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VERTICAL CURVES 
 
 
 

 
 
Whenever two gradients intersect on a road or railway, it is necessary to connect them with a 
vertical curve to improve visibility (summit curves), prevent shock impacts or passenger 
discomfort (both summit and sag curves) and to improve visual appearance.  Vertical curves 
allow vehicles to pass smoothly from one gradient to another. 
 
In practice, road and railway gradients are comparatively flat and it is often unimportant what 
type of vertical curve is used; the usual curves are circular or parabolic.  However, it is best to 
use a vertical curve having a constant rate of change of gradient, i.e., a parabola and as it 
turns out, parabolic vertical curves are very easy to calculate and use. 
 
For some freeways (high-speed roads) a vertical curve whose rate of change of gradient 
increases or decreases with the length of the curve is sometimes used, e.g., a cubic parabola.  
However, since freeways are generally made up of relatively flat gradients, curves of this type 
are sometimes regarded as an unnecessary refinement.  The cubic parabola is sometimes used 
as a sag vertical curve, where its properties allow a uniform rate of increase of centrifugal 
force (greater passenger comfort) and less filling in the valley is required.  Unless indicated 
otherwise, in these notes, a vertical curve is assumed to be a simple parabola. 
 
 
1. GRADIENTS 
 

run

rise
α

 

A gradient is a dimensionless number, rise = 
run

gradient  or 

tangradient α= . 
 
 
 
In road and railway design, gradients are usually expressed in percentages; e.g., a road of 
+4% gradient rises 4 units vertically in 100 units horizontally.  Thus, a gradient of p% is equal 
to p/100.  Gradients rising from left to right are positive and gradients falling left to right are 
negative.  Representing gradients as percentages has a useful connection with calculus: if 
vertical distances are measured along the y-axis and horizontal distances along the x-axis then 
a 4% gradient is a mathematical gradient of 0.04 or dy / 0.04dx = .  Thus the gradient (in %) 
divided by 100 is the derivative. 
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Vertical curves connect two gradients and in sectional view, the gradient to the left of the 
vertical curve will be denoted by p% and the gradient to the right will be denoted by q%.  
Alternative notations are  or  for the left-hand gradient and  or  for the 
right-hand gradient. 

1%g 1%G 2 %g 2 %G
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Figure 1.1 

 
Gradients can also be expressed as 1 in x, i.e., 1 vertical in x horizontal.  A gradient of +4% is 
equivalent to a gradient of 1 in 25.  If the gradient is expressed as p%, then it is equivalent to 
a gradient of 1 in x where x = 100/p.  
 
2. TYPES OF VERTICAL CURVES 
 
(i) Summit curves: Vertical curves where the total change in gradient is negative. 
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Figure 2.1 
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Let A be the total change in gradient, then in percent 

 %  % %A q p= −  (1.1) 

 
In Figure 2.1(a) the gradients are p% = +3.5% and q% = +1.4%, in Figure 2.1(b) the gradients 
are p% = +3.5% and q% = -3.0% and in Figure 2.1(c) they are p% = -2.5% and q% = -5.0%. 
 
The total change in gradient for each curve is 

 Figure 2.1(a) % 1.4 ( 3.5) 2.1%A = + − + = − , 

 Figure 2.1(b) % 3.0 ( 3.5) 6.5%A = − − + = −  

 Figure 2.1(c) % 5.0 ( 2.5) 2.5%A = − − − = −  

In each case, A is a negative quantity and the vertical curves are summit curves. 
 
(ii) Sag curves: Vertical curves where the total change in gradient is positive. 
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Figure 2.2 
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In Figure 2.2(a) the gradients are p% = -2.5% and q% = +1.5%, in Figure 2.2(b) the gradients 
are p% = -4.5% and q% = -1.0% and in Figure 2.2(c) they are p% = +1.0% and q% = +4.0%. 
 
The total change in gradient for each curve is 

 Figure 2.2(a) % 1.5 ( 2.5) 4.0%A = + − − = + , 

 Figure 2.2(b) % 1.0 ( 4.5) 3.5%A = − − − = +  

 Figure 2.2(c) % 4.0 ( 1.0) 3.0%A = + − + = +  

In each case, A is a positive quantity and the vertical curves are sag curves.  Sag vertical 
curves are also known as valley curves. 
 
It should be noted that a summit curve will only have a "true" high point and a sag curve will 
only have true low point when there is a change of sign between the grades. 
 
 
3. EQUATION OF A VERTICAL CURVE 
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Figure 3.1 
 
In Figure 3.1 two gradients, p and q are joined by a vertical curve of length L.  ,  are 
tangent points and the x-y coordinate origin is vertically below  with the x-axis being the 
datum for reduced levels y.  H is the reduced level of . 

1T 2T

1T

1T
 
The basic requirement for the vertical curve is that the rate of change of gradient (with respect 
to horizontal distance) shall be constant.  This requirement can be expressed in two ways. 
 
(i) Since the gradient can also be the derivative dy/dx then the rate of change of gradient is 

a second derivative and we may write. 

 
2

2

d y K
dx

=  (3.1) 
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(ii) Since the rate of change of gradient is a constant K, then it is also equal to the total 
change in gradient A divided by the length L. 

 q p A K
L L
−

= =  (3.2) 

 
The gradient at any point on the vertical curve can be found by integrating equation (3.1) 

 
2

12

dy d y dx K dx Kx C
dx dx

⎛ ⎞
= = =⎜ ⎟

⎝ ⎠
∫ ∫ +

p

 

1C  is a constant of integration and when x = 0 (the tangent point ) the gradient is p.  Thus 
 and equation for the gradient becomes 

1T

1C =

 dy Kx p
dx

= +  (3.3) 

or 

 dy q p x p
dx L

−⎛ ⎞= +⎜ ⎟
⎝ ⎠

 (3.4) 

The reduced level y (height above datum) of any point on the vertical curve can be found by 
integrating (3.3) 

 ( )
2

22
dy Kxy dx Kx p dx px C
dx

⎛ ⎞= = + = +⎜ ⎟
⎝ ⎠∫ ∫ +  

2C  is a constant of integration and when x = 0 (the tangent point ) the reduced level is H.  
Thus  and substituting the expression for K, the equation for the reduced level (y-
value) becomes 

1T

2C H=

 2

2
q py x px H

L
−⎛ ⎞= + +⎜ ⎟

⎝ ⎠
 (3.5) 

This is an equation of the form 2y ax bx c= + +  (a parabola) where a is half the rate of change 

of gradient ie, 
2 2

q p Ka
L

−⎛ = =⎜
⎝ ⎠

⎞
⎟ , b is the initial gradient at  1T ( )ie, b p=  and c is the of 

reduced level of  ( ) . 1T ie, c H=
 
If the gradients are given in percentages then equation (3.5) becomes 

 2% % %
200 100

q p py x x
L

−⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

H+  (3.6) 

When the sign of the coefficient of 2x  is negative, the curve is a summit curve and when the 
coefficient is positive it is a sag curve.  This will be demonstrated by numerical examples for 
each of the curves in Figures 2.1 and 2.2.   
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Summit vertical curves in Figure 2.1: 
 

Figure 2.1(a)   then % 3.5%p = + % 1.4%q = +
1.4 ( 3.5) 2.1

100 100
K

L L
+ − + −

= =  

 22.1 3.5
200 100

y x x
L

−⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

H+  

 

Figure 2.1(b)   then % 3.5%p = + % 3.0%q = −
3.0 ( 3.5) 6.5

100 100
K

L L
− − + −

= =  

 26.5 3.5
200 100

y x x
L

−⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

H+  

 

Figure 2.1(c)   then % 2.5%p = − % 5.0%q = −
5.0 ( 2.5) 2.5

100 100
K

L L
− − − −

= =  

 22.5 2.5
200 100

y x x
L

− −⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

H+  

 
Sag vertical curves in Figure 2.2: 
 

Figure 2.2(a)   then % 2.5%p = − % 1.5%q = +
1.5 ( 2.5) 4.0

100 100
K

L L
+ − −

= =  

 24.0 2.5
200 100

y x x
L

−⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

H+  

 

Figure 2.2(b)   then % 4.5%p = − % 1.0%q = −
1.0 ( 4.5) 3.5

100 100
K

L L
− − −

= =  

 23.5 4.5
200 100

y x x
L

−⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

H+  

Figure 2.2(c)   then % 1.0%p = + % 4.0%q = +
4.0 ( 1.0) 3.0

100 100
K

L L
+ − +

= =  

 23.0 1.0
200 100

y x x
L

⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

H+  

 
It should be clear from the derivation of the equation of the vertical curve and from the 
evaluations above, that once the gradients have been fixed then only one other parameter 
needs to be fixed to define the curve uniquely.  That is, either the rate of change of gradient K, 
or the length of the vertical curve L.  The determination of these parameters is dealt with in 
later sections. 
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4. PROPERTIES OF THE PARABOLIC VERTICAL CURVE 
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Figure 4.1 
 
 
In Figure 4.1,  is a vertical parabolic curve between two grades p and q which intersect 
at C.  ,  are tangent points and the x-y coordinate origin is vertically below  with the x-
axis being the datum for reduced levels y.  H is the reduced level of .  The horizontal length 
of the vertical curve is L and the highest point of the curve is a distance D from . 

1T E T2

1T 2T 1T

1T

1T
 
[1] The equation of the curve is 

 2

2
q py x px H

L
−⎛ ⎞= + +⎜ ⎟

⎝ ⎠
 

 Substituting L for x, the reduced level of  becomes 2T

 ( )2

2 2
q p LL pL H q p H

L
−⎛ ⎞ + + = + +⎜ ⎟

⎝ ⎠
 

From Figure 4.1, the horizontal distance from  to C is  and we can use this 
distance to calculate the reduced level of  as 

1T CL

2T

 ( )C CH pL q L L+ + −  

 Equating these two expressions for the reduced level of  gives 2T

 
( ) ( )

( )
2

2
2

C C

C

Lq p H H pL q L L

LH p q L q

+ + = + + −

= + − +
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 Cancelling and re-arranging gives 

 ( ) ( )
2 C
Lp q p q− = − L  

 i.e., 
2C
LL =  (4.1) 

This very important relationship: the horizontal distances from the tangent points to the 
intersection point are equal is of considerable use in solving vertical curve problems. 

 
[2] In Figure 4.1, F is the mid-point of the line  and the reduced level (RL) of F is the 

mean of the reduced levels of  and . 
1 2T T

1T 2T

 ( )
FRL

4
q p L

H
+

= +  

 The reduced level of E, a point on the curve at a horizontal distance L/2 from  is 1T

 ( )2

E

3
RL

2 2 2 8
q p Lq p L Lp H H

L
+−⎛ ⎞⎛ ⎞= + + =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
+  

 The reduced level of C is 

 CRL
2
pL H= +  

 The vertical distances CE and CF are the differences between the RL's of C and E, and 
C and F 

 ( ) ( ),
8 4

p q L p q L
CE CF

− −
= =  

 i.e., 
2

CFCE =  (4.2) 

 Hence, the parabola bisects the vertical from the intersection point C to the mid-point of 
the line joining the tangent points. 

 
[3] The gradient of the curve at E is given by equation (3.4) as 

 
2 2E

dy q p L q pp
dx L

− +⎛ ⎞ ⎛ ⎞⎛ ⎞= + =⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

 

 This is also the gradient of the line joining the tangent points, hence in Figure 4.1, AB is 
parallel to 1 2T T  and is tangential to the curve at E, a point midway between the tangent 

points. 
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[4] In Figure 4.1, D is the horizontal distance to the highest point of the curve (or the lowest 
point if the curve was a true sag curve).  The gradient will be zero at the highest point 
(or lowest) and since the gradient is also the derivative, then we can set equation (3.4) 
equal to zero and solve x 

 0dy q p x p
dx L

−⎛ ⎞= + =⎜ ⎟
⎝ ⎠

 

giving the horizontal distance to the high (or low) point of a parabolic vertical curve as 

 pD
q p

⎛ ⎞−
= ⎜ ⎟−⎝ ⎠

L  (4.3) 

 As mentioned previously, a true summit curve (having a highest point) and a true sag 
curve (having a lowest point) will only occur when there is a change of sign between q 
and p.  Note that the term  in equation (4.3) is the numerical sum of the two 
gradients and that D will always be a positive quantity. 

q p−

 
 e.g., Summit % 4.0%p = +  % 3.0%q = −  

 4 4
3 4 7

D L−⎛ ⎞ ⎛= =⎜ ⎟ ⎜− −⎝ ⎠ ⎝
L⎞

⎟
⎠

 

 
 e.g., Sag % 4.0%p = −  % 3.0%q = +  

 
( )
4 4

3 4 7
D L

⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟− − ⎝ ⎠⎝ ⎠
L  
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5. EXAMPLES OF PARABOLIC VERTICAL CURVE COMPUTATIONS 
 
In these example computations, it is assumed that vertical curves are parabolic and that the 
length of the curve has been fixed according to certain design principles.  These design 
principles (for determining the length of vertical curves) are covered in subsequent sections of 
these notes. 
 
5.1 Locating tangent points of vertical curves 
 
Example 1 
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Figure 5.1 
 
 
Figure 5.1 shows a rising gradient of +3.5% followed by a falling gradient of –4.2% 
connected by a vertical parabolic curve of horizontal length 120 m.  A, a point on the rising 
grade, has a chainage of 7150.000 m and a reduced level (RL) of 57.420 m and B, a point on 
the falling grade, has a chainage of 7300.000 m and RL 56.765 m. 
Calculate the chainage and RL of the tangents  and the intersection point C. 1 and T 2T
 
Let the horizontal distance from A to the intersection point C be d, then since AB = 150.000 m 

 3.5RL RL
100C A d⎛ ⎞= + ⎜ ⎟

⎝ ⎠
 

 ( ) ( )4.2 4.2RL RL 150    or   RL RL 150
100 100B C C Bd d−⎛ ⎞ ⎛ ⎞= + − = + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

Equating the expressions for  gives RLC

 ( )3.5 4.2RL RL 150
100 100A Bd d⎛ ⎞ ⎛ ⎞+ = +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
−  

and 73.312 md =  
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The chainage of the intersection point is 7150.000 + 73.312 = 7223.312 m and the chainages 
of the tangent points are 60 m either side of the intersection (due to the symmetry of the 
curve).  Having determined the chainages, the RL's follow from the grades, giving 

 1

2

Point Chainage RL
7150.000 57.420
7163.312 57.886
7223.312 59.986
7283.312 57.466
7300.000 56.765

A
T
C
T
B

 

 
Table 5.1 

 
 
Example 2 
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Figure 5.2 
 
In Figure 5.2 points A, B, D and E lie on intersecting grades which are to be connected by a 
parabolic vertical curve of horizontal length 150 m.  The chainages and RL's are shown on the 
diagram and the grades intersect at C. 
Calculate the chainage and RL of the tangents  and the intersection point C. 1 and T 2T
 

 70.840 72.340 1.500Gradient 0.0250 2.50%
60.000 60

AB − −⎛ ⎞= = = − = −⎜ ⎟
⎝ ⎠

 

 75.270 71.820 3.450Gradient 0.0345 3.45%
100.000 100

DE −⎛ ⎞= = = =⎜ ⎟
⎝ ⎠

+  
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Let the horizontal distance from B to the intersection point C be d, then 

 2.50RL RL
100C B d−⎛ ⎞= + ⎜ ⎟

⎝ ⎠
 

 ( ) ( )3.45 3.45RL RL 100    or   RL RL 100
100 100D C C Dd d+⎛ ⎞ ⎛ ⎞= + − = − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

Equating the expressions for  gives RLC

 ( )2.50 3.45RL RL 100
100 100B Dd d⎛ ⎞ ⎛ ⎞− = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
−  

and 41.513 md =  

The chainage of the intersection point is 5300.000 + 41.513 = 5341.513 m and the chainages 
of the tangent points are 75 m either side of the intersection (due to the symmetry of the 
curve).  Having determined the chainages, the RL's follow from the grades, giving 

 

1

2

Point Chainage RL
5240.000 72.340
5266.513 71.677
5300.000 70.840
5341.513 69.802
5400.000 71.820
5416.513 72.390
5500.000 75.270

A
T
B
C
D
T
E

 

 
Table 5.2 
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Figure 5.3 
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5.2 Computation of Reduced Levels of points on vertical curves 
 
Once the chainage and reduced level (RL) of the tangent points have been determined, it 
remains to compute the RL's of points along the vertical curve.  This can be achieved by using 
equation (3.6) 

 2% % %
200 100

q p py x x
L

−⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

H+  (3.6) 

where the gradients p and q are given in percentages, x is the horizontal distance from the 
tangent point  to the point on the curve, H is the RL of  and y is the RL of the point on 
the curve. 

1T 1T

 
Example 3 
 
Consider the parabolic vertical curve determined in Example 1: 
 L = 120 m, p = +3.50%, q = –4.20% 
 ch  = 7163.312 m, RL  = 57.886 m 1T 1T
 ch  = 7283.312 m, RL  = 57.466 m 2T 2T
 
Compute the RL's of points on the vertical curve at even 20 m chainages. 
 
The equation, see (3.6) above is 

 2 2% % % 0.0385RL 0.0350 57.886
200 100 120

q p px x H x x
L

− −⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + = + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

The tabulated results are 
 

Point Chainage x RL 
1T  7163.312 0 57.886 

1 7180 16.688 58.381 
2 7200 36.688 58.738 
3 7220 56.688 58.839 
4 7240 76.688 58.683 
5 7260 96.688 58.271 
6 7280 116.688 57.602 

2T  7283.312 120.000 57.466 
 

Table 5.3 
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Figure 5.4 
 
Example 4 
 
Consider the parabolic vertical curve determined in Example 2: 
 L = 150 m, p = –2.50%, q = +3.45% 
 ch  = 5266.513 m, RL  = 71.677 m 1T 1T
 ch  = 5416.513 m, RL  = 72.390 m 2T 2T
 
Compute the RL's of points on the vertical curve at even 20 m chainages. 
 
The equation, see (3.6) above is 

 2 2% % % 0.029750RL 0.0250 71.677
200 100 150

q p px x H x x
L

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + = − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

The tabulated results are 
 

Point Chainage x RL 
1T  5266.513 0 71.677 

1 5280 13.487 71.376 
2 5300 33.487 71.062 
3 5320 53.487 70.907 
4 5340 73.487 70.911 
5 5360 93.487 71.073 
6 5380 113.487 71.394 
7 5400 133.487 71.874 

2T  5416.513 150.000 72.390 
 

Table 5.4 
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Figure 5.5 
 
 
Exercise 1 
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Figure 5.6 
 
 
Figure 5.6 shows a rising gradient of +3.85% followed by a falling gradient of –4.50% 
connected by a vertical parabolic curve of horizontal length 130 m.  A, a point on the rising 
grade, has a chainage of 5120.000 m and a reduced level (RL) of 83.820 m and B, a point on 
the falling grade, has a chainage of 5320.000 m and RL 83.165 m. 
 
Calculate the following: 
 (i) The chainages and RL's of the tangents  and the intersection point C. 1 and T 2T
 (ii) The RL's of points on the curve at even 20 m chainages. 
 (iii) The chainage and RL of the mid-point of the curve. 
 (iv) The chainage and RL of the high-point of the curve. 
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Exercise 2 
 
A falling grade of 4% meets a rising grade of 5% at chainage 1500.000 m and RL 64.750 m.  
At chainage 1460.000 m, the underside of a bridge has a RL of 71.250 m.  The two gradients 
are to be joined by a parabolic vertical curve of maximum length (rounded down to nearest 20 
m) to give at least 4 metres clearance under the bridge. 
 
Calculate the following: 
 (i) The length of the vertical curve.  This length should then be rounded down to the 

nearest 20 m for use in the following calculations. 
 (ii) The chainages and RL's of the tangent points. 
 (iii) The clearance between the curve and the underside of the bridge.  Note that this 

should be at least 4 m. 
 (iv) The RL's of points on the curve at even 20 m chainages. 
 (v) The chainage and RL of the mid-point of the curve. 
 (vi) The chainage and RL of the low-point of the curve. 
 
 
6. DESIGN CONSIDERATIONS FOR PARABOLIC VERTICAL CURVES 
 
In previous sections, it has been shown that a vertical parabolic curve is completely defined if 
the following elements are known. 
 (i) Intersecting gradients p and q, 
 (ii) Chainage and RL of the intersection point (or the tangent point) and 
 (iii) Horizontal length L. 
 
The determination of a suitable length L is normally the responsibility of the traffic engineer 
or designer.  For any design speed, the minimum length of a vertical curve will depend on one 
of two factors, namely the limitation of vertical acceleration or the allowable minimum sight 
distance. 
 
6.1 Length of Vertical Parabolic Curve determined by Limitation of Vertical 
Acceleration. 
 
This is a method of computing L taking into account the design speed of the road v (m/s) or 
more commonly V (kph) and the allowable vertical acceleration a.  The design speed is 
usually taken to be the 85 percentile speed, i.e., the speed that is not exceeded by 85% of the 
vehicles using the road.  The vertical acceleration a, is the result of the vehicle traversing the 
curve at a constant speed; its vertical velocity component changing as the grade changes from 
p at  to q at .  This change in the vertical component of velocity means that the vehicle is 
subject to an acceleration a, (centripetal acceleration) given by 

1T 2T

 
2va

r
=  (6.1) 

r is the radius of circular curve approximating the vertical parabolic curve and 1/  is the 
curvature .  The general equation for the curvature of a curve 

r
κ ( )y f x=  is given by 
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2

2

3/ 22

1

d y
dx
dy
dx

κ = ±
⎧ ⎫⎪ ⎪⎛ ⎞+⎨ ⎬⎜ ⎟

⎝ ⎠⎪ ⎪⎩ ⎭

 (6.2) 

 

For a vertical curve, dy
dx

 is the gradient, which is usually small and 
2dy

dx
⎛ ⎞
⎜ ⎟
⎝ ⎠

 will be 

exceedingly small and may be neglected, giving the curvature κ  (as an approximation) 

 
2

2

d y
dx

κ  (6.3) 

For parabolic vertical curves, 
2

2

d y
dx

 (the rate of change of gradient) is a constant K, and from 

equations (3.1) and (3.2) 

 
2

2

d y q pK
dx L

−
= =  (6.4) 

Now, since  and using equations (6.1) and (6.4) the vertical acceleration is 21/ /r d y dκ= 2x

 ( ) 2q p v
a

L
−

=  (6.5) 

Using the relationship  (kph) (m/s)
3.6

Vv =  and re-arranging equation (6.5) gives the length of 

the vertical curve as 

 ( ) 2

12.96
q p V

L
a

−
=  (6.6) 

or for grades in percentages 

 ( ) 2% %
1296

q p V
L

a
−

=  (6.7) 

For design purposes, the maximum value of vertical acceleration a, should not exceed 0.1g (g 
is the acceleration due to gravity  9.8 m/s) and otherwise come within the range 0.10g to 
0.05g, depending on the importance of the road.  On major highways, a maximum value of a 
= 0.05g is considered satisfactory. 
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6.2 Minimum Sight Distance 
 
Sight distance is defined as the extent of a drivers clear view a road, sufficient to enable the 
drive to react to an emergency or to permit safe overtaking of a vehicle travelling at less than 
design speed. 
 
 

.

sight distance

object cut off heighth

h

2

1eye height

 
 
 

Figure 6.1  Driver's view of an object on a summit vertical curve. 
 
 
 
 

h1eye height

sight distance

object cut off heighth2

bridge

 
 

Figure 6.2  Driver's view of an object on a sag vertical curve. 
 

 
Constraints assumed for computation of sight distances: 
 
Height of eye of driver  ( )1h

• passenger vehicle 1.15 m 
• commercial vehicle 1.80 m 

 
Object cut-off height ( )2h .  The driver is assumed to react to their view of that portion of the 
object over this height 

• approaching vehicle 1.15 m 
• stationary object on road 0.20 m 
• vehicle tail or stop light 0.60 m 
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6.3 Stopping Distance SD  
 
A theoretical stopping distance  can be derived from the equation SD

 Stopping Distance = Reaction Distance + Braking Distance (6.8) 

 
6.3.1 Reaction Distance  RD
 
A driver confronted with an emergency has firstly to perceive and secondly to react to a 
situation before they apply foot to brake.  The time lapse between initial perception and the 
instant when the vehicle brakes act is called the total reaction time ( )TR .  It can vary between 
0.5 and 3 seconds depending upon circumstances (drivers perception, atmospheric conditions, 
etc).  For design purposes a figure of 2.5 secTR =  is usually adopted 

 Reaction Distance 
3.6R T T
VD R v R= =  (6.9) 

where  TR  is reaction time in seconds 
 v is velocity in metres per second (m/s) 
 V is velocity in kilometres per hour (kph) 
 
 
6.3.2 Braking Distance BD  
 
Having applied the brakes, the vehicle still has to stop.  Braking distance is defined as the 
length of roadway travelled from the time the brakes start to act until the vehicle is brought to 
a halt.  To establish a formula, consider the kinetic energy of the vehicle: 

 
Kinetic energy KW  is the energy possessed by a body because of its 
motion; it is measured by the work done by the body as it is brought to 
rest. 

 
Consider a body of mass m decelerating to rest.  From the 3rd equation of motion 

  2 2 2v u a= + s

m mF

s

motion
where v is final velocity 
 u is initial velocity 
 a is acceleration 
 s is displacement 
 
Since the final velocity will be zero ( )0v =  and the acceleration will be negative then 

 

2

2

0 2

2

u a
us
a

= +

=

s
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Now 
2

Work = Force  Distance
2
uF s F
a

⎛
× = × = ⎜

⎝ ⎠

⎞
⎟  and Force = mass  acceleration ma× =  

therefore 
2

21Work = 
2 2
uma mu
a

⎛ ⎞
=⎜ ⎟

⎝ ⎠
 and since kinetic energy is a measure of the work done then 

 ( )2 21 1 mass  velocity
2 2kW m= × = v  (6.10) 

 
For a body of mass m, decelerating to rest on a horizontal 
surface, the force f=F N  causing the deceleration is a 
function of the normal reaction force N.  The normal force is 
equal to the weight W, a force whose magnitude is W = mg 
and f is the Coefficient of Longitudinal Friction.  The 
magnitude of the decelerating force is 

mF N= f 

N

W

motion

 

  F f N f W fmg= = =

 
Since the kinetic energy W  is the work done (Force × Distance) as the body is brought to 
rest, then 

k

 2

Force Distance
1
2

kW

fmg d mv

× =

× =
 

giving the Braking Distance  as BD

 
2

Braking Distance 
2B
vD
gf

=  (6.11) 

Using a value of the acceleration due to gravity of g = 9.8 m/s and with V in kph (
3.6
vV ) 

then 

=

 
2

254B
VD

f
=  (6.12) 

Substituting equations (6.9) and (6.12) into equation (6.8) gives 

 
2

Stopping Distance 
3.6 254S R B T
V VD D D R

f
= + = +  (6.13) 

Using a value for the reaction time 2.5secTR =  gives a common formula for the stopping 
distances as 

 
2

0.7
254S
VD V

f
= +  (6.14) 

Vertical Curves.doc (March 2006) 20 



RMIT University Geospatial Science 

Recent tests by the Australian Road Research Board (ARRB)1 have found that, on good dry 
pavements modern passenger cars can consistently achieve deceleration rates in excess of 
1.0g.  However, the values used for design purposes should allow for degradation of 
pavements skid resistance when wet and for a reasonable amount of surface polishing.  The 
values for the coefficient of longitudinal friction given in Table 6.1 below are taken from 
Rural Road Design – Guide to the Geometric Design of Rural Roads, AUSTROADS, Sydney, 
1993, p.28.  The lower values assumed for the higher speeds reflect the reduction in wet 
pavement skid resistance with increasing speed and the need for lateral vehicle control over 
the longer braking distances. 

 
Initial Speed 

V (kph) 
Coefficient of 
Longitudinal 

Friction 
f 

50 0.52 
80 0.43 
100 0.39 
130 0.33 

 
Table 6.1  Values of Coefficient of Longitudinal Friction f 

 
 
6.4 Length of Summit Vertical Curve for Stopping Sight Distance D 
 
Stopping Sight Distance D (Non-Overtaking Sight Distance) is used to determine the 
minimum length of a vertical curve.  D shall be equal to the Stopping Distance  of a 
vehicle travelling at design speed V when an unobstructed view is provided between a point 

 (eye height) above road pavement and a stationary object of height  (object cut off 
height) in the lane of travel. 

SD

1h 2h

 
 

.

Stopping Sight Distance D = 

object cut off heighth

h

2

1eye height

DS

= VV 2

254 f3.6
RT +

 
 
 

Figure 6.3 
 
 

                                                           
1 Samuels, S.E. and Jarvis, J.R., 1978, Acceleration and Deceleration of Modern Vehicles, ARRB Research 
Report, ARR No.86 – from Rural Road Design – Guide to the Geometric Design of Rural Roads, 
AUSTROADS, Sydney, 1993, p.28. 
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To determine a minimum vertical curve length L, using Stopping Sight Distance D, three 
cases arise 
 

(i) : length of vertical curve greater than the stopping sight distance.  In this case, 
the vehicle and the object are both on the vertical curve. 

L D>

(ii) L = D: length of vertical curve equal to the stopping sight distance.  In this case, the 
vehicle is at the beginning of the vertical curve and the object is at the end 
of the curve. 

(iii) : length of vertical curve shorter than the stopping sight distance.  In this case, 
the vehicle and the object are both on the grades joined by the vertical 
curve. 

L D<

 
6.4.1 : Length of Summit Vertical Curve Greater than Stopping Sight Distance L D>
 
 
 

q

.

.
T

T

1

2
p

C
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B

E

Fh1

h2
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e

e

e

L L
2 2
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S D  S−

H y
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Figure 6.4 
 
In Figure 6.4 the following is known (see Section 4 – Properties of the Parabolic Vertical 
Curve).  The line AB is tangential to the curve at E (the mid-point of the curve) and is parallel 
to the line between the tangent points.  The distance 1 2e T A CE T B= = =  is 

 ( )
2 8

q pCFe CE L
−

= = =  (6.15) 

and the sign of e is given by the sign of ( )q p− . 
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Figure 6.5 
 
Equation (6.15) can be verified by considering Figure 6.5 and the equation of the parabolic 
vertical curve 

 2

2
q py x px H

L
−⎛ ⎞= + +⎜ ⎟

⎝ ⎠
 (6.16) 

For a point on the curve at a horizontal distance x from the tangent point  the following 
three components of equation (6.16) are shown on Figure 6.5. 

1T

 (i) the vertical distance from the grade to the curve is 2

2
q ph x

L
−⎛ ⎞= ⎜ ⎟

⎝ ⎠
, 

 (ii) the vertical distance from the grade to the horizontal line passing through  is px 
and 

1T

 (iii) the vertical distance from  to the datum is H. 1T
 
The sum of the three components is the y-coordinate of the point on the curve. 
 
For the mid-point of the curve, the vertical distance e is given by the first component of 
equation (6.16) 

 ( )2

2 2 8
q pq p Le L

L
−−⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 

This demonstrates a useful property of a parabolic vertical curve, i.e.,; the vertical distance h 
from a tangent line to a point on the curve is given by 

 2

2
q ph

L
−⎛ ⎞= ⎜ ⎟

⎝ ⎠
x  (6.17) 

where x is the horizontal distance from the tangent point.  Noting, in Figure 6.4, that AB is a 
tangent and E is a tangent point, equation (6.17) can be used to derive expressions for the 
distances  and , noting that  in equation (6.17) has been reversed to make  and 

 positive quantities. 
1h 2h q p− 1h

2h

 2
1 2

p qh
L
−⎛ ⎞= ⎜ ⎟

⎝ ⎠
S  (6.18) 
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 ( 2
2 2

p qh D
L
−⎛ ⎞= ⎜ ⎟

⎝ ⎠
)S−  (6.19) 

Using equations (6.15), (6.18) and (6.19) the following manipulations yield an expression for 
the length of a vertical curve. 
 
By taking square roots of both sides of equations (6.18) and (6.19) we have 

 

( )

1

2

2

2

p qh S
L

p qh D S
L

−
=

−
= −

 

Adding the equations eliminates S 

 1 2 2
p qh h D

L
−

+ =  

Squaring both sides and re-arranging gives 

 ( )
( )

2

2

1 22

D p q
L

h h

−
=

+
 (6.20) 

If the gradients are given in percentages then equation (6.20) becomes 

 ( )
( )

2

2

1 2

% %

200

D p q
L

h h

−
=

+
 (6.21) 

 
 
6.4.2 : Length of Summit Vertical Curve equal to the Stopping Sight Distance L D=
 
In this case, letting D = L in equations (6.20) and (6.21) gives 

 
( )2

1 22 h h
L

p q

+
=

−
 (6.22) 

or, if gradients are given in percentages 

 
( )2

1 2200

% %

h h
L

p q

+
=

−
 (6.23) 
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6.4.3 : Length of Summit Vertical Curve less than the Stopping Sight Distance L D<
 
In Figure 6.6, the vehicle (eye height ) and object (object cut off height ) are situated on 
the gradients p and q respectively and are at a distance D apart.  D is the stopping sight 
distance and exceeds the length of the parabolic vertical curve.   and  are tangent points 
and the lines  and AB are parallel.  AB is tangential to the curve at E, which is the mid-
point of the curve. 

1h 2h

1T 2T

1 2T T

 
The following manipulations yield an equation for the length of the vertical curve. 
 

 The gradient of the line ( ) ( )
1 2

/ 2 / 2rise
run 2

p L q L p qT T
L
+ +

= = =  (6.24) 
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Figure 6.6 
 
 
An expression for the vertical distance 1h e−  can be obtained by considering the grade p and 
the gradient of the line .  In Figure 6.6, the distance 1 2T T 1h e−  is also shown as a dotted line 
at a distance  from . 1d 1T

 
( )1 1

1 1

2
2
2 2 2

p qh e p d d1

1
p p qd d

+⎛ ⎞− = − ⎜ ⎟
⎝ ⎠

= − − d
 

giving 

 1 2
p qh e d−⎛ ⎞− = ⎜ ⎟

⎝ ⎠
1  (6.25) 
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Similarly 

 2 2
p qh e d−⎛ ⎞− = ⎜ ⎟

⎝ ⎠
2  (6.26) 

Adding equations (6.25) and (6.26) gives 

 ( )1 2 1 22
2

p qh h e d d−⎛ ⎞+ − = +⎜ ⎟
⎝ ⎠

 

but  so we may write 1 2d d D L+ = −

 (1 2 2
2

p qh h e D L−⎛ ⎞+ − = −⎜ ⎟
⎝ ⎠

)  (6.27) 

From the previous section, the vertical distance e is given by equation (6.16) 

 
8

q pe L−⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

However, for a summit curve,  will be a negative quantity, making e negative, thus, for 
e positive we write 

q p−

 2
4

p qe −⎛ ⎞= ⎜ ⎟
⎝ ⎠

L  (6.28) 

Substituting equation (6.28) into (6.27) gives 

 ( )1 2 4 2
p q p qh h L D L− −⎛ ⎞ ⎛ ⎞+ − = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

Multiplying both sides by 4
p q

⎛ ⎞
⎜ −⎝ ⎠

⎟  and re-arranging gives and expression for L 

 ( )1 24
2

h h
L D

p q
+

= −
−

 (6.29) 

or, if gradients are given in percentages 

 ( )1 2400
2

% %
h h

L D
p q

+
= −

−
 (6.30) 

 
 
6.5 Length of Sag Vertical Curve for Stopping Sight Distance D and Clearance Height 

 CH
 
Stopping Sight Distance D (Non-Overtaking Sight Distance) is used to determine the 
minimum length of a vertical curve.  D shall be equal to the Stopping Distance  of a 
vehicle travelling at design speed V when an unobstructed view is provided between a point 

 (eye height) above road pavement and a stationary object of height  (object cut off 
height) in the lane of travel.  Overhead obstructions, such as road or railway overpasses, sign 
or tollway gantries may limit the sight distance available on sag vertical curves.   

SD

1h 2h
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In Figure 6.7, the overhead obstruction (bridge) is at height  above the road pavement. 
 is the clearance height

CH

CH . 
 
 

h1eye height

object cut off heighth2

bridge

Stopping Sight Distance D = DS

= VV 2

254 f3.6
RT +

CH

 
 

Figure 6.7 
 
 
To determine a minimum vertical curve length L, using Stopping Sight Distance D and 
Clearance Height  three cases arise CH
 

(i) : length of vertical curve greater than the stopping sight distance.  In this case, 
the vehicle and the object are both on the vertical curve. 

L D>

(ii) L = D: length of vertical curve equal to the stopping sight distance.  In this case, the 
vehicle is at the beginning of the vertical curve and the object is at the end 
of the curve. 

(iii) : length of vertical curve shorter than the stopping sight distance.  In this case, 
the vehicle and the object are both on the grades joined by the vertical 
curve. 

L D<
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6.5.1 : Length of Sag Vertical Curve Greater than Stopping Sight Distance L D>
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Figure 6.8 
 
 
In a similar manner to Section 6.4.1 (summit vertical curves), two equations can be written 
and manipulated to yield expressions for the minimum length of a vertical curve. 

 2
1 2

q pe h S
L

−⎛ ⎞− = ⎜ ⎟
⎝ ⎠

 (6.31) 

 ( 2
1 2

q pe h D S
L

−⎛ ⎞− = −⎜ ⎟
⎝ ⎠

)  (6.32) 

By taking square roots of both sides of equations (6.31) and (6.32)we have 

 

( )

1

2

2

2

q pe h S
L

q pe h D S
L

−
− =

−
− = −

 

Adding the equations eliminates S 

 1 2 2
q pe h e h D

L
−

− + − =  

Squaring both sides and re-arranging gives 

 ( )
( )

2

2

1 22

D q p
L

e h e h

−
=

− + −
 (6.33) 

In equation (6.33) e can be replaced by  the Clearance Height, the vertical distance 
between the point of tangency E and the obstruction to the line of sight between objects of 
height  and . 

CH

1h 2h
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 ( )
( )

2

2

1 22 C C

D q p
L

H h H h

−
=

− + −
 (6.34) 

If the gradients are given in percentages then equation (6.34) becomes 

 ( )
( )

2

2

1 2

% %

200 C C

D q p
L

H h H h

−
=

− + −
 (6.35) 

 
Figures 6.9 and 6.10 show obstructions located vertically above the mid point of the curve 
and at a point to the left of the mid point.  The line of sight between objects of height  and 

 is parallel to the tangent to the curve.  The point of tangency is vertically below the 
obstruction. 

1h

2h

 
 
 

T
T

1
2

+q%
-p% D

L
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1
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obstruction

 
 
 

Figure 6.9 
Obstruction at vertical height  above mid point of vertical curve CH
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Figure 6.10 
Obstruction at vertical height  above point to the left of mid point of vertical curve CH
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6.5.2 : Length of Sag Vertical Curve equal to the Stopping Sight Distance L D=
 
In this case, letting D = L in equations (6.34) and (6.35) gives 

 
( )2

12 C CH h H h
L

q p

− + −
=

−
2  (6.36) 

or, if gradients are given in percentages 

 
( )2

1200

% %
C CH h H h

L
q p

− + −
=

−
2  (6.37) 

 
 
6.5.3 : Length of Sag Vertical Curve less than the Stopping Sight Distance L D<
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Figure 6.11 

 
In Figure 6.11, the vehicle (eye height ) and object (object cut off height ) are situated on 
the gradients p and q respectively and are at a distance D apart.  D is the stopping sight 
distance and exceeds the length of the parabolic vertical curve.   and  are tangent points 
and the lines  and AB are parallel.  AB is tangential to the curve at the mid-point. 

1h 2h

1T 2T

1 2T T
 
The following manipulations yield an equation for the length of the vertical curve.  Equation 
(6.24) gives the gradient of the line  1 2T T

 gradient 1 2 2
p qT T +

=  

An expression for the vertical distance ( )1CH h e− +  can be obtained by considering the 
grade p and the gradient of the line . 1 2T T
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( ) ( )1 1

1 1

2
2

2 2 2

C
p qH h e d p d1

1
p q pd d

+⎛ ⎞− + = −⎜ ⎟
⎝ ⎠

= + − d
 

giving 

 ( )1 2C
q pH h e −⎛ ⎞− + = ⎜ ⎟

⎝ ⎠
1d  (6.38) 

Similarly 

 ( )2 2C
q pH h e d−⎛ ⎞− + = ⎜ ⎟

⎝ ⎠
2  (6.39) 

Adding equations (6.38) and (6.39) gives 

 ( ) ( )1 2 1 22 2
2C

q pH h h e d d−⎛ ⎞− + − = +⎜ ⎟
⎝ ⎠

 

but  and 1 2d d D L+ = − 2
4

q pe −⎛ ⎞= ⎜ ⎟
⎝ ⎠

L  (see equation (6.28) noting that the for a sag vertical 

curve  is a positive quantity).  Substituting these expressions gives q p−

 ( ) ( )1 22 2
4 4C

q p q pH h h L D L− −⎛ ⎞ ⎛ ⎞− + − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 

Multiplying both sides by 4
p q

⎛
⎜ −⎝ ⎠

⎞
⎟  and re-arranging gives and expression for L 

 ( 1 2
42 2 CL D H h h

p q
⎛ ⎞

= − − + )⎡ ⎤⎜ ⎟ ⎣ ⎦−⎝ ⎠
 (6.40) 

or, if gradients are given in percentages 

 ( 1 2
4002 2

% % CL D H h h
p q

⎛ ⎞
= − − + )⎡ ⎤⎜ ⎟ ⎣ ⎦−⎝ ⎠

 (6.41) 
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6.6 Length of Sag Vertical Curve for Headlight Sight Distance S 
 
Figure 6.12 shows a vehicle on a sag vertical curve whose headlights are at a vertical height h 
above the road pavement at the mid point of the curve.  The longitudinal axis of the vehicle is 
parallel to the tangent to the vertical curve at the mid point E.  The useful portion of the 
headlight beam diverges (upwards) at an angle θ  and strikes the road pavement at a 
horizontal distance S (the Headlight Sight Distance) from the vehicle. 
 
 

T

T

1

2

A

B
C

e

e

e

L L
2 2

Ep

q

 Headlight Sight
Distance = S = D S

h

Sθθ
h

 
 
 

Figure 6.12 
 
To determine a minimum vertical curve length L, using Headlight Sight Distance S, three 
cases arise 
 

(i) : length of vertical curve greater than the headlight sight distance.  In this 
case, the vehicle and the limit of the light beam are both on the vertical 
curve. 

L S>

(ii) L = S: length of vertical curve equal to the headlight sight distance.  In this case, 
the vehicle is at the beginning of the vertical curve and the limit of the light 
beam is at the end of the curve. 

(iii) : length of vertical curve shorter than the headlight sight distance.  In this 
case, the vehicle and the limit of the light beam are both on the grades 
joined by the vertical curve. 

L S<

 
6.6.1 : Length of Sag Vertical Curve Greater than Headlight Sight Distance L S>
 
In a similar manner to previous sections, the property of the vertical distance between the 
tangent and the parabolic curve can be employed to give the following equation 

 2

2
q ph S S

L
θ −⎛ ⎞+ = ⎜ ⎟

⎝ ⎠
 (6.42) 

In equation (6.42) it is assumed that the vertical distance, shown as Sθ , is equal to the small 
arc of a large circle of radius S subtending the angle θ  at its centre (the headlight of the 
vehicle).  This is a reasonable assumption, since in practice, the angle θ  is small (usually 1º) 
and the grades are also small. 
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Rearranging equation (6.42) gives 

 ( )
( )

2

2
S q p

L
h Sθ

−
=

+
 (6.43) 

or, if gradients are given in percentages 

 ( )
( )

2 % %
200

S q p
L

h Sθ
−

=
+

 (6.44) 

For a light beam with  (0.017453 radians) and 1θ = 0.750 mh = , equation (6.44) becomes 

 ( )2 % %
150 3.5

S q p
L

S
−

=
+

 (6.45) 

 
 
6.6.2 : Length of Sag Vertical Curve less than or equal to the Headlight Sight 
Distance 

L S≤

 
 

 

T

T
1

2e

L L
2 2

p
q

L

 Headlight Sight Distance = S = D S

θ

h

Figure 6.13 
 
 
Figure 6.13 shows a vehicle on the grade p (before the tangent point) whose useful portion of 
the headlight beam intersects the grade q (after the tangent point) on the other side of the 
curve.  In this case L < S.  Since we are interested in determining minimum lengths of vertical 
curves, we may consider the case when the vehicle's headlamp is at  and the headlight beam 
strikes the road pavement at , i.e., the case when L = S.  In such a case, substituting L for S 
in equation (6.43) gives the formula to be used for 

1T

2T
L S≤  

 ( )2 h S
L

q p
θ+

=
−

 (6.46) 

or, if gradients are given in percentages 

 ( )200
% %

h S
L

q p
θ+

=
−

 (6.47) 
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For a light beam with  (0.017453 radians) and 1θ = 0.750 mh = , equation (6.47) becomes 

 150 3.5
% %

SL
q p

+
=

−
 (6.48) 
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