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ENGINEERING SURVEYING 1

HORIZONTAL CURVES

CIRCULAR CURVES, COMPOUND CIRCULAR CURVES, REVERSE CIRCULAR CURVES
TRANSITION CURVES AND COMPOUND CURVES

R.E.Deakin, August 2005

1. TYPES OF HORIZONTAL CURVES

The types of horizontal curves usually encountered in engineering surveying application may be broadly
categorised as

(i) Circular curves: curves of constant radius joining two intersecting straights.

o
& arc

A/\B

Figure 1.1

In Figure 1.1, a circular curve of constant radius R, centred at O, joins two straights A'A and BB' which
intersect at C. A and B are tangent points to the circular arc. OA and OB are radials, which meet the
straights at right angles, and the angle at O is equal to the intersection angle at C.
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(i)  Compound circular curves: two or more consecutive circular curves of different radii.

Cyo=0+0,

D

Figure 1.2

In Figure 1.2, a compound circular curve ADB joins two straights A'A and BB' which intersect at C. A
and B are tangent points to circular arcs of radii R, and R, respectively. D is a common tangent point.
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(iii)  Reverse circular curves:  two or more consecutive circular curves, of the same or different radii whose
centres lie on different sides of a common tangent point.

Figure 1.3

In Figure 1.3, a reverse circular curve ADB joins two straights A'A and BB'. A and B are tangent points to
circular arcs of radii R, and R, respectively. D is a common tangent point. C, and C, are intersection

points and the line C, C, is perpendicular to the line between the centres O, and O, .

(iv)  Transition curves: curves with gradually changing radius, often referred to as spirals.

A A
Straight

Transitjop, Cur,,
o~

Figure 1.4

In Figure 1.4, a transition curve AD joins the straight A'A and the circular curve of radius R whose centre
is O. The transition curve has an infinite radius at A, decreasing gradually to a radius of R at D.
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(v)  Combined curves: consisting of consecutive transition and circular curves. Combined curves are
used in road and railway surveying.

A A C
Straight

Figure 1.5

In Figure 1.5, a combined curve ADEFGB joins the straights A'A and BB' which intersect at C.
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2. GEOMETRY OF CIRCULAR CURVES

Figure 2.1

Figure 2.1 shows a circular curve APMB of radius R, centre O, joining two straights A'A and B'B which intersect
at C. The angle of intersection is & . A and B are tangent points and the radials OA and OB intersect the
straights at right angles. M is the mid-point of the circular arc AB and the mid-point of the line DE. DE and the
chord AB are parallel and X is the mid-point of the chord AB. The chord AB is perpendicular to the straight line
OXMC.

In the quadrilateral OACB, the angles A and B both equal 90° and C =180° - &, therefore O =6 . OACB is
known as a cyclic quadrilateral, (a quadrilateral inscribed within a circle whose opposite angles add to 180°).
Due to symmetry AOC =BOC =6/2 and ACO =0AB =90"-6/2. Hence, in the right-angle triangles AXC
and BXC, CAB=CBA=68/2. Therefore, the angle between the tangent AC and the chord AB is half the angle
subtended at the centre of the circle by the chord AB. This is a general property of chords and tangents to circles.

The following formulae may be deduced from Figure 2.1.

Tangent length AC T=R tang (2.1)
Arc length AB A=R0 (2.2)
Chord length AB C= 2Rsin§ (2.3)
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Mid ordinate distance XM M =R (1—005%) (2.4)

Secant distance MC S=R (secg—lj (2.5)

3. GEOMETRY OF COMPOUND CIRCULAR CURVES

C ) 0=0,+ 6,
A P
4 &
v T -, O\\/\

e

Figure 3.1

In Figure 3.1, a compound circular curve ADB joins two straights A'A and BB’ which intersect at C. A and B are
tangent points to circular arcs of radii R, and R, respectively, whose centres are O, and O, . D is a common

tangent point and the line C,C, is tangential to both circular curves and perpendicular to the line DO,0, .
T,=AC, T, =BC are tangent lengths and A = arc AD, A, = arc DB are arc lengths of the circular curves.

There are nine elements of a compound circular curve, 6, 6,,6,, R, R,, T,, T,, A and A, and the following
formulae linking these elements may be deduced from Figure 3.1.

0=0,+0, (3.1)
A =R6 (3.2)
A =Ry0, (3.3)
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In the polygon O,0,ACBO, the algebraic sum of the projections of the sides onto any one side must be zero. In
Figure 3.1, considering the projections of the sides onto the radius O,B we may write Ca = B0, -0,c—0O,b or

T,sind=R, - (R, -R,)cosé, — R, cosd
=R, -R,cosb, + R, cosd, — R, cosd
=R, (1-co0s6,)+R, (cosd, —cosh)
=R, (1-c0sd,)+R, (1-cosd - (1-cosb,))
which simplifies to
T,sind=R,(1-cosd)+(R,-R,)(1-cosb,) (3.4)
Similarly, projecting onto the radius O,A gives
T,sin0 =R, (1-cosd)—(R,—R,)(1-cosb,) (3.5)

Expressions for the tangent distances T, and T, can be obtained by considering the tangent distances t, and t,

t =R, tan% (3.6)
t,=R, tan% (3.7)

and using the sine rule in triangle C,CC,

siné.
CC, =T, -t =(t +t 2
1 1 tl (l Z)Sin9
giving
sing
T =t +(t +t 2 3.8
1 t1 (l Z)Siné? ( )
and similarly
siné,
T, =t +(t +t L 3.9
2 2 (1 Z)Sine ( )
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In some compound curve computations, the equations above are not convenient for solving unknowns. In such
circumstances an "equivalent” circle of radius R, which is tangential to all three lines AA', BB' and C,C, may be

introduced and equations developed.

Figure 3.2

In Figure 3.2, the circular curve (dotted) PMQ of radius R, centred at O, is tangential to the two straights AA" and
BB' and the line C,C,. The tangent points are P, M and Q. Using the formula for tangent length

PA=PC - AC, = Rtan%—R1 tan%:(R— Rl)tan%

Similarly
QB=BC,-QC, =R, tan%— Rtan%z (R, — R)tan%

Now, since PA=DM and QB =DM then PA=QB hence

DM =(R—Rl)tan%=(R2—R)tan% (3.10)

Re-arranging the equation gives the radius of the equivalent circular curve

R, tanﬁ+ R, '[ani
R=  — (3.11)
tan—= +tan—2*
2 2
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Also
AC =CP-DM (3.12)
BC=CQ+DM (3.13)
0
where CP=CQ=R tanE (3.14)

Example:  Given: 6=75, 6,=30", 6,=45, AC = 180.000 m and BC = 215.000 m.
Compute: R, and R,.

Using equations (3.12), (3.13) and (3.14)
180=CP-DM
215=CP+DM

From which we obtain 2(CP)=395 thus CP = 197.500 m and DM = 17.500 m.

Since CP is now known and 8 =75, then from (3.14) R = 257.387 m.

Since DM is now known, then from (3.10) R, = 192.076 m and R, = 299.636 m

4. GEOMETRY OF REVERSE CIRCULAR CURVES

Figure 4.1

In Figure 4.1, a reverse circular curve ADB joins two straights A'A and BB'. A and B are tangent points to
circular arcs of radii R, and R, respectively. D is a common tangent point. C, and C, are intersection points

and the line C, C, is perpendicular to the line between the centres O,DO, . C is an intersection point created by
extending AA' to intersect BB'.
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Similarly to compound circular curves, there are nine elements of a reverse circular curve, 6, 6,,6,, R, R,, T,
T,. A and A, and the following formulae linking these elements may be deduced from Figure 4.1.

From triangle CC,C,, 6+6, +(180° —92) =180" from which we obtain @ =8, —0,. For other reverse curves, it

may be that 8 =6, — 6, but in all cases, @ is the positive difference between ¢, and 6, or the magnitude of the
difference

0=16,-6, (4.1)
As before

A =R, (4.2)

A =R,0, (4.3)

As with the compound circular curve, the algebraic sum of projections of certain lines can be used to derive a
formula linking the elements of the reverse curve.

Considering Figure 4.1, we may write Aa=Ab-cO,+0,B or
ACsin® =R, cosd—(R, +R,)cosb, +R,

=R, cosf—-R,cosd, —R,cosb, +R,

=R, (cos@—-cosb,)+R,(1-cosb,)

=R, (1-cos@, —(1-cosf))+ R, (1-cosb,)
which simplifies to

ACsind = (R, +R,)(1-c0s,)—R, (1-cosd) (4.4)

Using a similar technique

BCsind=(R, +R,)(1-cosf,)—R, (1-cosf) (4.5)
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5.  GEOMETRY OF TRANSITION CURVES

A transition curve is a curve whose curvature x (kappa) varies uniformly with respect to its length and allows a
gradual change from one radius to another. Or from a straight line to a circular curve, since a straight line is
merely a curve of infinite radius. The concept of curvature and its reciprocal, radius of curvature o (rho), is

discussed below.

straight line .
(Curve of infinite radius) \ start of transition curve
Al

B_ — end of transition curve

circular curve
<~ (curve of constant radius R)

B’

Figure 5.1

Figure 5.1 shows a transition curve linking the straight A'A with the circular curve BB'. P is a point on the
transition curve at some distance s (arc length) from A. The total length of the transition curve is L. At P, the
transition curve has a radius of curvature p,at A p = (infinity) and at B, the beginning of the circular curve,

p =R . The tangent to the transition curve at P intersects the extension of A'A at an angle of ¢, known as the
tangential angle. ¢ has a value of zero at A (the beginning of the curve) and a maximum value of ¢, at B (the
end of the curve). In any transition curve, the change in ¢ is proportional to the change in s.

5.1 Curvature x and Radius of Curvature p

Figure 5.2
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Figure 5.2 shows a curve y = f(x) and two points on the curve P, and P, whose tangents cut the x-axis at
angles ¢ and ¢+ A¢ . The distance along the curve between P, and P, is As. The curvature x of a curve
y = f(x) atany point P is the rate of change of direction of the curve, (i.e., the change in the inclination of the
tangent) with respect to the arc length s. The curvature is defined as

o limA¢ _d¢ (5.1)
As—0 AS ds
The radius of curvature p is defined as the inverse of the curvature
1
p=— where k20 (5.2)

K

The radius of curvature can be thought of as the radius of a circle, which "best fits" the curve at that point. A
circle has a constant radius of curvature (and hence a constant curvature) and a straight line has an infinite radius
of curvature, or a curvature of zero.

5.2  The equation of the transition curve

A transition curve is defined as having a constant rate of change of curvature with respect to the arc length, i.e.,
if ¢ is the tangential angle and s is the arc length, then

2
dx = d—? =K where K is a constant (5.3)
ds ds
Consider the case of a transition curve joining a straight and a circular curve of constant radius R as in
Figure 5.1. Integrating (5.3) gives
d—¢=j|< ds = Ks+K,
ds

K, is a constant of integration which can be determined by considering the following; at A, the start of the curve,
s =0 and the curvature is also zero, i.e., d¢/ds=0, hence K, =0 and

d¢ =Ks (5.4)
ds
Integrating again

Ks?
¢:J-KS dS:T+K2
Again, K, is a constant of integration which can be determined, since at the start of the curve, s=0 and ¢=0,
hence K, =0 and

2

Equation (5.5) is the fundamental equation of the transition curve or clothoid, one of a family of mathematical
curves known as spirals. The clothoid is also known as Euler's spiral or Cornu's spiral.

¢ (5.5)

Equation (5.5) may be written as

s=Cg (5.6)

where C = \/% . If L is the total length of the clothoid, then when s = L, i.e., at the end of the curve and the

beginning of the circular curve, the curvature x =d¢/ds=1/p=1/R and from (5.4) d¢/ds=Ks=KL. Hence
equating the derivatives gives the constants K =1/(LR) and the equation of the clothoid becomes
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SZ

T 2R

or s=+/2LR¢g (5.8)

¢

(5.7)

Note: Since the curvature x =d¢/ds=Ks=s/(LR) =1/ p, where p is the radius of curvature corresponding
to the arc s then

sp =LR = constant (5.9)

This is an important and useful property of the clothoid.

When s =L (i.e., at the end of the transition curve and the beginning of the circular curve) the total tangential
angle ¢, is determined from (5.7) as
L

¢ = R (5.10)

5.3  Rectangular coordinates of the clothoid transition curve

The formulae above are not suitable for setting out clothoid transition curves in the field. Instead, rectangular
coordinates of points on the curve will be more useful.

In Figure 5.3, P is a point on the clothoid, at a distance s from the start of the curve and the tangent to P cuts the
x-axis at an angle ¢ . The x-y rectangular coordinate system has an origin at A, the start of the transition curve.
The x-axis is the extension of the line A'A, i.e., the tangent to the curve at A; the x-coordinate of P is the distance
along the tangent and the y-coordinate is the perpendicular offset from the tangent. A small arc length As has
components Ax and Ay, and in the limit become infinitesimal changes ds, dx and dy shown in the enlargement

to the right.

¢
A' A i X ] ;AX\F X
start of transition \T g — dx = ds cos ¢
A5t PN ¢ dy = ds sin ¢
y ds
Figure 5.3

To express the equation of the clothoid in rectangular coordinates we make use of the differential relationships
shown in Figure 5.3

dx =ds cos¢g

5.11
dy =ds sing 611)
Differentiating (5.7)

S
d¢ =——ds
/ LR

Substituting for s using (5.8) and re-arranging gives

LR d¢

2 s

ds =
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Substituting for ds in equations (5.11) and integrating gives
_ LR J-¢ CoS¢ p
V2 N
/ J‘¢ sm

These integrals, known as Fresnel integrals cannot be expressed in terms of elementary functions. Instead,
cos¢ and sing are expanded into series and the integration performed term by term with the result expressed as

a truncated series, assuming successive terms become smaller and smaller. Then

2 52 54 56 58
J. { ! 4! 6' 8! ‘.'}
, 2 53 55 57 59
.[ ¢ { __' _l__l+_l_}d¢

Performing the integrations and simplifying gives the series expansion for the clothoid in terms of the tangential
angle ¢

¢“ ¢ ¢’

Xx=+2LR - + - 5.12

({ (5)2I (994! (13)6! (17)8! .12

J2LR \f ¢5 # i (5.13)

p— + J——— .
= 3 (7)3- 15! (15)71 " (19)9!
Substituting for ¢ from equation (5.7) gives the series expansion for the clothoid in terms of curve length s

5 9 13 17

X=8— > + > - > + > —e (5.14)

(5-2°)21(LR)"  (9-2)41(LR)" (13-2°)6!(LR)* (17-2°)81(LR)’

53 S7 11 S15 Slg

y= (3.21)LR _(7'23)3!(LR)3 + (11-25)5!(LR)5 _(15'27)7!(LR)7 +(19'29)9!(LR)9 —...  (5.15)

2

Note that (5- 22) =5x2%. Equations (5.14) and (5.15) can be re-arranged into a power series in ﬁ

1 st 1 s2 Y 1 s2 Y 1 st Y
X=5<1- 2 — | + 7 — | TTAa s AT +—8 — | — (516)
5.2°.21l LR 9.2% .41\ LR 13.-2°.6!{ LR 17-2°.8I\ LR
3 2\2 2 \* 2\8 2\8
oSl 6 (Y, 6 () 6 (), 6 (sF | g
6LR 7-2°.3Il LR 11.2°.51{ LR 15.2" .71 LR 19.2° .91l LR

The maximum values of x and y are reached when s = L, i.e., at the end of the transition curve. Substituting s =
L into equations (5.14) (5.15) gives

K L°
X =L-— b 5.18
max 40R?  3456R* (5.18)

L2 L4 L
—— + —
6R 336R®  42240R°

ymax = (5. 19)
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5.4  Offsets from the tangent to the clothoid transition curve

For setting out purposes, it may be desirable to compute the y-coordinate (the offset from the tangent) given the
x-coordinate (distance along the tangent). To express y as a function of x, we first obtain s in terms of x by
"reversing" the series in x in equation (5.14) using Lagrange's Theorem*

Given
s=X+WF(s) or x=s—-wF(s) (5.20)

then

+§W[{F ()} f'(x)] (5.21)

Wn d n-1

S OO (0]

where f(s) isa function of s, f(x) and F(x) are functions of x, f'(x) is the derivative of f(x) andwisa
constant.

+

In our case w = 1 and we choose f(s)=s sothat f(x)=x and f'(x)=1 giving

1d 2 1d™ n
S=X+ F(x)+§&{F(X)} +W+HW{F(X)} (5.22)

Now F(s) consists of all terms on the right-hand side of (5.14), except the 1st term, noting the change of sign to
accord with x =s—F(s) in equation (5.20)

5 9

S S
= 2 7t
40(LR) 3456(LR)

F(s)

hence F(x) is the same series with x replacing s

x® x°

F(x)= 5=
40(LR)" 3456(LR)

4_|_...

This is the 2nd term in equation (5.22). The 3rd term is obtained as follows

, 10 oylé X8
{F(X)} = ra st gt
1600(LR)" 138240(LR)° 11943936(LR)
EE{F(X)}Z =£ﬂ+
2 dx 2 1600(LR)*
X
=t ..
320(LR)*

! Reversion of a series can be achieved by using Lagrange's Theorem. A proof of this theorem can be found in
Formulas and Theorems in Pure Mathematics by George S. Carr (2nd ed, Chelsea Pub. Co., New York, 1970).
An application of Lagrange's Theorem can be found in Geodesy and Map Projections, by G.B. Lauf (TAFE
Publications, Collingwood, Aust., 1983), where it is used to derive a series expression for the "foot-point"
latitude used in conversion of latitudes and longitudes (geodetic coordinates) to Universal Transverse Mercator
projection coordinates.
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The series in equation (5.22) becomes

5

9 9
+ Z+ X 4+... + X—A... +...
40(LR)°  3456(LR) 320(LR)

(5.23)
x° 49x°
=X+ >+ T+
40(LR)" 17280(LR)
Substituting this series for s into equation (5.15) gives the series for y in terms of x
3 7 11 15 19
y X X N 293x N 55397x 131021x (5.24)

= + — ...
6LR 105(LR)’ 237600(LR)° 269568000(LR)"  7763558400(LR)’

5.5  Polar coordinates of the clothoid transition curve
For "setting-out" the clothoid, it may be desirable to determine the polar coordinates of P on the curve.

Figure 5.4 shows P having x,y rectangular coordinates. The polar coordinates of P are c, the chord distance and
« the "deflection angle" from the tangent (the x-axis).

@ ¢
A A | X —] | X
/ Jc P y
start of transition
y
Figure 5.4
It can be seen from Figure 5.4 that
tang =Y (5.25)
X
and that ¢ =+/x* +y? or preferably
c=—2 (5.26)
cosa

In practical problems, c and « are calculated from the x and y coordinates computed from the series equations
above.
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5.6  The shift S of a transition curve

To insert a transition curve between a straight and a circular curve it is necessary to shift the circular curve away
from the straight by an amount known as the shift. Similarly in order to insert a transition curve between two
circular curves forming a compound curve it is necessary to move the circular curve with the smaller radius
inwards, or the circular curve with the larger radius outwards.

K'
Q
S :\gsec 2 K
Stan ¢
F © e
O
¢|_ ¥ 9' 2¢L
4 28
~3 \/?
N
8 J
Il
N D P , ;
; a R e
A booa ) F G H C
E Q l (R+S)tan g
Augmented Tangent Length

Figure 5.5
In Figure 5.5, straights A'A and KK" intersect at C. The intersection angle is € . A circular curve of radius R,
centred at O' was originally used to join the two straights, but has been shifted to O to allow for the introduction
of two transition curves AB and JK, both of length L. O' has been shifted to O a distance S secg where S is the

shift, the perpendicular distance EF.

From Figure 5.5
S=BH -DE
= Yinax ~ R(l_COS¢L)

where vy, is the maximum offset from the tangent given by equation (5.19) and ¢, =§ is the maximum

2 4 6
tangential angle (see equation 5.10). Using the expansion cos¢ = 1—%+%—%+ .-+ and substituting for ¢,

and vy, gives
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N L° N L°
S=| ————+ | -R| 11— S
6R 336R° 42240R 8R? ' 384R* 46080R

2 L° S L°
= — — + —_— e || — — + e
(GR 336R°  42240R° J (SR 384R°  46080R° ]

which simplifies to

2 4 6
g b U - L I (5.27)
24R  2688R° 506880R
For many practical applications the shift is approximated by
L2
= 5.28
24R (5.28)
5.7  The Augmented Tangent Length of a transition curve
From Figure 5.5, the Augmented Tangent Length is the distance AC where
AC=Q+FC (5.30)

and
FC=FG + GC

G is the tangent point of the original circular curve or radius R joining the two straights, GC = Rtan8/2 and
FG =Stan@/2, hence the Augmented Tangent Length is

AC=Q+(R+S)tan§ (5.31)
From Figure 5.5
Q=AH-DB
=X, — RSiNG,
where x,.. is the maximum distances along the tangent given by equation (5.18) and ¢, :% is the maximum
A
tangential angle (see equation 5.10). Using the expansion sing = ¢ _§+§_?+ --- and substituting for ¢,

and X, gives

L2 L° L L2 °
Q: |_—_2+—4_... -R ——
40R® 3456R 2R 48R° 3840R
3 5 3 5
PRI I (R
40R° 3456R 2 48R 3840R

which simplifies to

L 2 L
=—— + - 5.32
Q 2 240R* 34560R* (5:32)
The Augmented Tangent Length AC becomes
3 5
AC = Lt ~+ L T +(R+S)tang (5.33)
2 240R° 34560R 2
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5.8  Clothoid transition curves between circular curves

Two circular curves of radii R, and R, can be joined by a clothoid transition curve whose curvature varies from
ik, =1/p, =1/R, to x, =1/ p, =1/R,. Thatis, a transition curve tangential to both circular arcs

Figure 5.6

Figure 5.6 shows two circular curves of radii R, and R, centred at O, and O, . A clothoid transition curve AB
of length L joins these two circular curves. The curvature of the clothoid at A is x;, =1/ p, =1/R, and the
curvature at B is «, =1/ p, =1/R, and the clothoid has a constant rate of change of curvature with respect to arc
length s. Hence, we may link the curvature at P with the curvatures at the beginning and end of the curve by

K, = &, +(K2+Kl)s (5.34)
The elemental arc length at P is
ds=p d¢:i d¢ (5.35)
K

P

Substituting equation (5.34) and re-arranging gives
dg = (/cl +(KZ+K1)SJ ds

Integrating gives an expression for the tangential angle
K, — K.
=xS+—2—1s"+C
P=rS+—r

where C is a constant of integration.
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Since ¢ =0 when s = 0 then C = 0 and the equation for the tangential angle ¢ becomes

K, — K
¢=rs+—21—1¢
2L

= i+—Rl —R, s?
R, 2LRR,
and letting
a-Ri-R (5.36)
2LRR,
gives
S 2
¢ = E+ As (5.37)

1

Now similarly to before, the elemental distance ds has components in the x and y directions, where the X,y axes
have an origin at A with the x-axis in the direction of the tangent

dx =ds cos¢

5.38
dy =ds sing (5.38)

Substituting equation (5.37) for ¢ in equations (5.38), then expanding using the series expansions for cos¢ and
sing , and then integrating gives

s 2 4 6
x:j I VNI I [V NCILIR R (VL) I G (5.39)
A R ) 4 R ) 6! R,

s 3 5 7
y:I JYCINLIES VL Y (VNI B VL IR (5.40)
. R 3! R ) 5! R) 7! R
Performing the integrations and simplifying (using the symbolic mathematical package MAPLE) gives
1 3 A 4 6 AZ l 7
X=5— 5| =] —1s T s°+ + 5= =S
6R; 4R, 120R 36R 28R 5040R;
3
A__A $? 5 (5.41)
360R

+ - 5 $*+ 4
48R, 960R; 216 432R

A4 11 A5 12
| —= |s" - s+
528R; 1440R 9360

o [ ) [A ) 1 R, [ A A,

y= 5 [s' - = |s”+ = s°+ ——— s
24R’ 10R 720R° 12R, 168R; 42

s [ A A N, [ A A

T S + 7 5 |S + - = |S
96R’  40320R] 108R?  6480R 240R,  2400R

sl A’ s2 A sBs

1320 1584R! 1728R? 3120R?

A° A R
10080R 75600R;

(5.42)
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5.9  Perpendicular Offsets to a Clothoid Transition Curve

P
n
Al % b/ Y X
oy
o R
/ [angen
- X'
’ o o~
y y
y
2
7
Q

Figure 5.7

Certain purposes may require the computation of perpendicular offsets from points of known coordinates to a
clothoid transition curve (defined by L and R).

Figure 5.7 shows a clothoid transition curve tangential to a straight at A. The extension of the straight is the
x-axis and the y-axis is perpendicular to the straight and directed towards the centre of curvature. P is a known
point (coordinates X, Y, ) and the perpendicular to the transition curve passing through P intersects the curve at

P, (X, Y,)- The tangent to the curve at P, intersects the x-axis at an angle ¢ (the tangential angle). The x'-axis
is parallel to the tangent at P, and the x'-y' axes are rotated from the x-y axes by the angle ¢ .

The method of solution is to first determine the tangential angle ¢, and then compute the distance along the

curve between A and P, using equation (5.8) s = \/ZLR\/E . Having determined the distance s, the x-y
coordinates of P, can be computed using equations (5.14) and (5.15) and finally the perpendicular offset P, -P
computed from coordinate differences.

To determine the tangential angle ¢ the following formulae and relationships are required.

1. The equations of the x-y coordinate of a clothoid transition curve given L and R

_ A A
x—\/ZLR\/E{l (5)2!+(9)4! (13)6!+ } (5.12)

_BRGIS_E ¢
= ZLRﬂ{s (7)3!+(11)5! (15)7!+ } (6.13)
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2. The equations for a rotation of coordinate axes

X'| | cosg sing |l x £ 43
e ] e L

or A Ve
X'=XC0S¢+ ysin . B -
$+ysing (5.44) y
y'=ycos¢—xsing y
Figure 5.8
3. Sine and Cosine expansions
3 5 7
sing :¢—¢—I+¢—I—¢—'
$tosh o (5.45)
cos¢:1—¢—+¢——¢—
21 41 ¢!

The x' coordinate of any point whose x,y coordinates are known is given by (5.44).
X'=XC0S¢+ ysing

Substituting the equations for x and y (5.12) and (5.13) and the expansions for sine and cosine (5.45) gives

Expanding this equation and then gathering terms gives (1st three terms only) an equation for x' in terms of L, R
and the tangential angle ¢

X' =~/2LR ¢¥? —%\/2 LR ¢%? +%\/ZLR #%? (5.46)

The x' coordinate of P is

Xp = X, COS@ + Y, SiN g

A A
=Xp {1_E+Z_“.}+ Yo {¢_§+§_}

Expanding and gathering terms gives

Lty g (5.47)

, 1 1
XP:XP+yP¢_EXP¢z_EyP¢3+24 120

Now, when x'= X , the normal to the transition curve will pass through P. Subtracting (5.47) from (5.46) and
taking only terms up to the 3rd power gives

VZLR 47— 2R § X = o+ 5 X + Yo =0 (5.48)

This equation can be solved for ¢ using Newton's iterative technique. A simplification can be made by using
the substitution

a=1\p (5.49)

and equation (5.48) can be written as
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1 4 1
f (a)Zgypae 5 2LR a5+5xpa“ -y, +y2LRa - %, =0

Solving for & = /¢ using Newton's Iteration

where f’(a) is the derivative of f («) and

f'(a)=y,a’ —% 2LR a* +2x,a° -2y, ++/2LR

RMIT

(5.50)

(5.51)

(5.52)

A starting value for « can be obtained by substituting « =0 into f (&) and f’(«) and using (5.51) to give

Xp

o = ——
NN

(5.53)

NOTES 1. A better (computationally) way to calculate numeric values for f («) and f'(«) is to express the

equations in a nested form

f(a)z([(((%ypaja—% 2R a]a+%xpa]a—yp}z+ 2LRJa—XP

f’(a):([((ypa)a—%x/ﬁ a]mzxpaja_zypjm 2[R

2. When using this method to compute perpendicular offsets it should be remembered that the

(5.54)

positive directions of the x and y axes are dictated by the direction of the transition curve. They
may be opposite to the positive directions of East and North coordinate axes. Hence, care should

be taken when determining x, and y, from E,N coordinates.
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5.9  Fitting a Clothoid Spiral Transition Curve Between a Straight and a Circular Curve

Figure 5.9

In Figure 5.9 a circular curve of radius R has a fixed centre at O having known coordinates. AA' is a straight of
known bearing and it is desired to find the length L of a clothoid spiral transition curve that is tangential to the
straight at TS and the circular curve at SC. The locations of SC and TS are unknown. X is a point on the straight
AA' of known coordinates and the bearing and distance OX can be computed and then the perpendicular distance
d from the centre O to the straight. The distance d must be greater than the radius R. From the diagram it can be

seen that the spiral angle ¢_=L/(2R) (which is unknown) is also the angle at the centre O between the radial to
SC and the perpendicular to the straight. The distance d is given by

L
d =Rcosg, + =Rcos| — |+
¢L ymax (ZRJ ymax
With the use of an Excel spreadsheet for computing clothoid spirals given parameters L and R, the length of the

transition curve L can be determined by successively changing L, until the required distance d is obtained.
o = L/(2R) can be computed and the radial bearing to SC determined.
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6. DESIGN CONSIDERATIONS FOR CIRCULAR CURVES AND TRANSITION
CURVES

Circular curves and transition curves (clothoids) are uniquely defined if any two of their "properties™ (or
parameters) are fixed. For circular curves these two properties are usually selected from the following: radius,
arc length, intersection angle, tangent length or chord length. For transition curves the properties are selected
from minimum radius, length of curve, maximum tangential angle (also known as spiral angle) and shift.

Generally, in practical design of roads and railways, intersection angles of straight sections are predetermined by
the overall layout and the problem is to design the connecting circular curves and transition curves to suit the
expected traffic conditions. From a traffic viewpoint, the largest possible circular curves and the longest
possible transition curves are most desirable, but restrictions usually arise due to the topography or site
conditions and the cost. Therefore it is necessary to determine suitable minima for radii of circular curves and
transition lengths for given traffic speeds. Since the speed of vehicles using a particular road or railway is a
variable quantity (and is beyond the control of designers), "design speeds" are selected which satisfy some
criteria. For instance, a design speed may be the speed where it is expected that it will not be exceeded by 85%
of the vehicles using the road.

6.1  Minimum Radius for Circular Curves
Uniform Circular Motion

In Figure 6.1, a body of mass m is moving in a circular path of
radius r at a constant velocity v. Such motion is known as
uniform circular motion and the body has acceleration directed
radially inwards towards the centre of the circle O. This
acceleration is known as centripetal acceleration and in order
for the body to have this acceleration it must be acted upon by
a force F, equal to its mass multiplied by its acceleration
(Newton's second law F =mxa). This force is known as the

centripetal force. Equations for the centripetal acceleration
and centripetal force can be derived in the following manner.

First, centripetal acceleration, remembering that

change in velocity _ dv Q)
change in time ot

At A, the body of mass m has a velocity of magnitude v along

the tangent AP. At B, its velocity is the same but its direction

is now along BQ (the tangent at B).

The change in velocity is given by the vector subtraction AP from BQ, i.e., 6v=v, —v, and
50 the angle between the vectors v, and v, is 60 (the angle between the radials OA and OB). In

: the limit, as B approaches A, the change in velocity can be considered as an arc of a circle of
radius v subtending and angle d@ . Thus the change in velocity is
dv=vda (i)

acceleration =

Figure 6.1

ov
Now, since velocity equals distance divided by time then v =$ where ds=rd@ and are-

arrangement gives the change in time as

gt =25 _rdo (i)
v v
Substituting (ii) and (iii) into (i) and simplifying gives the centripetal acceleration
2
a=" (6.1)

r
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The centripetal force is found by Newton's second law (F =mxa)

F. = (6.2)

An example of uniform circular motion and the resulting centripetal force is a stone on the end of a string
rotating in a horizontal plane. The centripetal force in this instance is caused by the tension in the string.

For vehicles travelling at constant velocity around circular roadways or railway tracks, the centripetal force is
caused by the constraining influence of the road pavement (friction) or the flanges of wheels on rail track.

Centrifugal force is a quantity peculiar to body moving in a circular path. It has the same magnitude as the
centripetal force but points in the opposite direction. An occupant of a vehicle travelling around a circular curve
"feels" the centrifugal force (acting in the opposite direction to the centripetal force) thrusting them against the
side of the vehicle.

Superelevation and Friction

Figure 6.2

At any speed, in order to constrain a vehicle to follow a circular path, it is necessary to tilt or cant the road
pavement or elevate the outer rail above the inner rail on rail track. This tilting or cant is known as
superelevation and is used to reduce the effect of centrifugal force. In Figure 6.2, the superelevation is

e=tand . In railway design, unsatisfactory superelevation will cause side thrust on the rails, spikes and sleepers
and uneven wear on the rails. Wheels will ride up the outer rail and jump and carriages will tend to capsize. On
roads, unsatisfactory superelevation will cause vehicles to slide and skid sideways.

In deciding how much superelevation to provide for a given velocity, too much may be as bad as too little. For
railways, slow trains on steeply banked curves lurch inwards, whereas fast trains on curves with little or no
superelevation would capsize or leave the track. One rule adopted is to provide superelevation for speed

V= %(anax +Vm2in

) , which approximates the average speed of passenger trains, with an absolute maximum
value of superelevation of 150 mm for a track gauge of 1.435 m.

For roads, the requirement is that maximum superelevation should not be so great as to disturb the stability of
slow moving or stationary vehicles, particularly those carrying high loads. The maximum value adopted in
Victoria for road design is 100 mm per metre or 1 in 10 (10%).

Referring to Figure 6.2, for road vehicles travelling at constant velocities around circular roadways, the
centripetal force F, is caused by the constraining influence of the road pavement (friction). The friction force

F = f N, which acts parallel to the road, is a function of N, the force normal to the road. f is the coefficient of

side frictional force developed between the vehicle tyres and the road pavement. W is the weight (a force) and
its magnitude W is equal to the vehicle mass m multiplied by the force of gravity g.
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Within the limits of safe driving by an average driver, the coefficient of friction f ranges from 0.40 at 30 kph
(kilometres per hour) to 0.11 at 110 kph. However, for reasons of passenger comfort, f should not exceed 0.20
and for design purposes, it is restricted to the range 0.11< f <0.19.

The publication Rural Road Design — Guide to the Geometric Design of Rural Roads (AUSTROADS, Sydney,
1993) has a table of recommended maximum design values of f for sealed pavements, part of which is given
below in Table 6.1

Design Speed Coefficient of Side Friction
V (kph) f
60 0.33
80 0.26
100 0.12
120 0.11
130 0.11
Table 6.1

In railway design, the coefficient of friction is ignored since the rails provide the entire constraining force.
Relationship between Superelevation (Cant) and Radius for given Velocity (Speed)

Speed is a measure of road (highway) design to which the geometrical properties of design are subordinated.
The endeavour is to provide a continuous route that the road user can proceed along in comfort at uniform speed.
Studies in Australia, have revealed that the majority of road users prefer to travel at speeds between 80 to 110
kph, and as a result of these studies have developed standards which are the basis for current highway design.

For roads, to make the thrust zero, road pavement must be superelevated until the components of the forces
acting on the vehicle are balanced. Referring to Figure 6.2, resolving the forces acting on the vehicle into
components parallel to the road gives

2

N +W sing = WV
ar

cosd (6.3)

Resolving the forces acting on the vehicle into components normal to the road surface gives

2

N :Wv
gr

sin@+W cos @ (6.4)

Substituting equation (6.4) into (6.3) and re-arranging gives

2

Wy cos@-Wsing
r

2
f [WV sin@ +W cosﬁj =
gr

Dividing both sides by W cos@ and re-arranging

2 2
fV—tan0+ f +tan0:V—
gr gr

Now, the superelevation e =tané hence

2 2

¥ erfre="

gr ar

2

e+ f =V—(1—ef)
gr
And the radius r is given by
2
r:V_(l—efj (6.5)
gle+f
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For practical values of e and f the product ef issmall (for 0.11< f <0.19 and e = 0.1 then
0.011<ef <0.019) and may be neglected giving

r:%[ejf] (6.6)

In the equations above, v is m/s (metres per second). With V in kph (kilometres-per-hour) ( m/sx 3.6 = kph) and

replacing r by R (the radius of the circular curve), and using g = 9.8 m/s as a representative value of the
acceleration due to gravity, equation (6.6) becomes

V2

R=1o7 (e+f) ©D

The publication Rural Road Design — Guide to the Geometric Design of Rural Roads (AUSTROADS, Sydney,
1993) has a table of Minimum Radii of Circular Curves based on Superelevation e and Side Friction f maxima.
Part of this table is given below in Table 6.2

Vehicle Speed Superelevation | Coefficient of Side Friction | Minimum Radius
V (kph) e f R (m)
60 0.1 0.33 70
80 0.1 0.26 140
100 0.1 0.12 360
120 0.1 0.11 540
130 0.1 0.11 635
Table 6.2

The values in Table 6.2 have been computed using equation (6.7) and then rounded up to the nearest 5 metres. It
is usual practice to adopt values greater than the minimum radius and to reduce superelevation and side friction
below their maximum values.

6.2  Determination of Minimum Length of Transition Curve for Given Speed Values

Two methods may be adopted to determine lengths of transition curves L for given speeds V.

(1) Length is such that the full superelevation e,
(where k can vary from 0.03 to 0.06 m/s).

is attained at a uniform time rate, say k metres per second

X

An equation for the length L can be developed in the following manner.

The time taken to travel the length L is t:L where L is in metres, v is in metres per second and tis in
Vv

we . . . .

seconds. k :% metres per second where w is the road pavement width or railway track width and
. . . . we, .V
e=tan@ is superelevation; e . being the maximum value. Therefore k = —"%— and by re-
L

arrangement and using V in kph, noting that v =%

L _Wen V. (6.8)
3.6k

Equation (6.8) is used for computing lengths of transition curves for railway design where w is the width
of the track, we,,, will be the height of the outer rail above the inner rail and values of k are adopted

from empirical studies.
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(i)

For riding comfort, the centripetal acceleration a, should increase gradually at a uniform rate, say A
metres per second squared per second. Note: the units of a are m/s? and A are m/s°.

An equation for the length L can be developed in the following manner.

. . L . .
As before, the time taken to travel the length L is t =— where L is in metres, v is in metres per second
v

2
and tis in seconds. The centripetal acceleration is a :VE (see equation (6.1) with R replacing r). If Ais

the uniform rate of increase in centripetal acceleration then A:% and by substitution for a and t we

3 3
obtain A:V—. By re-arrangement and using V in kph, noting that v® = 3
LR (3.6)
3
L 0.0214V 6.9)
AR

Equation (6.9) is used by Vicroads for computing lengths of road transition curves with the following
values for A, the rate of change of radial acceleration

V <80 kph A=0.60
80<V <120 kph A =0.45
V >120 kph A=0.30

Using these values for A with the minimum values for R in Table 6.2, some representative values for L
are computed from equation (6.9) and given in Table 6.3 (rounded up to the nearest 5 m)

Vehicle Speed Minimum Radius Rate of Change of Length of
V (kph) R (m) Radial Acceleration Transition
A (m/s®) L (m)
60 70 0.60 110
80 140 0.45 175
100 360 0.45 135
120 540 0.45 155
130 635 0.30 250
Table 6.3

The values for L in Table 6.3 are far in excess of values adopted for the design of transition curves given
in handbooks on the subject (see Rural Road Design — Guide to the Geometric Design of Rural Roads,
AUSTROADS, 1993). In such cases, other considerations in the design come into play such as studies of
driver behaviour. One should consider the fact that drivers often adopt cornering speeds based on what
they can see of the road ahead. If the length of the transition "hides" the circular curve that drivers must
negotiate then they may adopt an incorrect speed to safely negotiate the circular curve. To avoid this,
transition curve lengths are often shorter than those derived from theoretical formula.

The paper by Leeming? has an interesting commentary on transition curves and superelevation. Leeming
notes that the rate of change of radial acceleration is not the appropriate parameter to use in the design of
transition curves. But, he makes a strong point that superelevation should not be introduced without a
change in radius of curvature.

2 Leeming, J. J., 1973, 'Road curvature and superelevation’, Survey Review, Vol. XXII, No. 167, pp. 23-35.
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6.3  Superelevation and Transition Curves

Figure 6.3

Figure 6.3 shows a schematic diagram of two straight sections of two-lane roadway joined by a circular curve
with transition curves of length L joining the circular curve and the straights. Transition curves (clothoids) are
also known as spirals and the tangent point of the straight and the spiral is known as TS. The common tangent to
the spiral and the circular curve is CS, the common tangent to the circular curve and the spiral is CS and the
spiral is tangential to the straight at ST. n is the cross-fall of the road (generally given in %) and e is the
superelevation. At the start of the circular curve, e should be the maximum value adopted for the design. For a
vehicle on the left-hand-side and travelling 'up’ the road (from the bottom of the diagram) and turning to the
right, the cross-fall n is negative (negative cant) and must change gradually to zero (level) at TS. At this point,
superelevation begins (positive cross-fall or positive cant), which increases until it reaches its maximum value at
the beginning of the circular curve. Le is the length of superelevation development and the point SLe is the point
where the cross-fall starts to change as the vehicle approaches the transition curve. The distance between TS and
SLe is usually dictated by the design velocity V and tables of values are given in design handbooks (eg, Rural
Road Design — Guide to the Geometric Design of Rural Roads, AUSTROADS, 1993).
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