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CIRCULAR CURVES, COMPOUND CIRCULAR CURVES, REVERSE CIRCULAR CURVES 
 

TRANSITION CURVES AND COMPOUND CURVES 
 

R.E.Deakin, August 2005 
 

 
 
1. TYPES OF HORIZONTAL CURVES 
 
The types of horizontal curves usually encountered in engineering surveying application may be broadly 
categorised as 
 
 
(i) Circular curves: curves of constant radius joining two intersecting straights. 
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Figure 1.1 
 
 
 In Figure 1.1, a circular curve of constant radius R, centred at O, joins two straights A'A and BB' which 

intersect at C.  A and B are tangent points to the circular arc.  OA and OB are radials, which meet the 
straights at right angles, and the angle at O is equal to the intersection angle at C.  
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(ii) Compound circular curves: two or more consecutive circular curves of different radii. 
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Figure 1.2 
 
 
 In Figure 1.2, a compound circular curve ADB joins two straights A'A and BB' which intersect at C.  A 

and B are tangent points to circular arcs of radii  and  respectively.  D is a common tangent point. 1R 2R
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(iii) Reverse circular curves: two or more consecutive circular curves, of the same or different radii whose 

centres lie on different sides of a common tangent point. 
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Figure 1.3 
 
 
 In Figure 1.3, a reverse circular curve ADB joins two straights A'A and BB'.  A and B are tangent points to 

circular arcs of radii  and  respectively.  D is a common tangent point.   and  are intersection 
points and the line  is perpendicular to the line between the centres  and . 

1R 2R 1C 2C

1 2C C 1O 2O
 
 
(iv) Transition curves: curves with gradually changing radius, often referred to as spirals. 
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Figure 1.4 
 
 
 In Figure 1.4, a transition curve AD joins the straight A'A and the circular curve of radius R whose centre 

is O.  The transition curve has an infinite radius at A, decreasing gradually to a radius of R at D. 
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(v) Combined curves: consisting of consecutive transition and circular curves.  Combined curves are 

used in road and railway surveying. 
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Figure 1.5 
 
 
 In Figure 1.5, a combined curve ADEFGB joins the straights A'A and BB' which intersect at C.   
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2. GEOMETRY OF CIRCULAR CURVES 
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Figure 2.1 
 
Figure 2.1 shows a circular curve APMB of radius R, centre O, joining two straights A'A and B'B which intersect 
at C.  The angle of intersection is θ .  A and B are tangent points and the radials OA and OB intersect the 
straights at right angles.  M is the mid-point of the circular arc AB and the mid-point of the line DE.  DE and the 
chord AB are parallel and X is the mid-point of the chord AB.  The chord AB is perpendicular to the straight line 
OXMC. 
 
In the quadrilateral OACB, the angles A and B both equal 90° and 180C θ= − , therefore O θ= .  OACB is 
known as a cyclic quadrilateral, (a quadrilateral inscribed within a circle whose opposite angles add to 180°).  
Due to symmetry / 2AOC BOC θ= =  and 90 / 2ACO OAB θ= = − .  Hence, in the right-angle triangles AXC 
and BXC, / 2CAB CBA θ= = .  Therefore, the angle between the tangent AC and the chord AB is half the angle 
subtended at the centre of the circle by the chord AB.  This is a general property of chords and tangents to circles. 
 
The following formulae may be deduced from Figure 2.1. 
 

 Tangent length AC tan
2

T R θ
=  (2.1) 

 Arc length AB A Rθ=  (2.2) 

 Chord length AB 2 sin
2

C R θ
=  (2.3) 
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 Mid ordinate distance XM 1 cos
2

M R θ⎛= −⎜
⎝ ⎠

⎞
⎟  (2.4) 

 Secant distance MC sec 1
2

S R θ⎛ ⎞= −⎜
⎝ ⎠

⎟  (2.5) 

 
 
 
3. GEOMETRY OF COMPOUND CIRCULAR CURVES 
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Figure 3.1 
 
 
 In Figure 3.1, a compound circular curve ADB joins two straights A'A and BB' which intersect at C.  A and B are 
tangent points to circular arcs of radii  and  respectively, whose centres are  and .  D is a common 
tangent point and the line  is tangential to both circular curves and perpendicular to the line .  

,  are tangent lengths and 

1R 2R 1O 2O

1 2C C 1 2DO O

1T AC= 2T BC= 1 arc A AD= , 2 arc A DB=  are arc lengths of the circular curves. 
 
There are nine elements of a compound circular curve, 1 2, ,θ θ θ , , , , , 1R 2R 1T 2T 1A  and 2A  and the following 
formulae linking these elements may be deduced from Figure 3.1. 

 1 2θ θ θ= +  (3.1) 

 1 1 1A Rθ=  (3.2) 

 2 2 2A R θ=  (3.3) 
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In the polygon  the algebraic sum of the projections of the sides onto any one side must be zero.  In 
Figure 3.1, considering the projections of the sides onto the radius  we may write  or 

2 1 2O O ACBO

2O B 2 2 1Ca BO O c O b= − −
 

 

( )

( ) ( )
( ) ( )( )

1 2 2 1 2 1

2 2 2 1 2 1

2 2 1 2

2 2 1

sin cos cos
cos cos cos

1 cos cos cos

1 cos 1 cos 1 cos

T R R R R
R R R R
R R

R R

θ θ θ
θ θ θ
θ θ θ

2θ θ θ

= − − −

= − + −

= − + −

= − + − − −

 

which simplifies to 

 ( ) ( ) ( )1 1 2 1sin 1 cos 1 cosT R R R 2θ θ= − + − − θ  (3.4) 

Similarly, projecting onto the radius  gives 1O A

 ( ) ( ) ( )2 2 2 1sin 1 cos 1 cosT R R R 1θ θ= − − − − θ  (3.5) 

Expressions for the tangent distances  and  can be obtained by considering the tangent distances  and   1T 2T 1t 2t

 1
1 1 tan

2
t R θ
=  (3.6) 

 2
2 2 tan

2
t R θ
=  (3.7) 

and using the sine rule in triangle  1 2C CC

 ( ) 2
1 1 1 1 2

sin
sin

CC T t t t θ
θ

= − = +  

giving 

 ( ) 2
1 1 1 2

sin
sin

T t t t θ
θ

= + +  (3.8) 

and similarly 

 ( ) 1
2 2 1 2

sin
sin

T t t t θ
θ

= + +  (3.9) 
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In some compound curve computations, the equations above are not convenient for solving unknowns.  In such 
circumstances an "equivalent" circle of radius R, which is tangential to all three lines AA', BB' and  may be 
introduced and equations developed. 

1 2C C
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Figure 3.2 
 
 
In Figure 3.2, the circular curve (dotted) PMQ of radius R, centred at O, is tangential to the two straights AA' and 
BB' and the line .  The tangent points are P, M and Q.  Using the formula for tangent length 1 2C C

 ( )1 1
1 1 1 1tan tan tan

2 2
PA PC AC R R R R 1

2
θ θ θ

= − = − = −  

Similarly 

 ( )2 2
1 1 2 2tan tan tan

2 2
QB BC QC R R R R 2

2
θ θ θ

= − = − = −  

Now, since  and QB  then PA DM= DM= PA QB=  hence 

 ( ) ( )1
1 2tan tan

2 2
DM R R R R 2θ θ

= − = −  (3.10) 

Re-arranging the equation gives the radius of the equivalent circular curve 

 
1 2

1 2

1 1

tan tan
2

tan tan
2 2

R R
R 2

θ θ

θ θ

+
=

+
 (3.11) 
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Also 

 AC CP DM= −  (3.12) 

 BC CQ DM= +  (3.13) 

where tan
2

CP CQ R θ
= =  (3.14) 

 
Example: Given: , , , AC = 180.000 m and BC = 215.000 m. 75θ = 1 30θ = 2 45θ =
 Compute:  and . 1R 2R
 
 Using equations (3.12), (3.13) and (3.14) 

 
180
215

CP DM
CP DM

= −
= +

 

 From which we obtain ( )2 3CP = 95  thus CP = 197.500 m and DM = 17.500 m. 

 Since CP is now known and , then from (3.14) R = 257.387 m. 75θ =

 Since DM is now known, then from (3.10) 1 192.076 mR =  and 2 299.636 mR =  

 
 
 
4. GEOMETRY OF REVERSE CIRCULAR CURVES 
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Figure 4.1 
 
 
 In Figure 4.1, a reverse circular curve ADB joins two straights A'A and BB'.  A and B are tangent points to 
circular arcs of radii  and  respectively.  D is a common tangent point.   and  are intersection points 
and the line  is perpendicular to the line between the centres .  C is an intersection point created by 
extending AA' to intersect BB'. 

1R 2R 1C 2C

1 2C C 1O DO2
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Similarly to compound circular curves, there are nine elements of a reverse circular curve, 1 2, ,θ θ θ , , , , 

, 
1R 2R 1T

2T 1A  and 2A  and the following formulae linking these elements may be deduced from Figure 4.1. 
 
From triangle , 1 2CC C ( )1 2180 180θ θ θ+ + − = 1 from which we obtain 2θ θ θ= − .  For other reverse curves, it 

may be that 1 2θ θ θ= −  but in all cases, θ  is the positive difference between 1θ  and 2θ  or the magnitude of the 
difference 

 1 2θ θ θ= −  (4.1) 

As before 

 1 1 1A Rθ=  (4.2) 

 2 2 2A R θ=  (4.3) 

As with the compound circular curve, the algebraic sum of projections of certain lines can be used to derive a 
formula linking the elements of the reverse curve. 
 
Considering Figure 4.1, we may write 2 2Aa Ab cO O B= − +  or 

 

( )

( ) ( )
( )( ) ( )

1 1 2 2 2

1 1 2 2 2 2

1 2 2 2

1 2 2

sin cos cos
cos cos cos
cos cos 1 cos

1 cos 1 cos 1 cos

AC R R R R
R R R R
R R

R R

θ θ θ
θ θ θ
θ θ θ

2θ θ θ

= − + +

= − − +

= − + −

= − − − + −

 

which simplifies to 

 ( ) ( ) ( )1 2 2 1sin 1 cos 1 cosAC R R Rθ θ= + − − − θ  (4.4) 

Using a similar technique 

 ( ) ( ) ( )1 2 1 2sin 1 cos 1 cosBC R R Rθ θ= + − − − θ  (4.5) 
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5. GEOMETRY OF TRANSITION CURVES 
 
A transition curve is a curve whose curvature κ  (kappa) varies uniformly with respect to its length and allows a 
gradual change from one radius to another. Or from a straight line to a circular curve, since a straight line is 
merely a curve of infinite radius.  The concept of curvature and its reciprocal, radius of curvature ρ  (rho), is 
discussed below. 
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Figure 5.1 
 
 
Figure 5.1 shows a transition curve linking the straight A'A with the circular curve BB'.  P is a point on the 
transition curve at some distance s (arc length) from A.  The total length of the transition curve is L.  At P, the 
transition curve has a radius of curvature ρ , at A ρ = ∞  (infinity) and at B, the beginning of the circular curve, 

Rρ = .  The tangent to the transition curve at P intersects the extension of A'A at an angle of φ , known as the 
tangential angle.  φ  has a value of zero at A (the beginning of the curve) and a maximum value of 1φ  at B (the 
end of the curve).  In any transition curve, the change in φ  is proportional to the change in s. 
 
 
5.1 Curvature κ  and Radius of Curvature ρ  
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Figure 5.2 
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Figure 5.2 shows a curve ( )y f x=  and two points on the curve  and  whose tangents cut the x-axis at 
angles 

1P 2P
φ  and φ φ+ Δ .  The distance along the curve between  and  is 1P 2P sΔ .  The curvature  of a curve κ

( )y f x=  at any point P is the rate of change of direction of the curve, (i.e., the change in the inclination of the 
tangent) with respect to the arc length s.  The curvature is defined as 

 
0

lim
s

d
s ds
φ φκ

Δ →

Δ
= =

Δ
 (5.1) 

The radius of curvature ρ  is defined as the inverse of the curvature 

 1ρ
κ

=   where 0κ ≠  (5.2) 

The radius of curvature can be thought of as the radius of a circle, which "best fits" the curve at that point.  A 
circle has a constant radius of curvature (and hence a constant curvature) and a straight line has an infinite radius 
of curvature, or a curvature of zero. 
 
5.2 The equation of the transition curve 
 
A transition curve is defined as having a constant rate of change of curvature with respect to the arc length, i.e., 
if φ  is the tangential angle and s is the arc length, then 

 
2

2

d d K
ds ds
κ φ
= =   where K is a constant (5.3) 

Consider the case of a transition curve joining a straight and a circular curve of constant radius R as in 
Figure 5.1.  Integrating (5.3) gives 

 1
d K ds Ks K
ds
φ
= = +∫  

1K  is a constant of integration which can be determined by considering the following; at A, the start of the curve, 
 and the curvature is also zero, i.e., 0s = /d ds 0φ = , hence 1 0K =  and 

 d Ks
ds
φ
=  (5.4) 

Integrating again 

 
2

22
KsKs ds Kφ = = +∫  

Again, 2K  is a constant of integration which can be determined, since at the start of the curve,  and 0s = 0φ = , 
hence  and 2 0K =

 
2

2
Ksφ =  (5.5) 

Equation (5.5) is the fundamental equation of the transition curve or clothoid, one of a family of mathematical 
curves known as spirals.  The clothoid is also known as Euler's spiral or Cornu's spiral.  
 
Equation (5.5) may be written as 

 s C φ=  (5.6) 

where 2C
K

= .  If L is the total length of the clothoid, then when s = L, i.e., at the end of the curve and the 

beginning of the circular curve, the curvature / 1/ 1/d ds Rκ φ ρ= = =  and from (5.4) /d ds Ks KLφ = = .  Hence 
equating the derivatives gives the constants 1/( )K LR=  and the equation of the clothoid becomes 
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2

2
s
LR

φ =  (5.7) 

or 2s LRφ=  (5.8) 

 
Note: Since the curvature / /( )d ds Ks s LR 1/κ φ ρ= = = = , where ρ  is the radius of curvature corresponding 

to the arc s then 

 constants LRρ = =  (5.9) 

 This is an important and useful property of the clothoid. 
 
When s = L (i.e., at the end of the transition curve and the beginning of the circular curve) the total tangential 
angle Lφ  is determined from (5.7) as 

 
2L
L
R

φ =  (5.10) 

 
5.3 Rectangular coordinates of the clothoid transition curve 
 
The formulae above are not suitable for setting out clothoid transition curves in the field.  Instead, rectangular 
coordinates of points on the curve will be more useful. 
 
In Figure 5.3, P is a point on the clothoid, at a distance s from the start of the curve and the tangent to P cuts the 
x-axis at an angle φ .  The x-y rectangular coordinate system has an origin at A, the start of the transition curve.  
The x-axis is the extension of the line A'A, i.e., the tangent to the curve at A; the x-coordinate of P is the distance 
along the tangent and the y-coordinate is the perpendicular offset from the tangent.  A small arc length sΔ  has 
components xΔ  and yΔ , and in the limit become infinitesimal changes ds, dx and dy shown in the enlargement 
to the right. 
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Figure 5.3 
 
 
To express the equation of the clothoid in rectangular coordinates we make use of the differential relationships 
shown in Figure 5.3 

 
cos
sin

dx ds
dy ds

φ
φ

=
=

 (5.11) 

Differentiating (5.7) 

 sd d
LR

φ = s  

Substituting for s using (5.8) and re-arranging gives 

 
2

LR dds φ
φ

=  
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Substituting for ds in equations (5.11) and integrating gives 

 
0

cos
2

LRx d
φ φ φ

φ
= ∫  

 
0

sin
2

LRy d
φ φ φ

φ
= ∫  

These integrals, known as Fresnel integrals cannot be expressed in terms of elementary functions.  Instead, 
cosφ  and sinφ  are expanded into series and the integration performed term by term with the result expressed as 
a truncated series, assuming successive terms become smaller and smaller.  Then 

 
2 4 6 8

1/ 2

0
1

2 2! 4! 6! 8!
LRx d

φ φ φ φ φφ φ− ⎧ ⎫
= − + − + −⎨ ⎬

⎩ ⎭
∫  

 
3 5 7 9

1/ 2

02 3! 5! 7! 9!
LRy d

φ φ φ φ φφ φ φ− ⎧ ⎫
= − + − + −⎨ ⎬

⎩ ⎭
∫  

Performing the integrations and simplifying gives the series expansion for the clothoid in terms of the tangential 
angle φ  

 
2 4 6 8

2 1
(5)2! (9)4! (13)6! (17)8!

x LR φ φ φ φφ
⎧ ⎫

= − + − + −⎨ ⎬
⎩ ⎭

 (5.12) 

 
3 5 7 9

2
3 (7)3! (11)5! (15)7! (19)9!

y LR φ φ φ φ φφ
⎧ ⎫

= − + − + −⎨ ⎬
⎩ ⎭

 (5.13) 

Substituting for φ  from equation (5.7) gives the series expansion for the clothoid in terms of curve length s 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

5 9 13 17

2 4 62 4 6 85 2 2! 9 2 4! 13 2 6! 17 2 8!
s s s sx s

LR LR LR LR
= − + − + −

⋅ ⋅ ⋅ ⋅ 8  (5.14) 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

3 7 11 15 19

3 5 71 3 5 7 93 2 7 2 3! 11 2 5! 15 2 7! 19 2 9!
s s s s sy

LR LR LR LR LR
= − + − +

⋅ ⋅ ⋅ ⋅ ⋅ 9 −  (5.15) 

Note that ( )25 2 5 2⋅ = × 2 .  Equations (5.14) and (5.15) can be re-arranged into a power series in 
2s

LR
 

 
2 4 62 2 2 2

2 4 6 8

1 1 1 11
5 2 2! 9 2 4! 13 2 6! 17 2 8!

s s s sx s
LR LR LR LR

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪= − + − + −⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

8

 (5.16) 

 
2 4 63 2 2 2 2

3 5 7 9

6 6 6 61
6 7 2 3! 11 2 5! 15 2 7! 19 2 9!
s s s s sy
LR LR LR LR LR

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪= − + − + −⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

8

 (5.17) 

The maximum values of x and y are reached when s = L, i.e., at the end of the transition curve.  Substituting s = 
L into equations (5.14) (5.15) gives 

 
3 5

max 2 440 3456
L Lx L
R R

= − + −  (5.18) 

 
2 4 6

max 3 56 336 42240
L L Ly
R R R

= − + −  (5.19) 
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5.4 Offsets from the tangent to the clothoid transition curve 
 
For setting out purposes, it may be desirable to compute the y-coordinate (the offset from the tangent) given the 
x-coordinate (distance along the tangent).  To express y as a function of x, we first obtain s in terms of x by 
"reversing" the series in x in equation (5.14) using Lagrange's Theorem1

 
Given 

 ( ) or ( )s x wF s x s wF s= + = −  (5.20) 

then 

 

( ) ( ) ( ) ( ) ( ){ } ( )

( ){ } ( )

( ){ } ( )

2
2

3 2
3

2

1

1

2!

3!

!

n n
n

n

w df s f x wF x f x F x f x
dx

w d F x f x
dx

w d F x f x
n dx

−

−

⎡ ⎤′ ′= + +
⎣ ⎦

⎡ ⎤′+
⎣ ⎦

+

⎡ ⎤′+
⎣ ⎦

 (5.21) 

where ( )f s  is a function of s, ( )f x  and ( )F x  are functions of x, ( )f x′  is the derivative of ( )f x  and w is a 
constant. 
 
In our case w = 1 and we choose ( )f s = s  so that ( )f x x=  and ( ) 1f x′ =  giving 

 { } { }
1

2
1

1 1( ) ( ) ( )
2! !

n
n

n

d ds x F x F x F x
dx n dx

−

−= + + + +  (5.22) 

Now ( )F s  consists of all terms on the right-hand side of (5.14), except the 1st term, noting the change of sign to 
accord with ( )x s F s= −  in equation (5.20) 

 
( ) ( )

5 9

2 4( )
40 3456

s sF s
LR LR

= − +  

hence ( )F x  is the same series with x replacing s 

 
( ) ( )

5 9

2 4( )
40 3456

x xF x
LR LR

= − +  

This is the 2nd term in equation (5.22).  The 3rd term is obtained as follows 

 

{ }

{ }

10 14 18
2

4 6

9
2

4

9

4

2( )
1600( ) 138240( ) 11943936( )

1 1 10( )
2 2 1600( )

320( )

x x xF x
LR LR LR

d xF x
dx LR

x
LR

= − +

= +

= +

8 +

                                                          

 

 

 
1 Reversion of a series can be achieved by using Lagrange's Theorem.  A proof of this theorem can be found in 
Formulas and Theorems in Pure Mathematics by George S. Carr (2nd ed, Chelsea Pub. Co., New York, 1970).  
An application of Lagrange's Theorem can be found in Geodesy and Map Projections, by G.B. Lauf (TAFE 
Publications, Collingwood, Aust., 1983), where it is used to derive a series expression for the "foot-point" 
latitude used in conversion of latitudes and longitudes (geodetic coordinates) to Universal Transverse Mercator 
projection coordinates. 
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The series in equation (5.22) becomes 

 
( ) ( ) ( )

( ) ( )

5 9 9

2 4 4

5 9

2 4

40 3456 320

49
40 17280

x x xs x
LR LR LR

x xx
LR LR

⎛ ⎞ ⎛ ⎞
= + + + +⎜ ⎟ ⎜⎜ ⎟ ⎜

⎝ ⎠ ⎝

= + + +

+⎟⎟
⎠  (5.23) 

Substituting this series for s into equation (5.15) gives the series for y in terms of x 

 
( ) ( ) ( ) ( )

3 7 11 15 19

3 5 7
293 55397 131021

6 105 237600 269568000 7763558400
x x x x xy
LR LR LR LR LR

= + + + − −9  (5.24) 

 
 
5.5 Polar coordinates of the clothoid transition curve 
 
For "setting-out" the clothoid, it may be desirable to determine the polar coordinates of P on the curve.   
 
Figure 5.4 shows P having x,y rectangular coordinates.  The polar coordinates of P are c, the chord distance and 
α  the "deflection angle" from the tangent (the x-axis). 
 
 

A' A x
y

y

x
φ

start of transition
P.c

α

 
 
 

Figure 5.4 
 
 
It can be seen from Figure 5.4 that 

 tan y
x

α =  (5.25) 

and that 2 2c x y= +  or preferably 

 
cos

xc
α

=  (5.26) 

In practical problems, c and α  are calculated from the x and y coordinates computed from the series equations 
above. 
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5.6 The shift S of a transition curve 
 
To insert a transition curve between a straight and a circular curve it is necessary to shift the circular curve away 
from the straight by an amount known as the shift.  Similarly in order to insert a transition curve between two 
circular curves forming a compound curve it is necessary to move the circular curve with the smaller radius 
inwards, or the circular curve with the larger radius outwards.   
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O

ρ = R

ρ = R

φL

φL

ρ
∞

 =
 

ρ ∞ = 

C

θ

D

E

F G H
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K
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φLθ - 2O'

αL

sh
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shift

θ
2−

θ
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θ
2−

θ
2−

O

O'

S sec S

S tan

.

.

.

.
.

S

S

(R + S) tanQ

M

radius
 R

Augmented Tangent Length

F

 
 
 

Figure 5.5 
 
In Figure 5.5, straights A'A and KK' intersect at C.  The intersection angle is θ .  A circular curve of radius R, 
centred at O' was originally used to join the two straights, but has been shifted to O to allow for the introduction 

of two transition curves AB and JK, both of length L.  O' has been shifted to O a distance sec
2

S θ  where S is the 

shift, the perpendicular distance EF. 
 
From Figure 5.5 

 ( )max 1 cos L

S BH DE
y R φ

= −

= − −
 

where  is the maximum offset from the tangent given by equation (5.19) and maxy
2L
L
R

φ =  is the maximum 

tangential angle (see equation 5.10).  Using the expansion 
2 4 6

cos 1
2! 4! 6!
φ φ φφ = − + − +  and substituting for Lφ   

and  gives maxy
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2 4 6 2 4 6

3 5 2 4 6

2 4 6 2 4 6

3 5 3 5

1 1
6 336 42240 8 384 46080

6 336 42240 8 384 46080

L L L L L LS R
R R R R R R

L L L L L L
R R R R R R

⎛ ⎞⎛ ⎞ ⎛
= − + − − − − + − +⎜ ⎟⎜ ⎟ ⎜
⎝ ⎠ ⎝⎝ ⎠
⎛ ⎞ ⎛

= − + − − − + −⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎞
⎟
⎠

⎞
⎟
⎠

 

which simplifies to 

 
2 4 6

3 524 2688 506880
L L LS

R R R
= − + −  (5.27) 

For many practical applications the shift is approximated by 

 
2

24
LS

R
 (5.28) 

 
 
5.7 The Augmented Tangent Length of a transition curve 
 
From Figure 5.5, the Augmented Tangent Length is the distance AC where 

 AC = Q + FC (5.30) 

and 

 FC = FG + GC 

G is the tangent point of the original circular curve or radius R joining the two straights, tan / 2GC R θ=  and 
tan / 2FG S θ= , hence the Augmented Tangent Length is 

 ( ) tan
2

AC Q R S θ
= + +  (5.31) 

From Figure 5.5 

 
max sin L

Q AH DB
x R φ

= −
= −

 

where maxx  is the maximum distances along the tangent given by equation (5.18) and 
2L
L
R

φ =  is the maximum 

tangential angle (see equation 5.10).  Using the expansion 
3 5 7

sin
3! 5! 7!
φ φ φφ φ= − + − +  and substituting for Lφ   

and maxx  gives 

 

3 5 3 5

2 4 3 5

3 5 3 5

2 4 2 4

40 3456 2 48 3840

40 3456 2 48 3840

L L L L LQ L R
R R R R R

L L L L LL
R R R R

⎛ ⎞ ⎛
= − + − − − + −⎜ ⎟ ⎜
⎝ ⎠ ⎝
⎛ ⎞ ⎛

= − + − − − + −⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎞
⎟
⎠

⎞
⎟
⎠

 

which simplifies to 

 
3 5

2 42 240 34560
L L LQ

R R
= − + −  (5.32) 

The Augmented Tangent Length AC becomes 

 ( )
3 5

2 4 tan
2 240 34560 2
L L LAC R S

R R
θ⎛ ⎞

= − + − + +⎜ ⎟
⎝ ⎠

 (5.33) 
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1/ 1/ Rκ ρ= = 2 2 21/ 1/ Rκ ρ= =

5.8 Clothoid transition curves between circular curves 
 
Two circular curves of radii  and  can be joined by a clothoid transition curve whose curvature varies from 

 to .  That is, a transition curve tangential to both circular arcs 
1R 2R

1 1 1

 
 
 
 

ρ  
= 

R

ρ  = R

1
1

2
2

A

B
O

O

1

2

.

.

L

φ
B

φ

xy

P

s

ρ

 
 
 

Figure 5.6 
 
 
Figure 5.6 shows two circular curves of radii  and  centred at  and .  A clothoid transition curve AB 
of length L joins these two circular curves.  The curvature of the clothoid at A is 

1R 2R 1O 2O

1 11/ 1/ R1κ ρ= =  and the 
curvature at B is  and the clothoid has a constant rate of change of curvature with respect to arc 
length s.  Hence, we may link the curvature at P with the curvatures at the beginning and end of the curve by 

2 21/ 1/ Rκ ρ= = 2

 ( )2 1
1P s

L
κ κ

κ κ
−

= +  (5.34) 

The elemental arc length at P is 

 1

P

ds d dρ φ
κ

= = φ  (5.35) 

Substituting equation (5.34) and re-arranging gives 

 ( )2 1
1d s

L
κ κ

φ κ
−⎛ ⎞

= +⎜ ⎟
⎝ ⎠

ds  

Integrating gives an expression for the tangential angle 

 22 1
1 2
s s C

L
κ κφ κ −

= + +  

where C is a constant of integration. 
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Since 0φ =  when s = 0 then C = 0 and the equation for the tangential angle φ  becomes 

 

22 1
1

21 2

1 1 2

2

2

s s
L

R Rs s
R LR R

κ κφ κ −
= +

−
= +

 

and letting 

 1 2

1 22
R RA
LR R
−

=  (5.36) 

gives 

 2

1

s As
R

φ = +  (5.37) 

Now similarly to before, the elemental distance ds has components in the x and y directions, where the x,y axes 
have an origin at A with the x-axis in the direction of the tangent 

 
cos
sin

dx ds
dy ds

φ
φ

=
=

 (5.38) 

Substituting equation (5.37) for φ  in equations (5.38), then expanding using the series expansions for cosφ  and 
sinφ , and then integrating gives 

 
2 4 6

2 2 2

1 1 10

1 1 11
2! 4! 6!

s s s sx As As As ds
R R R

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪= − + + + − + +⎨ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

∫
⎪
⎬  (5.39) 

 
3 5 7

2 2 2 2

1 1 1 10

1 1 1
3! 5! 7!

s s s s sy As As As As
R R R R

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪= + − + + + − + +⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

∫ ds  (5.40) 

Performing the integrations and simplifying (using the symbolic mathematical package MAPLE) gives 

 

2 2
3 4 5 6

2 4 3 2
1 1 1 1 1 1

3 4 2 3
8 9 10

5 4 3
1 1 1 1

4 5 6
11 12

2
1 1

1 1
6 4 120 10 36 28 5040

48 960 216 432 360

528 1440 9360

A A A A 7
6

1x s s s s s
R R R R R R

A A A A As s s
R R R R

A A As s
R R

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= − − + − + + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

+ − + − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞ ⎛

− − −⎜ ⎟ ⎜ ⎟
⎝⎝ ⎠ ⎝ ⎠

13s
⎞

+⎜ ⎟
⎠

s

 (5.41) 

 

2 3
2 3 4 5 6

3 2 5 4
1 1 1 1 1 1

2 3 4 2
8 9 10

3 7 2 6 5
1 1 1 1 1 1

5 3

4
1

1 1 1
2 3 24 10 720 12 168 42

1
96 40320 108 6480 240 2400

1320 1584

A A A Ay s s s s s
R R R R R R

A A A A As s s
R R R R R R

A A
R

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞= + − − + − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ − + − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ ⎞

+ −⎜
⎝ ⎠

7A s

4 5
11 12 13

3 2
1 1

6 7
14 15

2
1 1

1728 3120

10080 75600

A As s s
R R

A As s
R R

⎛ ⎞ ⎛ ⎞
− −⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
− − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (5.42) 
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5.9 Perpendicular Offsets to a Clothoid Transition Curve 
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Figure 5.7 
 
 
Certain purposes may require the computation of perpendicular offsets from points of known coordinates to a 
clothoid transition curve (defined by L and R). 
 
Figure 5.7 shows a clothoid transition curve tangential to a straight at A.  The extension of the straight is the  
x-axis and the y-axis is perpendicular to the straight and directed towards the centre of curvature.  P is a known 
point (coordinates ,P Px y ) and the perpendicular to the transition curve passing through P intersects the curve at 

 (0P 0 0,x y ).  The tangent to the curve at  intersects the x-axis at an angle 0P φ  (the tangential angle).  The x'-axis 
is parallel to the tangent at  and the x'-y' axes are rotated from the x-y axes by the angle 0P φ . 
 
The method of solution is to first determine the tangential angle φ , and then compute the distance along the 

curve between A and  using equation (5.8) 0P 2s LR φ= .  Having determined the distance s, the x-y 
coordinates of  can be computed using equations (5.14) and (5.15) and finally the perpendicular offset -P 
computed from coordinate differences. 

0P 0P

 
To determine the tangential angle φ  the following formulae and relationships are required. 
 
1. The equations of the x-y coordinate of a clothoid transition curve given L and R 

 
2 4 6

2 1
(5)2! (9)4! (13)6!

x LR φ φ φφ
⎧ ⎫

= − + − +⎨ ⎬
⎩ ⎭

 (5.12) 

 
3 5 7

2
3 (7)3! (11)5! (15)7!

y LR φ φ φ φφ
⎧ ⎫

= − + − +⎨ ⎬
⎩ ⎭

 (5.13) 
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2. The equations for a rotation of coordinate axes 
 

 
cos sin
sin cos

x x
y y

φ φ
φ φ

′⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥′ −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (5.43) 

 or 

 
cos sin
cos sin

x x y
y y x

φ φ
φ φ

′ = +
′ = −

 (5.44) y'
y

φ

x

x'

 Figure 5.8 
 
3. Sine and Cosine expansions 
 

 

3 5 7

2 4 6

sin
3! 5! 7!

cos 1
2! 4! 6!

φ φ φφ φ

φ φ φφ

= − + − +

= − + − +
 (5.45) 

The x' coordinate of any point whose x,y coordinates are known is given by (5.44). 

 cos sinx x yφ φ′ = +  

Substituting the equations for x and y (5.12) and (5.13) and the expansions for sine and cosine (5.45) gives 

 
( ) ( )

( ) ( )

2 4 2 4

3 5 3 5

2 1 1
5 2! 9 4! 2! 4!

2
3 7 3! 11 5! 3! 5!

x LR

LR

φ φ φ φφ

φ φ φ φ φφ φ

⎧ ⎫⎧ ⎫⎪ ⎪′ = − + − − + −⎨ ⎬⎨
⎪ ⎪⎩ ⎭⎩ ⎭
⎧ ⎫

+⎬

⎧ ⎫⎪ ⎪− + − − + −⎨ ⎬⎨
⎪ ⎪⎩ ⎭⎩ ⎭

⎬

 

Expanding this equation and then gathering terms gives (1st three terms only) an equation for x' in terms of L, R 
and the tangential angle φ  

 1 2 5 2 9 24 162 2 2
15 945

x LR LR LRφ φ′ = − + φ  (5.46) 

The x' coordinate of P is 

 2 4 3 5

cos sin

1
2! 4! 3! 5!

P P P

P P

x x y

x y

φ φ

φ φ φ φφ

′ = +

⎧ ⎫ ⎧
= − + − + − + −⎨ ⎬ ⎨

⎩ ⎭ ⎩

⎫
⎬
⎭

 

Expanding and gathering terms gives 

 2 3 41 1 1 1
2 6 24 120P P P P P P P

5x x y x y x yφ φ φ φ′ = + − − + + φ  (5.47) 

Now, when Px x′ = ′ , the normal to the transition curve will pass through P.  Subtracting (5.47) from (5.46) and 
taking only terms up to the 3rd power gives 

 1 2 5 2 2 34 12 2
15 2 6P P P PLR LR x y x yφ φ φ φ− − − + +

1 0φ =  (5.48) 

This equation can be solved for φ  using Newton's iterative technique.  A simplification can be made by using 
the substitution 

 α φ=  (5.49) 

and equation (5.48) can be written as 
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 ( ) 6 5 4 21 4 12 2
6 15 2P P Pf y LR x y LR xα α α α α α= − + − + − 0P =  (5.50) 

Solving for α φ=  using Newton's Iteration 

 ( )
( )1

n
n n

n

f
f
α

α α
α+ = −

′
 (5.51) 

where ( )f α′  is the derivative of ( )f α  and 

 ( ) 5 4 34 2 2 2 2
3P P Pf y LR x yα α α α α′ = − + − + LR  (5.52) 

A starting value for α  can be obtained by substituting 0α =  into ( )f α  and ( )f α′  and using (5.51) to give 

 1 2
Px
LR

α =  (5.53) 

 
NOTES 1. A better (computationally) way to calculate numeric values for ( )f α  and ( )f α′  is to express the 

equations in a nested form 

 
( )

( ) ( )

1 4 12 2
6 15 2

4 2 2 2 2
3

P P P

P P P

Pf y LR x y LR

f y LR x y LR

α α α α α α α α

α α α α α α α α

⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞= − + − +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠⎝⎝ ⎠
⎛ ⎞⎛ ⎞⎛ ⎞′ = − + − +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

xα −
⎠  (5.54) 

 2. When using this method to compute perpendicular offsets it should be remembered that the 
positive directions of the x and y axes are dictated by the direction of the transition curve.  They 
may be opposite to the positive directions of East and North coordinate axes.  Hence, care should 
be taken when determining Px  and Py  from E,N coordinates. 
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5.9 Fitting a Clothoid Spiral Transition Curve Between a Straight and a Circular Curve 
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Figure 5.9 
 
In Figure 5.9 a circular curve of radius R has a fixed centre at O having known coordinates.  AA' is a straight of 
known bearing and it is desired to find the length L of a clothoid spiral transition curve that is tangential to the 
straight at TS and the circular curve at SC.  The locations of SC and TS are unknown.  X is a point on the straight 
AA' of known coordinates and the bearing and distance OX can be computed and then the perpendicular distance 
d from the centre O to the straight.  The distance d must be greater than the radius R.  From the diagram it can be 
seen that the spiral angle ( )2L L Rφ =  (which is unknown) is also the angle at the centre O between the radial to 
SC and the perpendicular to the straight.  The distance d is given by 

 max maxcos cos
2L
Ld R y R y
R

φ ⎛ ⎞= + = +⎜ ⎟
⎝ ⎠

 

With the use of an Excel spreadsheet for computing clothoid spirals given parameters L and R, the length of the 
transition curve L can be determined by successively changing L, until the required distance d is obtained.  

( )2L L Rφ =  can be computed and the radial bearing to SC determined. 
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6. DESIGN CONSIDERATIONS FOR CIRCULAR CURVES AND TRANSITION 

CURVES 
 
Circular curves and transition curves (clothoids) are uniquely defined if any two of their "properties" (or 
parameters) are fixed.  For circular curves these two properties are usually selected from the following: radius, 
arc length, intersection angle, tangent length or chord length.  For transition curves the properties are selected 
from minimum radius, length of curve, maximum tangential angle (also known as spiral angle) and shift. 
 
Generally, in practical design of roads and railways, intersection angles of straight sections are predetermined by 
the overall layout and the problem is to design the connecting circular curves and transition curves to suit the 
expected traffic conditions.  From a traffic viewpoint, the largest possible circular curves and the longest 
possible transition curves are most desirable, but restrictions usually arise due to the topography or site 
conditions and the cost.  Therefore it is necessary to determine suitable minima for radii of circular curves and 
transition lengths for given traffic speeds.  Since the speed of vehicles using a particular road or railway is a 
variable quantity (and is beyond the control of designers), "design speeds" are selected which satisfy some 
criteria.  For instance, a design speed may be the speed where it is expected that it will not be exceeded by 85% 
of the vehicles using the road. 
 
6.1 Minimum Radius for Circular Curves 
 
Uniform Circular Motion 
 
In Figure 6.1, a body of mass m is moving in a circular path of 
radius r at a constant velocity v.  Such motion is known as 
uniform circular motion and the body has acceleration directed 
radially inwards towards the centre of the circle O.  This 
acceleration is known as centripetal acceleration and in order 
for the body to have this acceleration it must be acted upon by 
a force  equal to its mass multiplied by its acceleration 
(Newton's second law 

cF
F m a= × ).  This force is known as the 

centripetal force.  Equations for the centripetal acceleration 
and centripetal force can be derived in the following manner. 
 
First, centripetal acceleration, remembering that 

change in velocityacceleration = 
change in time

dv
dt

=  (i) 

•

•

A

B
P

Q

v

v

A

B

O r
δθ

v

m

Fc

Figure 6.1
At A, the body of mass m has a velocity of magnitude v along 
the tangent AP.  At B, its velocity is the same but its direction 
is now along BQ (the tangent at B).   

The change in velocity is given by the vector subtraction AP  from BQ , i.e., B Av v vδ = −  and 
the angle between the vectors  and Av Bv  is δθ  (the angle between the radials OA and OB).  In 
the limit, as B approaches A, the change in velocity can be considered as an arc of a circle of 
radius v subtending and angle dθ .  Thus the change in velocity is 
 dv v dθ=  (ii) 

Now, since velocity equals distance divided by time then dsv
dt

=  where ds r dθ=  and a re-

arrangement gives the change in time as 

δv

δθ
v

v
A

B

 ds r ddt
v v

θ
= =  (iii) 

Substituting (ii) and (iii) into (i) and simplifying gives the centripetal acceleration 

 
2va

r
=  (6.1) 
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The centripetal force is found by Newton's second law ( F m a= × ) 

 
2

C
mvF

r
=  (6.2) 

An example of uniform circular motion and the resulting centripetal force is a stone on the end of a string 
rotating in a horizontal plane.  The centripetal force in this instance is caused by the tension in the string. 
 
For vehicles travelling at constant velocity around circular roadways or railway tracks, the centripetal force is 
caused by the constraining influence of the road pavement (friction) or the flanges of wheels on rail track. 
 
Centrifugal force is a quantity peculiar to body moving in a circular path.  It has the same magnitude as the 
centripetal force but points in the opposite direction.  An occupant of a vehicle travelling around a circular curve 
"feels" the centrifugal force (acting in the opposite direction to the centripetal force) thrusting them against the 
side of the vehicle. 
 
Superelevation and Friction 
 
 

θ W = mg

Fc = =mv Wv

W
v

2 2

2

r gr

gr

N

W 

W
 

sin

cos

θ

θ

sin θ

Wv2

gr
cosθ

F = f N

 
 
 

Figure 6.2 
 
 
At any speed, in order to constrain a vehicle to follow a circular path, it is necessary to tilt or cant the road 
pavement or elevate the outer rail above the inner rail on rail track.  This tilting or cant is known as 
superelevation and is used to reduce the effect of centrifugal force.  In Figure 6.2, the superelevation is 

tane θ= .  In railway design, unsatisfactory superelevation will cause side thrust on the rails, spikes and sleepers 
and uneven wear on the rails.  Wheels will ride up the outer rail and jump and carriages will tend to capsize.  On 
roads, unsatisfactory superelevation will cause vehicles to slide and skid sideways. 
 
In deciding how much superelevation to provide for a given velocity, too much may be as bad as too little.  For 
railways, slow trains on steeply banked curves lurch inwards, whereas fast trains on curves with little or no 
superelevation would capsize or leave the track.  One rule adopted is to provide superelevation for speed 

( )2 21
max min2V V V= + , which approximates the average speed of passenger trains, with an absolute maximum 

value of superelevation of 150 mm for a track gauge of 1.435 m. 
 
For roads, the requirement is that maximum superelevation should not be so great as to disturb the stability of 
slow moving or stationary vehicles, particularly those carrying high loads.  The maximum value adopted in 
Victoria for road design is 100 mm per metre or 1 in 10 (10%). 
 
Referring to Figure 6.2, for road vehicles travelling at constant velocities around circular roadways, the 
centripetal force  is caused by the constraining influence of the road pavement (friction).  The friction force cF

f NF = , which acts parallel to the road, is a function of N, the force normal to the road.  f is the coefficient of 
side frictional force developed between the vehicle tyres and the road pavement.  W is the weight (a force) and 
its magnitude W is equal to the vehicle mass m multiplied by the force of gravity g. 

Horizontal Curves.doc 26 



Geospatial Science  RMIT 
 
 
 
Within the limits of safe driving by an average driver, the coefficient of friction f ranges from 0.40 at 30 kph 
(kilometres per hour) to 0.11 at 110 kph.  However, for reasons of passenger comfort, f should not exceed 0.20 
and for design purposes, it is restricted to the range 0.11 0.19f≤ ≤ . 
 
The publication Rural Road Design – Guide to the Geometric Design of Rural Roads (AUSTROADS, Sydney, 
1993) has a table of recommended maximum design values of f for sealed pavements, part of which is given 
below in Table 6.1 

 
Design Speed 

V (kph) 
Coefficient of Side Friction 

f 
60 0.33 
80 0.26 

100 0.12 
120 0.11 
130 0.11 

 
Table 6.1 

 
In railway design, the coefficient of friction is ignored since the rails provide the entire constraining force. 
 
Relationship between Superelevation (Cant) and Radius for given Velocity (Speed) 
 
Speed is a measure of road (highway) design to which the geometrical properties of design are subordinated.  
The endeavour is to provide a continuous route that the road user can proceed along in comfort at uniform speed.  
Studies in Australia, have revealed that the majority of road users prefer to travel at speeds between 80 to 110 
kph, and as a result of these studies have developed standards which are the basis for current highway design. 
 
For roads, to make the thrust zero, road pavement must be superelevated until the components of the forces 
acting on the vehicle are balanced.  Referring to Figure 6.2, resolving the forces acting on the vehicle into 
components parallel to the road gives 

 
2

sin cosWvf N W
gr

θ θ+ =  (6.3) 

Resolving the forces acting on the vehicle into components normal to the road surface gives 

 
2

sin cosWvN W
gr

θ θ= +  (6.4) 

Substituting equation (6.4) into (6.3) and re-arranging gives 

 
2 2

sin cos cos sinWv Wvf W W
gr gr

θ θ θ
⎛ ⎞

+ = −⎜ ⎟
⎝ ⎠

θ  

Dividing both sides by cosW θ  and re-arranging 

 
2 2

tan tanv vf f
gr g

θ θ+ + =
r

 

Now, the superelevation tane θ=  hence 

 
( )

2 2

2

1

v vf e f e
gr gr

ve f e f
gr

+ + =

+ = −
 

And the radius r is given by 

 
2 1v e fr

g e f
⎛ −

= ⎜ +⎝ ⎠

⎞
⎟  (6.5) 
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For practical values of e and f the product  is small (for 0.11e f 0.19f≤ ≤  and e = 0.1 then 

) and may be neglected giving 0.011 0.019e f≤ ≤

 
2 1vr

g e f
⎛

= ⎜ +⎝ ⎠

⎞
⎟

)

 (6.6) 

In the equations above, v is m/s (metres per second).  With V in kph (kilometres-per-hour) ( ) and 
replacing r by R (the radius of the circular curve), and using g = 9.8 m/s as a representative value of the 
acceleration due to gravity, equation (6.6) becomes 

m/s 3.6 = kph×

 
(

2

127
VR
e f

=
+

 (6.7) 

 
The publication Rural Road Design – Guide to the Geometric Design of Rural Roads (AUSTROADS, Sydney, 
1993) has a table of Minimum Radii of Circular Curves based on Superelevation e and Side Friction f maxima.  
Part of this table is given below in Table 6.2 

 
 

Vehicle Speed 
V (kph) 

Superelevation 
e 

Coefficient of Side Friction 
f 

Minimum Radius 
R (m) 

60 0.1 0.33 70 
80 0.1 0.26 140 

100 0.1 0.12 360 
120 0.1 0.11 540 
130 0.1 0.11 635 

 
Table 6.2 

 
 
The values in Table 6.2 have been computed using equation (6.7) and then rounded up to the nearest 5 metres.  It 
is usual practice to adopt values greater than the minimum radius and to reduce superelevation and side friction 
below their maximum values. 
 
6.2 Determination of Minimum Length of Transition Curve for Given Speed Values 
 
Two methods may be adopted to determine lengths of transition curves L for given speeds V. 
 
(i) Length is such that the full superelevation  is attained at a uniform time rate, say k metres per second 

(where k can vary from 0.03 to 0.06 m/s). 
maxe

 
 An equation for the length L can be developed in the following manner. 
 

The time taken to travel the length L is Lt
v

=  where L is in metres, v is in metres per second and t is in 

seconds.  maxw ek
t

=  metres per second where w is the road pavement width or railway track width and 

tane θ=  is superelevation;  being the maximum value.  Therefore maxe maxwe vk
L

=  and by re-

arrangement and using V in kph, noting that 
3.6
Vv =  

 max

3.6
we VL

k
=  (6.8) 

 Equation (6.8) is used for computing lengths of transition curves for railway design where w is the width 
of the track,  will be the height of the outer rail above the inner rail and values of k are adopted 
from empirical studies. 

maxw e
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(ii) For riding comfort, the centripetal acceleration a, should increase gradually at a uniform rate, say A 

metres per second squared per second.  Note: the units of a are m/s2 and A are m/s3. 
 
 An equation for the length L can be developed in the following manner. 
 

As before, the time taken to travel the length L is Lt
v

=  where L is in metres, v is in metres per second 

and t is in seconds.  The centripetal acceleration is 
2va

R
=  (see equation (6.1) with R replacing r).  If A is 

the uniform rate of increase in centripetal acceleration then aA
t

=  and by substitution for a and t we 

obtain 
3vA

LR
= .  By re-arrangement and using V in kph, noting that 

( )

3
3

33.6
Vv =  

 
30.0214VL

AR
=  (6.9) 

 Equation (6.9) is used by Vicroads for computing lengths of road transition curves with the following 
values for A, the rate of change of radial acceleration 

 
  A = 0.60 80 kphV <
  A = 0.45 80 120 kphV≤ ≤
  A = 0.30 120 kphV >
 
 Using these values for A with the minimum values for R in Table 6.2, some representative values for L 

are computed from equation (6.9) and given in Table 6.3 (rounded up to the nearest 5 m) 
 
 

Vehicle Speed 
V (kph) 

Minimum Radius 
R (m) 

Rate of Change of 
Radial Acceleration 

A (m/s3) 

Length of 
Transition 

L (m) 
60 70 0.60 110 
80 140 0.45 175 

100 360 0.45 135 
120 540 0.45 155 
130 635 0.30 250 

 
Table 6.3 

 
 
 The values for L in Table 6.3 are far in excess of values adopted for the design of transition curves given 

in handbooks on the subject (see Rural Road Design – Guide to the Geometric Design of Rural Roads, 
AUSTROADS, 1993).  In such cases, other considerations in the design come into play such as studies of 
driver behaviour.  One should consider the fact that drivers often adopt cornering speeds based on what 
they can see of the road ahead.  If the length of the transition "hides" the circular curve that drivers must 
negotiate then they may adopt an incorrect speed to safely negotiate the circular curve.  To avoid this, 
transition curve lengths are often shorter than those derived from theoretical formula. 

 
The paper by Leeming2 has an interesting commentary on transition curves and superelevation.  Leeming 
notes that the rate of change of radial acceleration is not the appropriate parameter to use in the design of 
transition curves.  But, he makes a strong point that superelevation should not be introduced without a 
change in radius of curvature. 
 

                                                           
2 Leeming, J. J., 1973, 'Road curvature and superelevation', Survey Review, Vol. XXII, No. 167, pp. 23-35. 
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6.3 Superelevation and Transition Curves 
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Figure 6.3 
 
Figure 6.3 shows a schematic diagram of two straight sections of two-lane roadway joined by a circular curve 
with transition curves of length L joining the circular curve and the straights.  Transition curves (clothoids) are 
also known as spirals and the tangent point of the straight and the spiral is known as TS.  The common tangent to 
the spiral and the circular curve is CS, the common tangent to the circular curve and the spiral is CS and the 
spiral is tangential to the straight at ST.  n is the cross-fall of the road (generally given in %) and e is the 
superelevation.  At the start of the circular curve, e should be the maximum value adopted for the design.  For a 
vehicle on the left-hand-side and travelling 'up' the road (from the bottom of the diagram) and turning to the 
right, the cross-fall n is negative (negative cant) and must change gradually to zero (level) at TS.  At this point, 
superelevation begins (positive cross-fall or positive cant), which increases until it reaches its maximum value at 
the beginning of the circular curve.  Le is the length of superelevation development and the point SLe is the point 
where the cross-fall starts to change as the vehicle approaches the transition curve.  The distance between TS and 
SLe is usually dictated by the design velocity V and tables of values are given in design handbooks (eg, Rural 
Road Design – Guide to the Geometric Design of Rural Roads, AUSTROADS, 1993). 
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