can be used in a simple error analysis of the yacht's path 
distance.  (i) maximum distance of 50 metres from the yacht's path to front transit posts and (ii) 
positional error of posts ±0.010 metres. 
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Figure 5.  Error in transit lines and course length due to error in position of posts. 
 

Referring to Figure 5 and using similar triangles to establish the ratios 0.020
58 8
x

=  gives the error x at 

one end of 0.145 metres.  If the error in both transit lines had the worst effect the yacht would only 
travel a distance of 499.710 metres.  To allow for this possibility whilst ensuring that the yacht 
travelled at least 500 metres the course distance was adopted as 500.3 metres. 
 
It is interesting to note that a yacht travelling at 48.60 knots has a velocity of 25.00 m/s knots (1 knot = 
1 nautical mile per hour and by definition 1 nautical mile = 1852 metres exactly).  A yacht travelling at 
this speed covers 500 metres in 20.00 seconds.  The Macquarie team's video camera records at 25 
frames per second and they use frame splitting to divide a single image into four parts; allowing the 
estimation of a transit to 1/100th of a second.  This translates to a determination of the yacht's position 
along its path accurate to 0.25 metres if it's travelling at 48.6 knots, very close to the existing record. 
 
 
GPS SURVEY OF REFERENCE MARKS 
 
Two weeks after the initial survey and placement of the reference pegs a GPS survey of selected 
points was performed.  Trimble 5700 geodetic receivers were used in rapid static differential mode 
with a base station set over the rear reference peg of the start line for course A1.  GPS carrier phase 
data was collected at a rate of 5 measurements per second and each point was occupied for a minimum 
of 20 seconds.  The reference pegs for all of the front transit posts were occupied as well as the 
reference pegs for the rear transit posts of the finish lines of courses B2, B3, B4, B5 and C1.  The 
control point Z was also occupied, making 22 points in total (not including the base station).  The data 
was post-processed using Trimble Geomatics Office Version 1.5, ©Trimble Navigation Ltd. yielding 
22 coordinate triplets (east, north and elevation) related to an arbitrary local coordinate system with 
values 0.000 E and 0.000 N at the base station.  Inspection of the derived elevations indicated that the 
data for the front reference mark of the finish line for course C1 was faulty and its coordinates were 
rejected, leaving 22 points (including the base station) for comparison. 
 
Comparison between the two surveys, the initial Total Station survey and the rapid static GPS survey, 
was done by transforming the GPS coordinates to the coordinate system of the Total Station survey by 
using a 2D Linear Conformal transformation model of the form 

 k E k k E

k N k k N

E v a X bY T
N v b X aY T

+ = − −
+ = + −

 (1) 
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,k kE N  and ,k kX Y  are coordinates of the kth point in the Total Station survey and the GPS survey 
coordinate systems respectively, ,E Nv v  are small unknown corrections (residuals) added to the left-
hand side of equation (1) to allow for inconsistencies in the model caused by errors in the coordinates 
(the measurements), a, b are unknown coefficients and ,E NT T  are unknown translations.  Each point 
yields two equations of the form (1) thus there will be 44 equations in the four unknown parameters a, 
b, ET  and .  The least squares principle was used to calculate the best estimates of the parameters, 
ie values of a, b, 

NT

ET  and  that make the sum of the squares of the residuals a minimum.  The scale 
factor s between measurements in both systems and the rotation 

NT
θ  between the coordinate axes is 

linked to the coefficients a and b 

 

2 2

1tan

s a b
b
a

θ −

= +

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (2) 

The computed parameters were  
giving the scale factor s = 0.999993 and rotation 

0.975116, 0.221664, 898.508m and 3514.746mE Na b T T= = = =
12 48θ ′= ° . 

 
The residuals ,E Nv v , computed from (1) and radial distances 2 2

E Nr v v= +  are shown Table 2 and can 
be used to assess the 'quality' of the surveys. 
 
 

Reference point Ev  Nv  r Reference point Ev  Nv  r 
A1 (front, start) 0.000 0.005 0.005 B2 (front, finish) -0.001 -0.008 0.008 
A2 (front, start) 0.009 -0.005 0.010 B3 (front, finish) -0.008 -0.004 0.009 
A3 (front, start) -0.004 0.003 0.005 B4 (front, finish) 0.003 0.006 0.007 
A4 (front, start) 0.005 0.002 0.006 B5 (front, finish) 0.003 0.030 0.030 
A5 (front, start) 0.006 0.047 0.047 C1 (rear, finish) 0.008 0.006 0.010 
B1 (front, start) 0.015 -0.002 0.015 B5 (rear, finish) -0.002 -0.014 0.014 
B2 (front, start) -0.005 -0.007 0.009 B4 (rear, finish) 0.006 0.004 0.007 
B3 (front, start) 0.000 -0.006 0.006 B3 (rear, finish) -0.009 0.004 0.010 
B4 (front, start) -0.013 -0.009 0.016 B2 (rear, finish) 0.001 0.005 0.006 
B5 (front, start) -0.010 -0.025 0.027 A1 (rear, start) -0.006 -0.005 0.008 
C1 (front, start) -0.001 -0.010 0.010 Z (control point) 0.004 -0.007 0.008 

 
Table 2.  Transformation results, residuals ,E Nv v  and radial distances 2 2

E Nr v v= +  
 
If we consider the GPS survey as exact, the scale factor could be interpreted as a scale error of 7 parts 
per million in the Total Station distance measurements.  The rotation is approximately equal to the 
magnetic variation; to be expected since the GPS local coordinate system has the north axis in the 
direction of the meridian through the base station.  The sample mean and standard deviation of the 22 
radial distances in Table 2 are 0.012x =  metres and 0.010xs =  metres respectively.  These values are 
confirmation of the assumption that the reference pegs of the Total Station set out survey have a 
positional accuracy of ±0.010 metres. 
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SIMULATED SPEED RUNS USING KINEMATIC GPS AND VIDEO 
 
On the same day as the GPS survey of the reference marks, speed trials with the Macquarie team's 
powerboat, were conducted on the Shallow Inlet course to compare velocities determinations by GPS 
and the Macquarie team's video camera.  Three speed runs were made over the course; the GPS roving 
receiver and antenna mounted on the boat (with a base station on shore) and the team's video camera 
operating as it would if it were on board the yacht. 
 
The following sections detail the GPS data acquired during the test, a method of deriving velocities 
from positions (East and North coordinates recorded at 0.1 second intervals) and comparisons with 
video derived velocities.  Matlab, a software product of MathWorks™ was used to analyse the GPS 
data and produce the plots. 
 
GPS Post-Processed Kinematic (PPK) data 
 
GPS data were collected using Trimble 5700 receivers in kinematic differential mode recording carrier 
phase data at 0.1 second intervals.  The base station was set over the rear reference peg of the start line 
for course A1 (same as for the GPS survey of the reference marks) and the roving receiver and antenna 
were mounted on the team's powerboat.  The observations were post processed (using Trimble 
Geomatics Office) yielding a data set containing 12,281 coordinate triplets (east, north and elevation) 
related to an arbitrary local arbitrary system with values of 0.000 E and 0.000 N at the base station.  
The coordinates were then transformed to the datum of the Total Station survey using the parameters 
determined previously creating a kinematic GPS data set having the following form 
 

Sandy Point sailing simulations, PPK GPS survey, Feb 2002 
All data 
Epoch      Time     East      North    Distance 
    0         0    898.508   3514.746     0.000 
    1       0.1    925.502   3535.954    34.329 
    2       0.2    925.505   3535.955    34.332 
    3       0.3    925.502   3535.957    34.336 
    4       0.4    925.505   3535.956    34.340 
    5       0.5    925.500   3535.958    34.345 
    .        .        .          .         .    
    .        .        .          .         .    
    .        .        .          .         .    
12275    1227.5    931.026   3534.090  7965.918 
12276    1227.6    931.023   3534.095  7965.923 
12277    1227.7    931.022   3534.096  7965.924 
12278    1227.8    931.019   3534.100  7965.930 
12279    1227.9    931.018   3534.105  7965.935 
12280    1228.0    931.019   3534.103  7965.937 

 
Table 3.  Extract from kinematic GPS data set. 

 
The data for Epoch 0 relates to the GPS base station and subsequent data relate to positions 
determined at 0.1 second intervals.  The Distance s is the along-track distance, ie the cumulative 
distance along the path of the receiver affixed to the powerboat and Time t is the time in seconds from 
the start of the survey. 
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Figure 6.  Path of powerboat on simulated speed runs at Shallow Inlet. 

 
Figure 6 shows the path of the powerboat determined by the kinematic GPS survey recording carrier 
phase data at 0.1 second intervals.  The start and finish transits (extended 50 metres from the front 
transit posts) of the eleven separate 500 metre courses are shown; A1 to A5, B1 to B5 and C1.  Course 
A1 starts at A1 and finishes at B1, course A2 starts at A2 and finishes at B2 etc.  The last of the eleven 
courses is C1, starting at C1 and finishing at D1. 
 
The powerboat made three separate runs along the shoreline.  Each run started near A1 with the 
powerboat accelerating to a maximum velocity near A4, maintaining this speed until passing C1, the 
finish transit for course B1 and then returning to A1. 
 
 
Velocity derived from kinematic GPS positions using approximations to calculus 
 
Kinematic GPS positions (East and North coordinates at instants of time ) can be used to derive 
approximations to instantaneous velocity V by dividing the distance travelled from  to  by the 
time interval .  If the velocity is constant (or nearly so) and the GPS positions are exact 
then this simple approximation would be sufficient.  In practice, the velocity is not generally constant 
and the GPS coordinates have small positional errors; these factors can lead to relatively large 
fluctuations in derived velocities if  is small.  The following section outlines the derivation of a 
more realistic estimate of V using Taylor's theorem and an assumption that the distance travelled 

increases according to the familiar equation from dynamics;  

kt

kt 1kt +

1kt t t+∆ = − k

t∆

2
1 1

1
2k k ks s V t a t− −= + ∆ + ∆  ( ks  is the 

distance travelled at time  and a is acceleration).  The Law of Propagation of Variances is then 
applied to this formula to derive a suitable time interval 

kt
t∆  taking account of the positional accuracy 

of the GPS coordinates. 
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Kinematic GPS positions at instants of time  can also be converted to cumulative distances kt ks  
measured along the path of the receiver from the start of the survey where 0 0.0 secondst =  and 

.  The distance s can be considered as a continuous function of t, written as 0 0.000 metress = ( )s t  
with velocity V as the first derivative ( )s t′  

 ( ) ( ) ( )
0

lim
t

s t t s t
V s t

t∆ →

+ ∆ −
′= =

∆
 (3) 

Using the distances ks  at times , which can be regarded as discrete measurements of the continuous 
function, an approximation of the velocity can be developed by considering the following. 

kt

 
The function ( )s t  can be expanded using Taylor's theorem 

 ( ) ( ) ( )
( )

( )
2 3 1

1( ) ( ) ( ) ( ) ( ) ( ) ( )
2! 3! 1 !

n
nk k k

k k k k k k

t t t t t t
ns t s t t t s t s t s t s t R

n

−
−− − −

′ ′′ ′′′= + − + + + + +
−

L  

where ( )ks t  is the function evaluated at time , kt ( )ks t′  is the derivative evaluated at  with higher 
order derivatives written as 

kt

( ) ( ), ,k ks t s t′′ ′′′ L ,  etc and nR  is a remainder.  Letting  gives 
another form of Taylor's theorem 

kt t t= + ∆

 ( )
2 3

( ) ( ) ( ) ( )
2! 3!k k k k k
t ts t t s t t s t s t s t∆ ∆′ ′′ ′′′+ ∆ = + ∆ + + + L  (4) 

Replacing  with  gives t∆ t−∆

 ( )
2 3

( ) ( ) ( ) ( )
2! 3!k k k k k
t ts t t s t t s t s t s t∆ ∆′ ′′ ′′′− ∆ = − ∆ + − + L  (5) 

and subtracting (5) from (4) gives 

 ( ) ( ) ( ) ( )
3

2 2
3!k k k k
ts t t s t t t s t s t∆′ ′′′+ ∆ − − ∆ = ∆ − − L  (6) 

If the yacht is moving along the course in a relatively straight line then, over a short time interval, its 

position at  is approximated by kt ( ) ( ) ( ) ( ) 2
1 1 1

1
2k k k ks t s t s t t s t t− − −′ ′′= + ∆ + ∆  the familiar equation from 

dynamics and the 3rd derivative ( ) 0ks t′′′ =  as will all other higher order derivatives, hence (6) can be 
re-arranged as 

 ( ) ( ) ( )
2

k k
k

s t t s t t
V s t

t
+ ∆ − − ∆

′= =
∆

 (7) 

Equation (7) is the first order central difference approximation of the velocity V (Dahlquist and Björck 
1974, Bruton et al 1999, and Ryan et al 1997). 
 
Velocities determined using (7) have a precision that is a function of the precision of the distances s at 
times .  The times  and  can be considered as exact since the receiver time of observation 
is synchronised with atomic clocks on board the GPS satellites.  These GPS atomic clocks, used to 
generate the carrier waves for the broadcast message, are accurate to 

kt ± ∆t kt 1kt −

1310−±  seconds.  For the 
kinematic survey, the GPS coordinates are assumed to have a precision of 0.010 metresE Nσ σ= = .  
These values are consistent with the positional accuracy deduced from the comparison of the Total 
Station and Rapid Static surveys of the reference marks.  Eσ  and Nσ  can be transformed to a distance 
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precision 2 2
s E Nσ σ σ= +  that can be used to assess the precision of computed velocities by using the 

Law of Propagation of Variances with the distances considered as independent random variables. 
 
Consider three distances 1 2,s s  and 3s  at equally spaced intervals of time  and  where 

, then by (7) the velocity at  is 

1 2,t t 3t

3 2 2t t t t t∆ = − = − 1 2t 3 1

2
s sV

t
−

=
∆

.  The variance of V is given by 

 
3

2 2
2 2

3 1
V s

V V
s s 1

2
sσ σ

⎛ ⎞ ⎛ ⎞∂ ∂
= +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠

σ  (8) 

with derivatives 
3 1

1 and
2 2

V V 1
s t s

∂ ∂
=

∂ ∆ ∂ t
−

=
∆

2 and precisions 
3 1

2 2
s s sσ σ σ= = .  Substituting into (8), re-

arranging and taking square roots gives the standard deviation (precision) of the computed velocity 

 
2

s
V t

σσ =
∆

 (9) 

Equation (9) can be used to determine an appropriate time interval t∆  given sσ  and a desired Vσ , for 
example, if it is desired to estimate the velocity with a precision of 0.05 knotsVσ =  and the precision 
of the distances is 0.015metressσ =  then 

 3600 0.4sec
18522

s

V

t σ
σ

∆ = × =  

Using equation (7) with 0.4sect∆ =  Velocities  (knots) and times  (seconds) were computed 
from the kinematic GPS data set.  Figure 6 shows a schematic diagram of the data set with k = 12,280 
distances 

nV nt

ks  at 0.1 second intervals (epoch 1 to epoch 12280).  With 0.4sect∆ =  (4 epochs) there will 

be  derived velocities.  The first velocity 8 12,272n k= − = 9 1
1 0.8

s sV −
=  at time , the 

second velocity 

1 0.5secondst =

10 2
2 0.8

s sV −
=  at  and so on.  The last velocity 1 0.6secondst = 8

0.8
k k

n
s sV −−

=  at 

. 4 1227.6secondsn kt t −= =
 
 

• •• •• •• •• •• •
k=1 k-102 k-93 k-84 k-75 k-66 k-5

• •• •• •• •• •• •
7 k8 k9 k10 k-111 k=12280-4 -3 -2

t tt tt t1 n-22 n-13 n

… …

 
 

Figure 7.  Schematic diagram of the distances s in the kinematic GPS data set. 
 
Figure 8 shows a plot of the derived velocities  (knots) with the three runs along the course 
distinguished by their higher average velocity.  At the start of the kinematic GPS survey, the 
powerboat was stationary during a receiver initialisation period of approximately 8 minutes. 

nV

 
 

 12 



0 200 400 600 800 1000 1200
0

5

10

15

20

25

30

35

40
Shallow Inlet simulated speed runs

Time (sec)

V
el

oc
ity

 (k
no

ts
)

Initialization period 

Run 1 Run 2 Run 3 

 
 

Figure 8.  Velocity plot of simulated speed runs at Shallow Inlet 
 
 
GPS transit epochs 
 
In Figure 6 the path of the powerboat's three runs over the course is shown with the transit lines 
extended 50 metres from the front transit post.  Figure 9 shows an enlargement of the powerboat's path 
on Run 2 near the starting transit line for course A5.  Epoch numbers are shown beside individual 
points (East and North coordinates).  By inspecting such enlargements, it was possible to determine 
the epochs when the powerboat was on or near transits.  These are shown in Table 4 with the relevant 
extracts from the kinematic GPS data set shown in Table 5. 
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Figure 9.  Path of powerboat in the vicinity of starting transit for Course A5, Run 2 
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Course Epoch 

(start) 
Epoch 
(finish) 

A1 8107 8426 
A2 8186 8482 
A3 8248 8538 
A4 8305 8594 
A5 8361 8650 
B1 8416 8706 
B2 8471 8762 

 
Table 4.  Start and finish epochs for Courses A1 to A5, B1 and B2, Run 2 

 
 

Epoch  Seconds    East     North    Distance 
8107     810.7   942.641  3567.067  2772.359 
8186     818.6   999.104  3484.341  2872.768 
8248     824.8  1068.940  3414.124  2972.420 
8305     830.5  1146.960  3357.682  3068.717 
8361     836.1  1224.640  3299.254  3165.921 
8416     841.6  1303.900  3245.375  3261.776 
8426     842.6  1318.574  3235.929  3279.227 
8471     847.1  1384.563  3193.207  3357.840 
8482     848.2  1400.979  3183.271  3377.029 
8538     853.8  1488.838  3140.675  3474.727 
8594     859.4  1579.065  3103.698  3572.253 
8650     865.0  1672.155  3075.807  3669.467 
8706     870.6  1767.174  3054.705  3766.818 
8762     876.2  1863.491  3041.643  3864.115 

 
Table 5.  Extract from the kinematic GPS data set. 

 
 
Kinematic GPS velocity plots and the World Sailing Speed Record Council rules 
 
The International Sailing Federation World Sailing Speed Record Council (ISAF/WSSRC) has 
established rules for World Records and sections 3 to 6 of the RECORD RULES 1999-2001 (WSSRC 
2002) are reproduced below. 
 

3. THE COURSE 
The record shall be established over a minimum of half a kilometre on water (not ice). 
 
The course may be defined by posts and transits ashore, or by buoys afloat. 
Transits shall not converge. 
 
4. TIMING 
A timed run is measured from the difference in the times recorded at the crossing of the 
starting and finishing lines. 
 
Where the timing positions are able to be land based, videoing, which includes a time 
display of the transits shall be used.  Where timing positions are not land based, requests for 
an attempt without video must be made prior to the event. 
 
In order to facilitate recognition, craft must carry clear and visible sail numbers to the 
satisfaction of the timing Commissioner on duty. 
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5. CALCULATION OF SPEED 
Time shall be recorded to the nearest one hundredth of a second. 
The speed shall be calculated to the nearest 1/100th of a knot with allowance made for the 
resolved component of any tidal stream and/or current on the course.  A venue is not 
suitable for record breaking if the current is more than one knot.  The stream or current 
shall be measured by float tests or other means as appropriate and the results supplied to the 
Official Commissioner (see Rule 14). 
 
6. MARGINS 
In order to establish a new record the new elapsed time (corrected to 500 metres precisely) 
must improve on the existing record by a margin as follows: 
 
a. On a course using land based transits and video recorded timing. 
 Between records claimed on the same course and when the timing positions have not been 
moved, the margin is equal to the accuracy of the video equipment ie, on equipment 
recording to 1/00th second, the margin is 1/100th second, on equipment recording to 1/50th 
second, the margin is 1/50th second. 
 
b. Between records claimed on different courses or when timing positions have been 

changed, the margin is to be 1/25th second. 
 
c. When transits are afloat and/or no video is used, the margin shall be 1%. 
 

The ISAF/WSSRC rules are essentially time-based and speeds (or velocities) are averages, calculated 
by dividing the course distance by the elapsed time.  Kinematic GPS measurements provide accurate 
point positions (or cumulative distances) at regular and precise time intervals, in our tests, 1/10th of a 
second.  Kinematic GPS cannot provide transit times to any better than 1/10th of a second but can 
provide: 
 
(i) average velocity derived from continuous estimates of a craft's velocity between times (epochs) 

which we shall call Average 1 denoted as ( )1A V , or 
 
(ii) average velocity calculated from a distance between times (epochs) which we shall call 

Average 2 and denote as ( )2A V  from which a time, corrected to 500 metres precisely, can be 
computed as per ISAF/WSSRC RECORD RULES – Section 6. 
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Figures 10 and 11 are plots of the powerboat's velocity on Run 2 along the course at Shallow Inlet 
with arrows indicating when it was passing the start and finish transit lines of various courses. 
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Figure 10.  Velocity plot of Run 2 – Courses A1 to A5, B1 and B2 
 
In Figure 10, arrows indicate start and finish transit times for courses A1 to A5, B1 and B2.  Arrows on 
the lower side of the line indicate starts and on the upper side, indicate finishes.  From the plot, the 
powerboat is accelerating from the start of course A1 to the start of course A4, reaching a constant 
velocity of approximately 33-34 knots in the vicinity of the start of course A5.  It maintains this 
velocity until reaching the end of course B2. 
 
From a plot such as this, an average velocity could be obtained by drawing a straight line (parallel to 
the Time axis) and passing as nearly as possible through the plotted velocity curve, then interpolating 
the Velocity scale. This would only be practical when the craft had reached a nearly constant velocity 
eg, between the start of course A5 and the end of course B2.  At the scale of this plot, it would only be 
possible to estimate the average velocity to ±1-2 knots; well outside the margins specified in 
ISAF/WSSRC rules for a new record.  To achieve a better resolution of velocity, enlargements of 
sections of the craft's path might be a solution, but this presents some problems as demonstrated in 
Figure 11. 
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Figure 11.  Velocity plot of part of Run 2 – Courses A4, A5 and B1 
 
In Figure 11, arrows indicate start and finish transit times for courses A5, A5 and B1; again arrows on 
the lower side of the line indicate starts and on the upper side, indicate finishes.  This plot is an 
enlargement of Figure 10 and shows a large variation of velocity (approximately 0.3 knots) between 
the start of course A4 and the end of course B1 and small fluctuations of ±0.05 knots of the velocity 
curve.  Drawing lines to estimate average velocity on a graph such as this would be problematic at 
best. 
 
These difficulties may be overcome if a graph was used to determine approximate starting and finish 
times and mathematics used to determine an average velocity based on the mean value theorem of 
integral calculus.   
 
Average velocity ( )1A V  from kinematic GPS velocities 
 
Velocities  derived from the kinematic GPS survey are 
discrete estimates of a continuous function that varies with 
time, ie 

nV

( )V f t= .  The mean value theorem of integral 
calculus (Apostol 1967) can be used to give ( )1A V , the 
average vale of V between times  and 1t nt  

 ( ) ( )
1

1
1

1 nt

t
n

A V V t dt
t t

=
− ∫  (10) 

V

tt t

V VVV V1 nn-12 3

V = f (t)

∆ t

1 n

 Figure 12 
 
Referring to Figure 12, ( )1A V the average value of the V between times  and , is the area under the 
curve (between  and ) divided by the difference between  and .  If values of the function are 

1t nt

1t nt 1t nt
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known at discrete intervals  then the area under the curve may be approximated by the sum of the 
areas of a series of trapezoids and the average velocity is 

t∆

 ( ) 1
1 2 3

1 2
n

n n
n

t V VA V V V V V
t t − −

∆ +⎛ + + + + +⎜− ⎝ ⎠
; L 2 1

⎞
⎟  (11) 

 
Average velocity ( )2A V  and corrected time  from kinematic GPS positions  CT
 
Kinematic GPS provides East and North coordinates at regular and precise times.  An average velocity 

( )2A V , in knots, between start and finish times and time , corrected (or adjusted) to a distance of 
exactly 500 metres, can be calculated from 

CT

 

( ) ( )

( )

2 2

2
3600
1852

500

FINISH START FINISH START

FINISH START

C

chord dist E E N N

time t t
chord distA V

time
timeT
chord dist

= − + −

= −

= ×

×
=

 (12) 

In equations (12) the coordinates are in metres and the chord distance is the straight-line distance 
between coordinate distances at the start and finish times.  The average velocity is in knots and the 
ratio 3600/1852 is a conversion factor from m/s to knots.  In the case of a course marked by transit 
posts, the chord distance is the distance between transits.  A yacht travelling along a path following a 
curving shoreline, as at Shallow Inlet, may travel a longer path distance.  Velocities and corrected 
times calculated by (12) accord with the ISAF/WSSRC rules. 
 
Table 6 shows average velocities ( )1A V , ( )2A V  and corrected times  for courses A1 to A5, B1 and 
B2 on Run 2. 

CT

 
Course Epoch 

(start) 
Epoch 
(finish) 

Chord 
Distance 
(metres) 

Elapsed 
Time 
(sec) 

( )1A V  
(knots)

( )2A V  
(knots) 

CT  
(sec) 

A1 8107 8426 500.98 31.9 31.11 30.53 31.84 
A2 8186 8482 502.14 29.6 33.16 32.98 29.47 
A3 8248 8538 501.09 29.0 33.70 33.59 28.94 
A4 8305 8594 501.22 28.9 33.87 33.71 28.83 
A5 8361 8650 500.20 28.9 33.87 33.64 28.89 
B1 8416 8706 500.98 29.0 33.85 33.58 28.94 
B2 8471 8762 502.34 29.1 33.81 33.56 28.96 

 
Table 6.  GPS derived average velocities and corrected times Run 2 at Shallow Inlet 

 
Note that over each of the five courses ( )1A V  is greater than ( )2A V .  This is a reflection of the fact 
that the powerboat is travelling along a slightly curved path following the shoreline, covering a longer 
distance than the chord distance between the GPS positions at the starting and finishing epochs. 
 
Differences in the average velocities over particular courses shown in Table 6 are significant.  
Excepting the first course A1, where the powerboat was still accelerating after crossing the starting 
transit, the average difference is 0.2 knots.  A world record attempt on a curving course, such as 
Shallow Inlet, might fail simply because of the method of calculating velocities as stipulated in the 
ISAF/WSSRC rules.  Theses rules make no allowance for the actual distance travelled 
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Average velocity ( )2A V  and corrected time  from Video Camera CT
 
During the simulated three speed runs in the powerboat, the Macquarie team's video camera was 
recording images of start and finish transits.  Inspection of the video gave the following transit times 
on Run 2 shown in Table 7, together with the chord distances (as per the Table 1) and average velocity 
and corrected time computed using equations (12). 
 
 

Course Video 
(start) 

Video 
(finish) 

Chord 
Distance 
(metres) 

Elapsed 
Time 
(sec) 

( )2A V  
(knots) 

CT  
(sec) 

A3 9m 10.64s 9m 45.16s 500.30 28.92 33.62 28.90 
A4 9m 16.36s 9m 45.16s 500.30 28.80 33.77 28.78 
A5 9m 21.92s 9m 50.84s 500.30 28.92 33.63 28.90 
B1 9m 28.40s 9m 56.44s 500.30 28.04 34.68 28.02 
B2 9m 33.96s 10m 01.96s 500.30 28.00 34.73 27.98 

 
Table 7.  Video Camera derived average velocities and corrected times Run 2 at Shallow Inlet 

 
Comparing the average velocities ( )2A V  derived from GPS observations (Table 6) with those derived 
from Video Camera observations (Table 7) shows that GPS is a viable alternative to the video camera 
technique.  The average difference for courses A3, A4 and A5 is 0.03 knots.  The average difference 
for courses B1 and B2 is 1.13 knots which is significantly different from the first three courses.  We 
suspect that this is due to human error in interpretation of the video images of the transits. 
 
 
COMPARING VELOCITY (FROM CALCULUS) WITH VELOCITY FROM A KALMAN 
FILTER 
 
A Kalman filter is a set of mathematical equations that are applied recursively to estimate the state of a 
dynamic system.  In our case, the dynamic system is the powerboat (with GPS receiver) moving along 
the course.  It receives position at time 1kt − , East and North (E,N) coordinates from kinematic GPS 
measurements (the primary measurement model), and moves to position , according to a dynamic 
model, where it receives new position information.  The state of the system at  is its position 

kt

kt ,k kE N , 
its velocity ,k kE N  and acceleration ,k kE N .  A Kalman filter takes into account the precisions of the 
measurements and the dynamic model and provides an efficient (recursive) computational solution to 
a least squares estimate of the state.  That is, if the true value of the measurements are the observed 
values plus small unknown corrections (residuals) and the dynamic model has residuals accounting for 
the difference between theory and practice, then a least squares solution provides estimates that make 
the sum of the squares of the weighted residuals a minimum value.  The weight of an observation is a 
measure of its precision.  
 
In 1960, R.E. Kalman published his famous paper describing a new approach to the solution of linear 
filtering and prediction (Kalman 1960) and since that time, papers on the technique have been filling 
numerous scientific journals.  The Kalman filter is regarded as one of the most important algorithmic 
techniques ever devised and has been used in applications ranging from navigating the Apollo 
spacecraft to predicting short-term fluctuations in the stock market.  Sorenson (1970) shows Kalman's 
technique to be an extension of Gauss' original method of least squares providing historical 
commentary on its connection with earlier work by 20th century mathematicians and (failed) claims to 
priority by his contemporaries.  The derivation of the Kalman filter equations can be found in many 
texts eg. Brown and Hwang (1992), and Zarchan and Musoff (2000) have numerous examples of 
applications.  A Kalman filter is relatively simple to implement on modern computers (a reason for its 
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popularity) and lends itself to practical applications such as the estimation of position, velocity and 
acceleration from kinematic GPS observations.  Appendix A contains a summary of the necessary 
elements of a Kalman filter, a statement of the equations and a step by step outline of the recursive 
method of estimation of position, velocity and acceleration used in this paper. 
 
The kinematic GPS data for Run 2 (epochs 8000 to 8800) was processed using a Kalman filter and 
plots of the filtered and unfiltered velocities are shown in Figures 13 and 14.  Plots of corrections to 
the kinematic GPS coordinates and histograms of corrections are shown in Figure 15.  In the Kalman 
filter we used a precision of kinematic GPS coordinates ,k kE N of ±0.010 metres and used a dynamic 
model linking the state (position, velocity and acceleration) at times 1kt −  and  of kt
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where .  The dynamic model and the true relationship between successive states 
are assumed to differ by errors induced by small random changes in acceleration known as jerk.  In 
our implementation, the precision of jerk was estimated to be ±0.01 m/s

1 0.1 seck kt t t −∆ = − =

3.   
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Figure 13.  Unfiltered and filtered velocity plots of Run 2 – Courses A1 to A5, B1 and B2 

 
In Figure 13, the unfiltered velocities are those obtained using equation (7) with  and 
shown in Figures 10 and 11.  The filtered velocities are those obtained from the Kalman filter. 

0.4sect∆ =

 
At the scale of the plots in Figure 13 there appears to be no discernible difference between the two 
velocity curves but an enlargement, Figure 14, shows the filtered velocities as a much smoother curve 
than the unfiltered velocities. 
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Figure 14.  Unfiltered and filtered velocity plots of Run 2, Course A5 
 

In Figure 14, the filtered velocity is generally close to the unfiltered velocity.  Where acceleration is 
constant; from the start to 845 seconds, and 860 seconds to the end, the differences between the two 
curves are small, in the order of ±0.02 knots.  Where acceleration is changing, the two curves depart.  
This is due to the precision of jerk in the Kalman filter.  If this value is small, then the filtered velocity 
will be smooth but the dynamic model will be resistant to change causing the filtered velocity curve to 
lag the unfiltered curve where acceleration changes.  If the precision of jerk is large, the dynamic 
model is more variable but the filtered velocity curve will have a more jagged appearance. 
 
Choosing a suitable value for the precision of jerk requires some knowledge of the type of craft and its 
usual behaviour.  For example, a Kalman filter used to model the movement of an oil tanker, would 
have a dynamic model with very small values of jerk, since its actual path and velocity would be 
highly resistant to small accelerations caused by wind, tide, changes in velocity etc.  On the other 
hand, if we were modelling the movement of a small powerboat our dynamic model would have larger 
values of jerk, since its actual path and velocity would be more susceptible to accelerations. 
 
In our implementation of the Kalman filter, the precision of jerk was estimated to be ±0.01 m/s3.  Is 
this a "good" value?  Figure 15 shows plots and histograms of corrections to the kinematic GPS 
coordinates from the Kalman filter for Run 2.  In general, the corrections are relatively small having a 
range of approximately 0.1 metres.  For Course A5, where the powerboat has a relatively constant 
velocity, the corrections are very much smaller, having a range of approximately 0.03 metres; this 
would indicate that our value for the precision of jerk was reasonable.  The large fluctuations in 
corrections are for the period of Run 2 where the powerboat is accelerating at the beginning of the run. 
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Figure 15.  Kalman filter corrections to kinematic GPS coordinates 
Run 2 – Courses A1 to A5, B1 and B2 

 
A Kalman filter gives precision estimates of the state at every measurement update.  At the end of the 
process, these estimates have been influenced by every measurement used.  In our case epochs 8000 to 
8800 were processed (800 measurements at 0.1 second intervals) and the state cofactor matrix xQ  for 
the last epoch is shown in Table 8.  The filtered state vector is shown in the left column, the next 
column contains the corrections to the approximate values of the state vector.  The block of numbers 
on the right are the elements of the 6 by 6 state cofactor matrix xQ ; the diagonal elements are 
estimates of the variances of the elements of the state vector at epoch 8800 (the last measurement). 
 
 
Epoch = 8800 

Filtered State  Corrns   Filtered State cofactor matrix Qx
 E 1926.482     -0.019   0.000035  0.000000  0.000075  0.000000  0.000081  0.000000 
 N 3043.463      0.016   0.000000  0.000035  0.000000  0.000075  0.000000  0.000081 
 Ve  14.852     -0.040   0.000075  0.000000  0.000261  0.000000  0.000388  0.000000 
 Vn   1.779      0.033   0.000000  0.000075  0.000000  0.000261  0.000000  0.000388 
 aE  -1.261     -0.043   0.000081  0.000000  0.000388  0.000000  0.000832  0.000000 
 aN   0.823      0.036   0.000000  0.000081  0.000000  0.000388  0.000000  0.000832 
 

Table 8.  Kalman filter state vector, corrections and state cofactor matrix for epoch 8000. 
 
From Table 8, the following estimates of the precision of the state are: 

standard deviation of E and N coordinates: 0.000035 0.006 m=  
standard deviation of E and N velocities: 0.000261 0.016 m/s=  
standard deviation of E and N accelerations: 20.000832 0.029 m/s=  
 

These estimates are influenced by the original assumptions of precision; position ±0.010 m and jerk 
±0.01 m/s3 but can be regarded as confirmation of the precision of the kinematic GPS coordinates. 
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In the preceding sections, unfiltered kinematic GPS positions were used to generate velocities, using 
equation (7) with an appropriate time interval, and these velocities compared with video timing 
velocities.  We could use the filtered positions (from the Kalman filter) to generate another set of 
velocities, using (7) which would probability yield a smoother velocity curve than the filtered curve in 
Figure 14.  We have not done this in this paper. 
 
 
CONCLUSION 
 
In this paper, we have presented a detailed description of the sailing courses at Shallow Inlet for the 
recent attempt on the World Sailing Speed Record and the survey work involved in setting out the 
courses.  The original set out of the reference pegs for the course transit posts used traditional survey 
techniques; Total Station radiations from reference marks with precision estimates of ±0.010 metres 
based on manufacturers accuracy statements.  These assumptions were confirmed by a rapid static 
GPS survey of a substantial number of the original reference pegs that lends weight to our estimate of 
the accuracy of an individual sailing course defined by transit posts.  We believe that by setting out 
course lengths of 500.3 metres there is a reasonable guarantee that the yacht will have travelled at least 
500 metres between transits; ensuring that the ISAF/WSSRC rules are complied with. 
 
To test the possibility of GPS derived velocities as an alternative to video derived velocities we 
mounted a GPS receiver on a powerboat and simulated three runs over the sailing courses gathering 
12,280 kinematic GPS positions at 0.1 second intervals.  This data was analysed in three different 
ways. 
 
(1) Velocity plots. 

Successive positions yield distance travelled, which divided by the time interval, gives an 
approximation of the instantaneous velocity.  We have demonstrated that this crude estimation of 
velocity can be improved by increasing the time interval between sampling points by using 
equation (7).  The appropriate time interval for a desired precision of velocity can be determined 
by equation (9).  The resulting velocity plots are not useful for determining average velocity to an 
acceptable degree of accuracy, but they may be used as a means of identifying time intervals 
requiring further examination. 

 
(2) Kinematic GPS positions and derived velocity. 
 In our analysis, we have shown that two plausible average velocities can be derived from 

kinematic GPS positions.  The first ( )1A V  is determined by equation (9) and is based on 
theorems of integral calculus using velocities calculated from equation (7).  This average takes 
into account the actual distance travelled by the yacht and on a curved course such as the Shallow 
Inlet courses, this might be significantly different from the chord distance between transit lines.  
The second average ( )2A V  is determined from the chord distance between appropriate 
measurement epochs.  The chord distance travelled can be used to calculate a time, corrected to 
precisely 500 metres as per the ISAF/WSSRC rules. 
 
The second average velocities compared favourably with those derived using the video technique 
approved by the ISAF/WSSRC. 

 
(3) Positions and velocities from a Kalman filter. 
 A Kalman filter is a well-documented procedure for determining the state (position, velocity and 

acceleration) of a dynamic system and the precision of filtered quantities.  We have set out the 
Kalman filter equations and demonstrated that with appropriate estimates of precision and a 
properly constructed dynamic model, filtered velocities are in close agreement with those 
obtained by equation (7).  This gives us confidence in average velocities obtained from kinematic 
GPS. 
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We believe that kinematic GPS is a viable alternative to the currently acceptable video technique for 
determining the average velocity of a yacht attempting to set a sailing speed record.  GPS has a 
significant advantage over the transit post method in that a yacht is not confined to a fixed course; it 
may sail in any direction determined by the current wind direction and sea-state.  Our tests 
demonstrate that kinematic GPS provides coordinates with a precision of ±0.010 m or better, at regular 
and precise time intervals, which can be used to determine chord distances between measurement 
epochs and distance travelled.  These distances yield average velocities (i) over "exact" distances 
travelled or (ii) over chords, which can be corrected to times over exactly 500 metres. 
 
We hope that the information contained in this paper may be of use to the Macquarie Speed Sailing 
Team in future record attempts.  The authors would like to acknowledge the help provided by the 
members of the Macquarie Speed Sailing Team, both in the preparation of data for this paper and for 
their assistance during the field trials. 
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APPENDIX A 
 

THE KALMAN FILTER 
 
A Kalman filter is a set of mathematical equations that are applied recursively to estimate the state of a 
dynamic system.  In our case, the dynamic system is the powerboat (with GPS receiver) moving along 
the course.  It receives position at time 1kt − , East and North (E,N) coordinates from kinematic GPS 
measurements (the primary measurement model), and moves to position , according to a dynamic 
model, where it receives new position information.  The state of the system at  is its position 

kt

kt ,k kE N , 
its velocity ,k kE N  and acceleration ,k kE N  written as the ( ),1u  state vector ; u being the number of 
unknowns which in our case is six 

kx

 ˆ k

k

E
N
E
N
E
N

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

x  (A1) 

The "hat" symbol (^) above the vector x indicates that it is an estimate of the true (but unknown) state 
of the system derived from the Kalman filter. 
 
A Kalman filter takes an initial estimate of the state vector  and the state cofactor matrix (estimates 
of precisions) 

x̂
xQ  at  and predicts 1kt − ′x  and x′Q  at  according to the dynamic model and its 

associated cofactor matrix.  It then updates the predicted quantities using the measurements at  and 
the measurement cofactor matrix, producing new estimates  and 

kt

kt
x̂ xQ .  This process is repeated for 

successive measurements. 
 
The primary measurement model has the general form 

 ˆ
k k k+ =l v l  (A2) 

kl  is the ( ),1n  vector of measurements,  is an kv ( ),1n  vector of residuals (small unknown 

corrections to the measurements) and  are estimates of the true (but unknown) measurements.  n is 
the number of measurements, which in our case is two. 

ˆ
kl

 
The primary model can be expressed in terms of the state vector as 

 ˆk k k k+ = −v B x l  (A4) 

or 

  
1 0 0 0 0 0

0 1 0 0 0 0
E o

N ok k

k

v EE
v NN

E
N
E
N

−⎡ ⎤ ⎡ ⎤⎡ ⎤⎡ ⎤
+ =⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥−⎣ ⎦⎣ ⎦ ⎣ ⎦⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

bs

bs

−

kB  is an ( ),n u  coefficient matrix and  is a kl ( ),1u  vector of observations. 
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The dynamic model linking the state of the system at time 1kt −  with its state at  is kt

 1ˆ ˆk k − m= +x Tx v  (A5) 

T is the ( ),u u  Transition matrix which models the dynamic relationships between the states at 1kt −  
and . kt

mv  is a ( ),1u  vector of residuals (small unknown corrections) reflecting the fact that the dynamic 
model is only an approximation of the true (but unknown) model linking the states at  and . 1kt − kt
 
The elements of the transition matrix are obtained from the dynamic equations linking position, 
velocity and acceleration 

 

21
1 1 12

21
1 1 12

1 1

1 1

1

1

k k k k

k k k k

k k k

k k k

k k

k k

E E E t E t

N N N t N t

E E E t

N N N t

E E

N N

− − −

− − −

− −

− −

−

−

= + ∆ + ∆

= + ∆ + ∆

= + ∆

= + ∆

=

=

 (A6) 

and (A5) can be written as 

 

21
2

21
2

1

1 0 0 0
0 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 0 1

m

k k

E Et t
N Nt t
E Et
N Nt
E E
N N

−

⎡ ⎤∆ ∆⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥∆ ∆⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥∆

= ⎢⎢ ⎥ ⎢ ⎥∆⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

v+⎥  (A7) 

The elements of the vector of model corrections  can be considered as derivatives (differential 
ratios) expressed as functions of the unknown but random rate of change of accelerations 

mv
dE dt  and 

dN dt  known as jerk and having units 3m s . 

 

0
0

0
0
1 0
0 1

m

dE dt dE dE
dN dt dN dN
dE dt dE dE dE dt
dN dt dN dN dN dt
dE dt
dN dt
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⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎡ ⎤

= = = ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦⎢ ⎥⎢ ⎥

⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
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v Hw  (A8) 

H is a ( ),u n  coefficient matrix and the ( ),1n  vector w is the system driving noise.  The elements of H 
can be determined by differentiating equations (A6) giving 

 2 21 1
2 2, ,dE dE t dN dN t dE dE t and dN dN t= ∆ = ∆ = ∆ = ∆  
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and the vector of model corrections is 

 
21

2
21

2

0
0

0
0
1 0
0 1

m

dE dtt
dN dtt

t
t

⎡ ⎤ ⎡ ⎤∆
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⎢ ⎥∆
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∆⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

v H w  (A9) 

The primary model and the dynamic model have associated cofactor matrices Q and  that contain 
estimates of the precision of the measurements and the dynamic model corrections respectively. 

mQ

 
Q is the ( ),n n  cofactor matrix of the measurements in the primary model 

 
2

2
E EN

EN N

s s
s s

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
Q  (A10) 

2 2
E Ns s=  are estimates of the variances of the kinematic GPS coordinates.  ENs  is an estimate of the 

covariance between the E and N coordinates.  In our case we consider that the E and N coordinates are 
independent random variables and .   0ENs =
 

mQ  is the ( ),u u  cofactor matrix of the of the dynamic model corrections and is obtained by applying 
the general law of propagation of variances to equation (A9) giving 

  (A11) T
m w=Q HQ H

wQ  is the ( ),n n  cofactor matrix of the system driving noise containing estimates of the variance of 
the rate of change of acceleration (the jerk). 
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The Kalman filter equations provide the ( ),u u  cofactor matrix xQ  containing estimates of the 
precisions of the elements of the state vector 
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All the elements of the primary and the dynamic models have been defined as well as the cofactor 
matrices associated with both.  The primary model at 1kt −  and , and the dynamic model linking the 
states at  and  give rise to the system of equations 

kt

1kt − kt

 
1 1 1 1 1

1

k k k k k

k k k k k

k k

− − − − −

−

+ =
+ =

m= +

A v B x l
A v B x l

x Tx v
 (A14) 

Note that in our case A = I where I is the Identity matrix.  Enforcing the least squares condition that 
the sum of the squares of the residuals be a minimum, gives rise to a set of recursive equations (the 
Kalman Filter) which are applied as follows. 
 

With initial estimates of the state vector 1ˆ k−x  and the cofactor matrix  a Kalman Filter has 
the following five general steps 

1kx −
Q

 
(1) Project the state forward to give approximate values at  kt

  1ˆk k −′ =x Tx

(2) Project the state cofactor matrix forward 

 
1k k

T
x x m−
′ = +Q TQ T Q  

(3) Compute the Kalman Gain matrix 

 ( ) 1

k k

T T
x k k x k

−
′ ′= +K Q B Q B Q B  

(4) Update the estimate with the measurements at  kt

 ( )ˆ k k k k k k′ ′= + −x x K l B x  

(5) Update the state cofactor matrix 

 
( ) ( )
( )

k k

k

T T
x k k x k k k k

k k x

′= − − +

′= −

Q I K B Q I K B K AQAK

I K B Q
 

Go to step (1) and repeat the process for the next measurement epoch. 
 

In the section below, a detailed description of the steps in a Kalman filter as implemented in a 
computer program are set out 
 
 
 
Step 1 Set the elements of the transition 

matrix 
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Step 2 Set the cofactor matrix of the system 
driving noise 
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Step 3 Set the coefficient matrix of the 
system driving noise 
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Step 10 Compute the predicted state cofactor 
matrix Step 4 Compute the cofactor matrix of the 

dynamic model  
1k k

T
x x m−
′ = +Q TQ T Q  

  T
m w=Q HQ H Step 11 Set the elements of the coefficient 

matrix of the primary model Step 5 Set the counter 
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Step 6 Set the starting estimates of the state 
vector Step 12 Compute the numeric terms of the 

primary model 
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Step 13 Compute the Kalman Gain matrix 

 ( ) 1

k k

T T
k x k k x k

−
′ ′= +K Q B Q B Q B  

Step 14 Compute corrections to the state 
vector 

 Note that estimates of the starting 
velocities and accelerations can be 
computed from kinematic GPS 
coordinates at epochs 1, 2 and 3 

 
Step 7 Set the starting estimates of the state 

cofactor matrix 
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 ( )k k k k k k′∆ = − =x K l B x K fk
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Step 15 Compute the new estimate of the 
state vector 

 k k′= + ∆x x x  

Step 16 Compute the cofactor Update matrix 

 k k k= −U I K B  

 Note that I is the identity matrix 
 
Step 17 Compute the new estimate of the 

state cofactor matrix 
 Note that at this step the estimates of 

the covariances are all set to zero. 
 

k kx x′=Q UQ  

  
Step 8 Increment the counter Go To Step 8 

   k k= +
 

Step 9 Compute the predicted state vector  
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